Access provided by Rice University


Bark F. H., Bark T. H. On vertical boundary layers in a rapidly rotating gas. Journal of Fluid Mechanics 1976, 78, 815-825.
Brouwers J. J. H. On compressible flow in a rotating cylinder. Journal of Engineering Mathematics 1978, 12, 265-285.
CrossRef
Dickinson G. J., Jones I. P. Numerical solutions for the compressible flow in a rapidly rotating cylinder. Journal of Fluid Mechanics 1981, 107, 89-107.
CrossRef
Park J.S, Hyun J. M. Flow of a compressibl fluid in a rapidly rotating pipe with azimuthally varying wall thermal condition. Journal of Fluid Mechanics 2004, 518, 125-145
CrossRef
Babarsky R.J, Herbst I.W, Wood III H. G. A new variational approach to gas flow in a rotating system. Physics of Fluid 2002, 14(10), 3624-3640.
Johnson EA, Stopford P. J. Shear flow in the presence of ‘strong rotation’: II. Approximations for continuum-plus-rarefied flow. J. Phys. D: Appl. Phys. 1983, 16, 1207-1215.
CrossRef
Müller I., On the frame dependence of stress and heat flux., Arch. Rational Mech. Anal. 45, 1972, 241-250
Sharipov F. M., Kremer G. M., Non-isothermal Couette flow of a rarefied gas between two rotating cylinders. Eur. J. Mech. B/Fluids 1999, 18(1), 121-130.
CrossRef
Sharipov F.M, Cumin L. M. G., Kremer G. M. Transport phenomena in rotating rarefied gases Physics of Fluids 2001, 13(1), 335-346.
CrossRef
Sharipov F. M., Kremer G. M. On thr frame dependence of constitutive equations. I. Heat transfer through a rarefied gas between two rotating cylinders., Continuum Mechanics. Thermodynamics, 7, 1995, 57-71.
CrossRef
Taheri P, Struchtrup H. Effects of rarefaction in microflows between coaxial cylinders. Physical Review E 2009, 80, 066317(1)-066317(16).
Ghosh AK, Deshpande SM. Least squares kinetic upwind method for inviscid compressible flows. AIAA paper 95-1735, 1995.
Ramesh V. Least squares grid-free kinetic upwind method. PhD thesis. Bangalore, Dept. of Aerospace Engg., Indian Institute of Science, 2001.
Ramesh V, Deshpande SM, Unsteady flow computations for flow past multiple moving boundaries using LSKUM, Computers and Fluids, 2007, 36, 1592-1608.
CrossRef
Praveen C, Ghosh AK, Deshpande SM. Positivity preservation, stencil selection and applications of LSKUM to 3-D inviscid flows. Computers and Fluids 2009, 38(8), 1481-1494.
CrossRef
Praveen C. Development and Applications of Kinetic Meshless Methods for Euler Equations. PhD thesis. Bangalore: Dept. Of Aerospace Engg., Indian Institute of Science, 2004.
Mahendra AK. Application of least squares kinetic upwind method to strongly rotating viscous flows. M. Sc.(Eng) Thesis. Indian Institute of Science, Bangalore, 2003.
Mahendra AK, Singh RK, Gouthaman G. Meshless kinetic upwind method for compressible viscous rotating flows. Comput Fluids, in press. doi:10.1016/j.compfluid.2010.10.015.
Anil N., Rajan NKS, Deshpande S. M., Mathematical analysis of dissipation in m-KFVS Method, Fluid Mechanics Report 2005 FM 1, Indian Institute of Science, Bangalore, 2005
Kolobov VI, Arslanbekov RR, Aristov V, Frolova AA, Zabelok SA. Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement. Journal of Computational Physics, 2007, 223, 589-608.
CrossRef
Wang W-L, Boyd I.D, Predicting continuum breakdown in hypersonic viscous flows, Physics of fluids, 2003, 15(1), 91-100.
Schwartzentruber, T., Boyd, I. A hybrid particle-continuum method applied to shock waves. Journal of Computational Physics, 2006, 215, 402-416.
CrossRef
Lockerby D. A., Struchtrup H, Reese J. M., Switching criteria for hybrid rarefied gas flow solvers, Rarefied Gas Dynamics:26th International Symposium, ed. T. Abe, 2009, CP1084, 434-440.
