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ABSTRACT
The Part 1 presented kinetic treatment of the slip flow and described kinetic flux vector
splitting. The Part 2 of the paper presents the kinetic theory based approach for solving
rotating slip flows. The paper describes numerical flow modeling of slip and rarefied
flows. It also presents the meshless solver which makes use of least squares and Kinetic
Flux Vector Splitting (KFVS) scheme and its Variance Reduction form (VRKFVS). The
kinetic slip flow boundary condition is added with the Burnett terms which are quadratic
in Knudsen number.  The solver is able to capture slip flow features and typical features
of the strongly rotating flows characterized by steep density gradient, supersonic flows,
thin boundary layers towards the peripheral region with a rarefied central core.
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Enskog distribution, Burnett, Boltzmann equation, rarefied, viscous, slip
flow, second order slip

Nomenclature
f (x

→
, v

→
, I,t) =  molecular distribution function

f0 = Maxwellian distribution function

f1 = Chapman-Enskog distribution function

f Σ1 = total distribution at the wall undergoing diffuse and specular reflection

f1
in , f0

wc = distribution incident to the wall and  Maxwellian distribution at wall condition.

fRB = distribution associated with rigid body rotation

∆f, ∆f1 = difference in Maxwellian and their Chapman-Enskog term 

∆f
∧

1 = difference between first order Chapman-Enskog and Maxwellian distribution

∆f
∧

1 = difference in 1st Chapman-Enskog expansion term for  Maxwellian  f0 and fM
x
→

, v
→

= position vector and molecular velocity vector

I, I0 = internal energy variable and average internal energy parameter

b = thermal speed = (2RT)–1

tR = relaxation time

t = time

T, T0 = temperature, average temperature

u
→, c

→ =  macroscopic velocity vector, peculiar velocity

du = statistical fluctuation

N = sample size used in DSMC

g = ratio of specific heat 

p = pressure

t = shear stress tensor

r = density

49

Volume 3 · Number 1 · 2011



R = specific gas constant

E = energy

J(f, f ) = binary collision term

Ψ, yi = moment and its element

l = mean free path

Kn, KnGL = Knudsen number and gradient length Knudsen number 

V = macroscopic parameter for gradient length Knudsen number calculation

V = bulk velocity

VZ, VZmax = axial velocity and maximum axial velocity in the annuli

m = viscosity

M = Mach number

q
→

= heat flux vector

Pr = Prandtl number

j = dissipation control function 

w = angular velocity 

r, rwall = radius and radius of the cylinder

z = axial variable

q = azimuthal variable

U = state update vector or vector of conserved variable = 

UM = vector of conserved variable for Maxwellian fM
GX, GY, GZ = flux vector in x, y, z-direction

GX±
I , GY±

I, GZ±
I = inviscid flux vector in x, y, z-direction

GX±
v , GY±

v, GZ±
v = viscous flux vector in x, y, z-direction

GR = radial flux component

S = source terms

vz = axial velocity

vr = radial velocity

vq = azimuthal velocity

e = Rossby number

Ωz = axial vorticity vector

s = diffuse reflection or accommodation coefficient

sv, sT = momentum and thermal accommodation coefficient

us, uw = slip velocity and wall velocity

ul = tangential gas velocity at one mean free path

n, s =subscript denoting the normal and tangential coordinate to the wall

c = baroclinic term

ri, r0 = inner and outer radius

rd = dimensionless radius

dh = hydraulic diameter of the annuli

d (BGK/HS) = first order slip parameter

A1 = first order velocity slip coefficient associated with shear stress tensor

A2 = second order velocity slip coefficient associated with shear stress tensor 

C1 = first order slip coefficient associated with heat flux vector for velocity slip

B1 = first order slip coefficient for temperature jump

B2 = second order slip coefficient for temperature jump

ag = viscosity coefficient

a(sv), D(sv) = parameter as a function of tangential momentum coefficient in viscosity

relationship

[ , , ]ρ ρ ρ�
u E T
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y
~

= y/l
uB, uNS, uKn = velocity based on Boltzmann, and Navier-Stokes solution its Knudsen contribution.