Arkilic EB, Schmidt M. A., Breuer KS. Gaseous Slip Flow in Long Microchannels. Journal of Microelectromechanical systems, 1997, 6(2), 167-178.
CrossRef
M. Gad-el Hak. The Fluid Mechanics of Microdevices - The Freeman Scholar Lecture. ASME Journal of Fluids Engineering, 1999, 121(403), 5-33.
CrossRef
Bird, GA. Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon, Oxford, 1994.
Shen, C. Rarefied Gas Dynamics : Fundamentals, Simulations and Micro Flows. Springer, Berlin, 2005.
Aristov, V. V. Direct methods for solving the Boltzmann equations and study of non equilibrium flows, Kluwer, 2001.
Burt JM, Boyd ID, A hybrid particle approach for continuum and rarefied flow simulation, Journal of Computational Physics 2009, 228, 460-475.
CrossRef
Cercignani C, Lampis M, and Lorenzani S, Variational approach to gas flows in microchannels, Physics of Fluids 2004, 16(9), 3426-3437
CrossRef
Fan, J., Shen, C. Statistical simulation of low-speed unidirectional flows in transition regime. In: Rarefied Gas Dynamics, edited by R. Brun et al., 1999, vol. 2, 245. Cepadus-Editions, Toulouse.
Fan, J., Shen, C. Statistical simulation of low-speed rarefied gas flows. Journal of Computational Physics, 2001, 167, 393.
CrossRef
Goldstein DB, Sturtevant B, Broadwell JE, Investigation of the motion of the discrete velocity gases, In: E. P. Muntz et al. (Eds.), Proceedings of the16th International Symposium on RGD, in Series: Progress in Astronautics and Aeronautics 118, 1989, 100.
Rogier F., Schneider JA, A direct method for solving Boltzmann equation, Trans. Theo. Stat. Phys., 1994, 23 (1-3), 313-338.
CrossRef
Tan Z., Varghese PL, The δ-e method for the Boltzmann equation, J. Comput. Phys., 1994, 110, 327.
CrossRef
Tcheremissine F. G., Solution to the Boltzmann kinetic equation for high-speed flows, Comput. Math. Math. Phys. 2006, 4, 315.
Degond P., Pareschi L., Russo G. (Eds.), Modeling and Computational methods for Kinetic Equations, Birkhauser, Boston, 2004, 356.
Oran, E. S., Oh, C. K., Cybyk, B. Z. Direct simulation Monte Carlo: recent advances and applications. Annu. Rev. Fluid Mech. 1998, 30, 403-441.
CrossRef
Crouseilles N., Degond P., Lemou M., Ahybrid kinetic/fluid models for solving the gas dynamics Boltzmann-BGK equation, J. Comput. Phys. 2004, 199, 776.
CrossRef
Beylich AE, Solving the kinetic equation for all Knudsen numbers, Physics of Fluids, 2000, 12(2), 444-465
CrossRef
Hash DB, Hassan HA, Two-dimensional coupling issues of hybrid DSMC/Navier-Stokes solvers, AIAA paper 97-2507, 1997.
Lockerby, D., Reese, J., Gallis, M. The usefulness of higher order constitutive relations for describing the Knudsen layer. Physics of Fluids, 2005, 17, 100609(1)-100609(9).
Chapman, S., Cowling, T. G. The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge, 1970.
Wang Chang, C. S. On the theory of the thickness of weak shock waves, Technical report no. APL/JHU, CM-503. Dept. of Eng. Research, University of Michigan, 1948.
Grad, H. On the Kinetic theory of rarefied gases. Commun. Pure Appl. Maths 1949, 2, 331.
CrossRef
Wood L. C. Frame-indifferent kinetic theory. Journal of Fluid Mechanics, 1983, 136, 423-433.
CrossRef
Lumpkin III, F. Development and evaluation of continuum models for translational-rotational nonequilibrium. Ph.D. thesis, Stanford University, 1990
Eu, C. Kinetic Theory and Irreversible Thermodynamics. Wiley, New York, 1992.
Cercignani, C. Mathematical Methods in Kinetic Theory. Plenum, New York., 1990
Cercignani, C. Higher order slip according to the linearized Boltzmann equation, Institute of Engineering Research Report AS-64-19, University of California, Berkeley, 1964.