∆uS = Burnett addition to the slip velocity

rf = relaxation factor

A, B = parameters to calculate the analytical velocity profile 

d(Pi,Pj) = Euclidean distance between points Pi and Pj

sC = sub-cloud of points

Bc = sub-cloud of points lying in non-computing domain

h = distance parameter

N(Po) = connectivity set for point Po

fo, fi = variable for determination of derivative at point Po and Pi

xo, yo, zo = coordinates of the point Po 

xi, yi, zi = coordinates of the point Pi

∆xi, ∆yi, ∆zi = difference in coordinate distance for the points Pi and Po

∆fi = difference in variable for the points Pi and Po

fxo, fyo, fzo, = derivative of the variable with respect to x, y, z.

exi, eyi, ezi = scaled error terms for the point Pi

N±
x (Po) = split connectivity sub-stencil for x direction

N±
y (Po) = split connectivity sub-stencil for y direction

N±
z (Po) = split connectivity sub-stencil for z direction

nx,ny,nz = number of points in the connectivity sub-stencil for x,y,z direction

Φo = matrix of derivatives ([fxo, fyo, fzo]
T ∈ Rn)

∆fN = matrix of observation ([∆f1, ∆f2,..., ∆fm])T ∈ Rm)

AN = least square data matrix used in normal equations approach (∈ Rn×m)

hi = slope of the connectivity point Pi

C = least square matrix 

l
±
e = eigen values of the least square matrix C

1. INTRODUCTION
The Part 1 of the paper gives an overview of kinetic theory and its application to fluid flow and
describes BGK model, construction of Chapman-Enskog distribution and kinetic flux vector splitting
scheme (KFVS). KFVS for viscous flows applies Courant splitting at the Boltzmann level followed by
moment-method strategy using Chapman-Enskog distribution to obtain split Navier-Stokes equations.
The Part 1 of the paper also describes variance reduction kinetic flux vector splitting (VRKFVS),
diffuse reflection model based slip boundary treatment. 

Part 2 describes the numerical modelling of rarefied, rotating slip flows. For rapidly rotating viscous
compressible flows confined between two concentric rotating cylinders the gas undergoes rigid-body
rotation. The rigid-body rotation is characterized by an exponential density rise in the radial direction
towards the periphery with thin boundary layers and a rarefied inner core [1,2]. Majority of the
researchers Dickson and Jones[3], Park and Hyun [4] and Babarsky et al. [5] focused more on
perturbative flows arising out of basic state of rigid body rotation using continuum hydrodynamics even
though a large portion of the volume in the central core is rendered rarefied near to the free molecular
region. The flow predicted by kinetic theory differs from the results obtained using continuum
hydrodynamics [6]. Based on the Boltzmann equation Müller [7] concluded that in rotating systems a
radial temperature gradient apart from leading to the radial heat flux also causes tangential heat flux
which are related at the level of the Burnett approximation. Research of Sharipov and Kremer[8,9] and
Sharipov et. al.[10] have further confirmed that the transport equations in non-inertial frames creates
an anisotropy and brings qualitatively changes in the transport properties of the fluid making it different
from those in inertial frame of rotation.  Investigations [8-10] to study the transport phenomena through
a fluid confined between two coaxial cylinders over a wide range of gas rarefaction revealed that the
kinetic approach do not follow from the Navier-Stokes equations of continuum mechanics. Taheri and

Ajit Kumar Mahendra, G.Gouthaman and R.K.Singh 51

Volume 3 · Number 1 · 2011



Struchtrup [11] have used continuum approach as well as regularized 13-moment (R13) equations to
study the effects of rarefaction in micro flows between two rotating coaxial cylinders. Numerical
modeling of high speed rotating flows is a challenge as the regime changes from continuum at the
periphery, slip, transition to non-continuum in the central core. Such a flow is of considerable interest
and importance in the field of hydrodynamic bearings, rotating machinery and heat exchangers. 

The most common approach to simulate such a flow is to couple the continuum solver with the slip
boundary condition. The slip boundary condition should effectively capture slip flow features under
combined effects of adverse pressure gradient and rarefaction. Investigation reveals that there are large
number of second order slip models existing in the literature each with its own geometric specific slip
coefficient and range of validity in the non-continuum slip and transition region.  Most of the slip
models in the literature are for simple micro-channel flows. Slip velocity not only depends on the
velocity gradient in the normal direction but also on the fluid dynamic gradients in the tangential flow
direction. In such a scenario we require a more fundamental approach. The prime motivation of the
paper is to simulate slip modeling through kinetic theory route. Treatment of slip boundary using
kinetic upwind fluxes based on diffuse reflection model considers these variations in the tangential flow
direction. The paper presents the kinetic upwind method for compressible rotating viscous slip flows
by using meshless solver. In order to extend the simulation to non-continuum transition region an
attempt has been made by adding the second order Kn2 terms associated with the Burnett constitutive
relations to the first order kinetic implementation of the slip. The paper describes the modified Split-
stencil Least square Kinetic upwind method for Navier-Stokes (m-SLKNS) solver which belongs to
Least square Kinetic Upwind Method (LSKUM) family[12-17] as it makes use of least squares and
Kinetic Flux Vector Splitting (KFVS) scheme with kinetic slip flow boundary condition. KFVS for
viscous flows applies Courant splitting at the Boltzmann level followed by moment-method strategy
using Chapman-Enskog distribution to obtain split Navier-Stokes equations[17,18]. In this paper we
have carried out numerical simulation of compressible rotating flows using modified kinetic flux vector
scheme (m-KFVS) similar to Anil et. al. [19] by incorporating the modified Courant splitting based on
Rossby number of the rotating flow. For strongly rotating flows a novel scheme Variance Reduction
Kinetic Flux Vector Splitting (VRKFVS) is used so as to capture the weak secondary flow feature
embedded in a strongly rotating flow field. 

Most of the industrial problems have many components and generation of suitable grid around them
becomes the bottleneck. Conventional approach requires grids which include structured multi-block
meshes, chimera or overset grids, unstructured grids, Cartesian grids and hybrid grids. Recently
meshfree or meshless methods have gained popularity. All meshless numerical methods share a
common feature that no mesh is needed and the solver is capable of operating on an arbitrary
distribution of points. The paper uses meshless method which is a modified form of Split-stencil Least
square Kinetic upwind method for Navier-Stokes (m-SLKNS) similar to SLKNS solver. SLKNS [18]
differs from Least square kinetic upwind method for Navier-Stokes (LSKUM-NS) [17] which uses
normal equations approach to solve least square problem. SLKNS [18] avoids ill-conditioning
encountered while using highly stretched distribution of points in the boundary layers. Further, m-
SLKNS is able to handle steep density gradient and thin boundary layers towards the peripheral region
as well as non-continuum features of rarefied regions using VRKFVS scheme. 