Loyalka, S., Petrellis, N., Storvick, T. Some numerical results for the BGK model: Thermal creep and viscous slip problems with arbitrary accommodation at the surface. Physics of Fluids, 1975, 18, 1094-1099
CrossRef
Zhong, X., MacCormack, R. W., Chapman, D. R. Stabilization of the Burnett equations and application to hypersonic flows. AIAA Journal, 1993, 31.
Jin, S., Slemrod, M. Regularization of the burnett equations via relaxation. Journal of Statistical Physics, 2001, 103 (5/6), 1009-1033.
CrossRef
Struchtrup, H., Torrilhon, M. Regularization of Grad's 13 moment equations: derivation and linear analysis. Physics of Fluid, 2003, 15. 33
Balakrishnan R. An approach to entropy consistency in second-order hydrodynamic equations. Journal of Fluid Mechanics 2004, 503, 201-245.
CrossRef
Hadjiconstantinou N. G., The limits of Navier-Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics, Physics of Fluids, 2006, 18, 111301(1)-111301(19).
Loyalka S. K., Velocity profile in the Knudsen layer for the Kramer's problem, The Physics of Fluids, 1975, 18(12), 1666-1669.
CrossRef
Harley J.C, Huang Y, Bau H, and Zemel J. N., Gas flow in microchannels, J. Fluid Mech., 1995, 284, 257-274
CrossRef
Arkilic E. B., Breuer K. S., Schmidt M. A., Gaseous Flow in Microchannels, 1994, ASME FED-Vol. 197, Application of Microfabrication to Fluid Mechanics, pp. 57-66
Beskok A. and Karniadakis G., Simulation of heat and momentum transfer in micro-geometries, 1993, AIAA Paper 93-3269.
Maxwell, J. On stresses in rarefied gases arising from inequalities of temperature. Philosophical Transactions Royal Society of London, 1879, 170, 231-256.
CrossRef
Lockerby DA, Reese JM, Emerson DR, Barber RW. Velocity boundary condition at solid walls in rarefied gas calculations. Physical Review E 2004, 70, 017303(1)-017303(4).
Kennard E. H., Kinetic Theory of Gases, McGraw-Hill, New York, 1938.
Albertoni S., Cercignani C., Gotusso L., Numerical Evaluation of the slip coefficient, Physics of Fluids, 1963, 6, 993-996.
CrossRef
Loyalka S. K., Hickey K. A., Plane Poiseuille flow: Near continuum results for a rigid sphere gas, Physica A 1989, 160, 395.
CrossRef
Loyalka S. K., Tompson R. V., The velocity slip problem: Accurate solutions of the BGK model integral equation, European Journal of Mechanics B/Fluids, 2009, 28, 211-213
CrossRef
Ohwada T, Sone Y., Aoki K., Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules, Physics of Fluids A, 1, 1989, 2042-2049.
CrossRef
Hadjiconstantinou N. G., Comment on Cercignani's second-order slip coefficient, Physics of Fluids 2003, 15(8), 2352-2354.
CrossRef
Deissler R. G., An analysis of second-order slip flow and temperature jump boundary conditions for rarefied gases, Int. J. Heat Mass Transfer, 1964, 7, 681-694.
CrossRef
Maurer J., Tabeling P., Joseph P., Willaime H., Second-order slip laws in microchannels for helium and nitrogen, Physics of Fluids, 2003, 15(9), 2613-2621.
CrossRef
Ewart T, Perrier P, Graur I. A., Meolans J. G., Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes, J. Fluid Mech. 584, 2007, 337.
CrossRef
Beskok A, Validation of a new velocity-slip model for separated gas microflows, Numerical heat transfer, Part B, 2001, 40, 451-471.
CrossRef
Agrawal A, Djenidi L, Antonia R. A., Simulation of gas flow in microchannels with a sudden expansion or contraction, J. Fluid Mech., 2005, 530, 135-144.
CrossRef
Struchtrup, H., Torrilhon, M. Higher-order effects in rarefied channel flows, Physical Review E, 2008, 78, 046301(1)-046301(11).
Cercignani C., and Lorenzani S., Variational derivation of second-order slip coefficients on the basis of the Boltzmann equation for hard-sphere molecules, Physics of Fluids, 2010, 22, 062004(1)-062004(8)