2. NUMERICAL FLUID MODELLING FOR SLIP FLOWS
The presence of rarefied domain around space vehicle or fluid transport in microelectromechanical
devices (MEMS) is a typical example of non-continuum flow feature1. One of the main difficulties in
modeling such a flow is due to breakdown of continuum flow assumption as the mean free path of gas
molecule is comparable or larger than characteristic dimensions of the flow system. Numerical fluid
modelling depends on fluid regime defined by the extent of non-equilibrium effects and rarefaction.
Breakdown of the continuum [20-23] and its fluid regime [24,25] is discussed in Part 1. The fluid
modelling can be classified based on three approaches: (i) molecular modeling approach  and (ii)
continuum modeling approach, and (iii) hybrid approach.  In the molecular modeling approach [26,27]
the fluid is assumed to be collection of molecules which are to be solved either by deterministic or
statistical methods. One of the main drawback of this probabilistic method is the occurrence of
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statistical noise and inefficient handling near continuum flows and flows with recirculation. On the
other hand the deterministic methods [28] based on solving the kinetic equation, namely the Boltzmann
equation are very computationally expensive due to quadratic cost of the velocity discretization of the
collision operator. In the continuum modelling approach the fluid is assumed to be continuous and
indivisible. The macroscopic variables like velocity, density, pressure, etc. are defined at every point in
space and time, and conservation of mass, energy and momentum lead to a set of nonlinear partial
differential equations like Euler, Navier–Stokes, Burnett, etc. In the hybrid approach the non-
continuum regions are solved using the molecular based methods and interfaced with the continuum
regions [20,29]. The determination of non-equilibrium and continuum regions is generally carried out
using a local continuum breakdown parameter called the gradient-length Knudsen number defined as

. (1)

where V is the macroscopic parameter of interest and l is the mean free path given as

(2)

Table 1. gives the different fluid models and its regime.

Table 1. Knudsen number based fluid regime and fluid models.

2.1 Molecular based numerical schemes for slip flows
Molecular based numerical schemes such as direct simulation Monte Carlo (DSMC) becomes a useful
tool for rarefied non-continuum flows. In DSMC method microscopic properties are averaged over a
small space region to obtain the macroscopic state variables. For low speed rarefied flow the statistical
scatter requires a huge sample size. For example consider the macroscopic velocity to be of the order
0.1 m/s with background noise under room condition given by which is of the order 103 m/s.
If we require signal to be nine times larger than the noise then the sample size N required is around 109

to keep the standard deviation given as to a small enough value [30]. The signal-to-noise
ratio for a dilute gas can be given as

(3)

where u is the characteristic flow velocity, du is the statistical fluctuation, M is the Mach number, g is
the ratio of specific heat and N is the sample size (refer Shen [27] for details). Thus, DSMC becomes
costly to simulate rarefied low speed gas flows encountered in MEMS and micro-channel flows. DSMC

u

u
M N

δ
γ=

2RT N/

2RT

λ µ π
ρ

 =
2 p

KnGL ,ζ
λ
ς

ς= ∇
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finds more applications to many high speed flows. Fan and Shen [31,32] proposed information
preservation (IP) method to tackle this problem of large sample size. The thermal movement of the
particles causes statistical scatter in DSMC while in IP method it surfaces only at the macroscopic
information level. In IP each simulated particle is assigned two velocities : thermal velocity c and
information velocity (IP velocity) u. Thus, each simulated particle carries sum of the macroscopic
velocity of a gas flow as well as velocity scatter with an aim to preserve and update the macroscopic
information thereby reducing the statistical scatter. The major advantage of IP method is the
considerable reduction in the sample size. For the same example given earlier for the low speed flows
the sample size required for IP method is around 103 to 104. Another advantage of the IP method is the
implementation of the boundary condition as macroscopic values of the flow field are known at each
time step. Since IP method handles more information than the DSMC method hence it more memory
intensive and complicated in its implementation. Another drawback of IP method is the issue of
stability as the time step cannot be large and particle sample size cannot be small.

2.2 Direct numerical solution (DNS) of  Boltzmann equation
The modelling of the collision term poses a challenge because of its non-linear nature. The numerical
methods should satisfy all the properties desired for a kinetic models described in Part 1 of the paper
i.e. properties of locality and Galilean invariance, additive invariants, local entropy production, etc.
There are broadly three methods for direct solution of  the Boltzmann equation[28]   i) node to node
(NtN) method, ii) Tcheremissine’s method, and iii) node to closest node (NtCN) method. In the NtN
method [33-35] a collision sphere in velocity space is wrapped around pre- and post collision velocities.
The NtN method takes into account only those post-collisional velocities that fall exactly into the nodes
of the velocity grid. Tcheremissine’s method [36] is a generalization of the NtN method for more
complex models of the collisions by taking into account inverse collisions that do not fall into the nodes
of the velocity grid. NtCn method [37] on the other hand can be used for arbitrary interaction potentials
and non-uniform grid in velocity space.

2.3 Hybrid solvers
DSMC becomes an expensive numerical method due to high sample size to keep the stochastic noise
bounded to a lower value. DSMC also becomes impractical for time dependent flows as ensemble
averaging becomes prohibitively expensive. Near the continuum regions it becomes impractical to
apply DSMC as mean free time is very low. On the other hand continuum solvers like Navier-Stokes
are not valid in the rarefied as well as in the non-thermodynamic regions of shock. Many researchers
[20,22,29] have used a hybrid approach to accommodate both the issues of accuracy and computational
cost for problems that contain the disconnected rarefied and non-equilibrium kinetic regions in the
continuum flow domain. DSMC due to its inherent statistical noise has been identified as an obstacle
for the development of hybrid solvers [38].  Some group of researchers [20] has developed hybrid
solvers which employs deterministic kinetic Boltzmann solver instead of DSMC for rarefied and
continuum gas flows. Typical hybrid solver dynamically adapts the meshes with addition and deletion
of kinetic patches to simulate the rarefied and non-continuum regions embedded in the continuum flow
domain.

The most crucial aspect of the hybrid codes are the :  i)adequate continuum breakdown parameter,
ii)identification of non-continuum regions, iii)method of domain decomposition , and  iv) coupling
strategy i.e. imposition of boundary conditions at the interface and procedure for information exchange.
For example there are three methods of domain decomposition. The first method is domain
decomposition in physical space using appropriate continuum breakdown criteria. The second method is
domain decomposition in velocity space where fast and slow particles are treated separately [39]. The
third method is the hybrid of the two in which one solves kinetic and fluid equation in entire domain.
For example, Beylich [40] interlaces the path-integral form of the kinetic equation ( Boltzmann level)
with the set of conservation equations (Navier-Stokes level). The coupling strategy between continuum
and non-continuum domain can either be flux based coupling or state based coupling [29,41]. In the flux
based coupling fluxes of mass, momentum and energy are calculated according to non-continuum and
continuum domains. In this method the fluxes at the interface are modified such that fluxes of continuum
and non-continuum equate and conservation is insured in the transfer of information across the interface.
State based coupling is inherently conservative; in this approach macroscopic state is obtained by using
the average particle information in the non-continuum region and distribution of particles are generated
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from a macroscopic state on the other side of the interface in the continuum region.
The major drawback of hybrid solvers is poor computational efficiency and the ability to simulate

unsteady flows.  Identification of non-continuum regions and implementation as well as
synchronization of two separate methods for continuum and rarefied flow simulation makes the hybrid
solver quite complex.