Schamberg R, The Fundamental Differential Equations and the Boundary Conditions for High Speed Slip-Flow, and Their Application to Several Specific Problems, Ph.D. thesis, California Institute of Technology, Pasadena, CA, 1947.
Sreekanth A. K., Slip flow through long circular tubes, in: L. Trilling, H. Y. Wachman (Eds.), Proceedings of the sixth international symposium on Rarefied Gas Dynamics, Academic Press, 1969, 667-680.
Lang, H., Second order slip effects in Poiseuille flow, Physics of Fluids, 1976, 19, 366-371
CrossRef
Aubert C., Colin S., High-order boundary conditions for gaseous flows in rectangular microducts, Microscale Thermophys. Eng. 5, 2001, 41-54.
CrossRef
Hsia Y. T., Domoto G. A., An Experimental Investigation of Molecular Rarefaction Effects in Gas Lubricated Bearings at Ultra Low Clearances, J. Lubrication Technol., 1983, 105, 120-130.
CrossRef
Mitsuya Y, Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient, Journal of Tribology, 1983, 115, 289-294.
CrossRef
Pan L. S., Liu G. R., Lam K. Y., Determination of slip coefficient for rarefied gas flows using direct simulation Monte Carlo, J. Micromech. Microeng., 1999, 9, 89-96.
CrossRef
Hadjiconstantinou N. G., Al-Mohssen H. A., A linearized kinetic formulation including a second-order slip model for an impulsive start problem at arbitrary Knudsen numbers, J. Fluid Mechanics, 2005, 533, 47-56.
Dongari N., Agrawal A., Agrawal A., Analytical solution of gaseous slip flow in long microchannels International Journal of Heat and Mass Transfer, 2007, 50, 3411-3421.
CrossRef
Karniadakis G. E., Beskok A., Aluru N., Microflows and Nanoflows: Fundamentals and Simulation, Springer-Verlag, New York, 2005.
Roohi E., Darbandi M., Extending the Navier-Stokes solutions to transition regime in two-dimensional micro- and nanochannel flows using information preservation scheme, Physics of Fluids, 2009, 21, 082001(1)-082001(12).
Fichman M, Hetsroni G., Viscosity and slip velocity in gas flow in microchannels, Physics of Fluids, 2005, 17, 123102(1)-123102(5).
Lilley C. R., Sader J. E., Velocity profile in the Knudsen layer according to the Boltzmann equation, Proc. of the Royal Society A, 2008, 464, 2015-2035.
CrossRef
Meng J, Zhang Y, Analytical Solution for the Lattice Boltzmann Model Beyond Naviers-Stokes, Advances in Applied Mathematics and Mechanics, 2010, Vol. 2, No. 5, pp. 670-676.
Ansumali S., Karlin I, Kinetic boundary conditions in the lattice Boltzmann method, Physical Review E, 2002, 66, 026311(1)-026311(6).
Sbragaglia M, Succi S., Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions, Physics of Fluids, 2005, 17, 093602(1)-093602(8).
Kim S. H., Pitsch H., Boyd I. D., Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows, Physical Review E, 2008, 77, 026704 (1)-026704(12).
CrossRef
Guo Z, Zheng C, and Shi B, Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow, Physical Review E, 2008, 77, 036707 (1)-036707(12).
Agarwal, R. K., Yun, K.-Y., Balakrishnan, R. Beyond Navier-Stokes: Burnett equations for flows in the continuum-transition regime., Physics of Fluids, 2001, 13, 3061-3085.
Bao F-B, Lin J-Z, Burnett simulations of gas flow in microchannels, Fluid Dynamics Research, 2008, 40, 679-694.
CrossRef
Mieussens L. Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in Plane and Axisymmetric Geometries. Journal of Computational Physics 2000, 162, 429-466.
CrossRef
Lockerby D. A., Reese J. M., High-resolution Burnett simulations of micro Couette flow and heat transfer, Journal of Computational Physics, 2003, 188, 333-347.
CrossRef
Xu K, Li Z. Microchannel flow in the slip regime: gas-kinetic BGK-Burnett solutions. Journal of Fluid Mechanics 2004, 513, 87-110.
CrossRef
Li Z, Zhang H, Gas kinetic algorithm using Boltzmann model equation, Computers & Fluids, 2004, 33, 967-991.
CrossRef
Mahendra A. K., Gouthaman G, Singh R. K., Meshless method for slip flows, Report HBNI-3-2010, 2010.
Arora K. Weighted least squares kinetic upwind method using eigendirections (WLSKUM-ED). Ph.D. Thesis. Indian Institute of Science, 2006.
Fortunato B, Magi V. An implicit Lambda Method for 2-D Viscous Compressible Flows. In: Fourteenth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, S. M. Deshpande, S. S. Desai, R. Narasimha (eds.), Springer, 1995, 259-264.
Catalano LA, De Palma P, Naplitano M, Pascazio G. Genuinely multidimensional upwind methods for accurate and efficient solutions of compressible flows. Notes on Numerical Fluid Mechanism Vieweg-Verlag, Braunschweig, 1997, 221-250.
Avci M, Aydin O, Laminar forced convection slip-flow in a micro-annulus between two concentric cylinders, International Journal of Heat and Mass Transfer, 2008, 51, 3460-3467.
CrossRef
Einzel D, Panzer P, Liu M, Boundary Condition for fluid flow : Curved or Rough surfaces, Phys. Rev. Lett., 1990, 64, 2269-2272.
CrossRef
Tibbs KW, Baras F, Garcia AL. Anomalous flow profile due to the curvature effect on slip length. Physical Review E, 1997, 56(2), 2282-2283.
CrossRef
Aoki K, Yoshida H, Nakanishi T, Garcia A. L., Inverted velocity profile in the cylindrical Couette flow of a rarefied gas, Physical Review E, 2003, 68, 016302(1)-016302(11).
Wannier GH. A contribution to the hydrodynamics of lubrication. Quarterly Journal of Applied Mathematics, 1950, 8, 1-32.
CrossRef
Kamal MM. Separation in the flow between eccentric rotating cylinders. Journal of Basic Engineering, ASME, 1966, 88, 717-724.
CrossRef
Wood WW. The asymptotic expansions at large Reynolds numbers for steady motion between non-coaxial rotating cylinders. Journal of Fluid Mechanics, 1957, 8, 159-175.
Ballal BY, Rivlin RS. Flow of a Newtonian fluid between eccentric rotating cylinders: inertial effects. Archive of Rational Mechanics and Analysis, 1977, 62, 237-294.
Araujo JHC, Ruas V, Vargas AS. Finite element solution of flow between eccentric cylinders with viscous dissipation. International Journal of Numerical Methods in Fluids, 1990, 11, 849-865.
CrossRef
Ramesh PS, Lean MH. A boundary integral equation method for Navier-Stokes equations. Application to flow in annulus of eccentric cylinders. International Journal of Numerical Methods in Fluids, 1991, 13, 355-369.
CrossRef
San Anders A, Szeri AZ. Flow between eccentric rotating cylinders. Journal of Applied Mechanics, ASME, 1984, 51, 869-878.
CrossRef
de Socio L. M., Marino L., Numerical experiments on the gas flow between eccentric rotating cylinders, International Journal for Numerical Methods in Fluids, 2000, 34, 229-240.
CrossRef
de Socio L. M., Marino L., Flow separation between rotating eccentric cylinders, European Journal of Mechanics B/Fluids, 2003, 22, 85-97.
CrossRef
Deshpande S.M, Current Status and Future Directions in CFD, INS Golden Jubilee Lecture, Mumbai, 2004.
Mahendra AK, Sanyal A, Gouthaman G., Parallel meshless solver for strongly rotating flows. In: Proceedings The 9th International workshop on Separation phenomena in liquids and gases, S. Zeng (ed.), Tsinghua University Press, Beijing, 2006, 127-131.
Rajput S., Study of shocks under strong rotation, M. Tech. Thesis, Homi Bhabha National Institute, Mumbai, 2010.
< >

Issue Details

International Journal of Emerging Multidisciplinary Fluid Sciences


International Journal of Emerging Multidisciplinary Fluid Sciences

Print ISSN: 1756-8315

Related Content Search

Find related content

By Keyword
By Author

Subscription Options

Individual Offers