2.4 Treatment of slip flow based on higher order continuum equations
Most common kinetic theory based approach is either based on i) 5 moments based on expansion of
distribution function ( Chapman-Enskog series solution leading to Burnett or super-Burnett equations)
or ii) higher moment based approach which include Grad’s 13 moment approach, Struchtrup’s
regularized R13, etc.  Lockerby et. al [42] have investigated most of the common higher order
continuum equations and kinetic theory based approach. The study revealed that most of these
approaches fail to capture Knudsen layer structure in Kramers’ problem shown in figure 1. Kramers’
problem considers unidirectional isothermal motion of a gas over a stationary planar solid. In the
Kramers’ problem as the normal distance from the surface, y → ∞ the bulk flow gradient du/dy becomes
constant, where u is the tangential flow velocity. Let uB = uNS + uKn(y) be the true flow-field based on
the Boltzmann solution where uNS the Navier-Stokes based slip flow approximation and uKn(y) is the
Knudsen layer correction [56, 57]. Similarly for temperature we can write  TB = TNS + TKn(y) where TNS
the Navier-Stokes based temperature field approximation and TKn(y) is the Knudsen layer correction.
The Knudsen layer correction uKn(y) and TKn(y) decay quickly as y/l → ∞. Hadjiconstantinou [56]
estimates uKn(y) decays to approximately 3% of its maximum value at y = 1.5l referred as effective
width of the Knudsen layer. The Navier-Stokes solution reveals that the terms of order Kn2 needs to be
superimposed to the Navier-Stokes solution to capture the true solution of the Boltzmann equation for
the Kramers’ problem. Lockerby et. al [42] investigations have revealed that for low-speed isothermal
flows neither Burnett [41], super-Burnett[44], or Grad’s 13[45] moment equations can model the
Knudsen layer. However, some of the higher order accurate continuum equations can qualitatively
model the Knudsen layer. Modeling of Knudsen layer can be achieved either by introducing corrections
based on kinetic theory or by wall function approach based on suitable scaling of stress-strain
relationship. Table 2. gives the list of higher continuum models and their capabilities to capture
Knudsen layer structure in Kramers’ problem compiled from Lockerby et. al [42].

Figure 1.  Knudsen layer in the Kramers’ problem

Table 2 Higher continuum models and their capability to capture Knudsen layer structure.

Knudsen Layer O(k)}1.5k}
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2.5 Treatment of slip flow based on slip models and Navier-Stokes equation
Harley et al. [58], Arkilic et al [59], Beskok and Karniadakis [60] have shown that Navier-Stokes
equations coupled with first order velocity slip and temperature jump boundary conditions effectively
captures slip flow. One of the earliest model is the Maxwell’s velocity slip [61] expressed in
conventional form as

. (4)

This can be expressed in general form [62] as

(5)

where subscript n denotes the normal coordinate to the wall, s is the tangential coordinate, tsn is the
component of shear stress, qs is the component of heat flux vector, g is the ratio of the specific heats,
us is the slip velocity, uw is the reference wall velocity and Pr is the Prandtl number. The second term
on the right hand side of the equation is the thermal creep contribution to the slip velocity due to
tangential temperature variation. Similarly, von Smoluchowski’s temperature-jump boundary condition
[63] is 

(6)

where sv and sT are the tangential momentum and thermal accommodation coefficients respectively.
The accommodation coefficients depend upon specific gas and the surface quality and it models the
momentum and energy exchange of gas molecules impinging on the walls. These relations, to first
order in Knudsen number for velocity slip and temperature jump can also be expressed as

(7)

(8)

where coefficients , are given by Maxwell and is given by von

Smoluchowski. These coefficients can also be estimated by solving the Boltzmann equation for slip

coefficients for BGK model and HS model i.e  . Rigorous kinetic approach of

Albertoni et al. [64], Loyalka et. al.  [51], Loyalka and Hickey [65], Loyalka and Tompson [66] have
shown that d (sv = 1) is 1.016191 for BGK molecules. The first order slip coefficient A1 using kinetic
approach for BGK molecular model can be written as

. (9)

Ohwada et. al.[67]  evaluates d (sv = 1) as 0.98738 for HS molecules. The first order slip coefficient
using kinetic approach for HS molecular model can be written as
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. (10)

The other coefficients C1 and B1 for fully accommodating surfaces s = sv = 1 for BGK model are
C1(BGK, s = 1) = 1.149 and B1(BGK, s = 1) ≈ 1.168. For hard sphere (HS) model Ohwada et. al.[67]
evaluates these coefficients as C1(HS, s = 1) = 1.015 and B1(HS, s = 1) = 1.13. For isothermal flows
of real gases the hard sphere model is more appropriate compared to BGK.

As described earlier the Knudsen layer correction uKn(y) over Navier-Stokes solution uNS requires
terms of order Kn2 provided by second order velocity slip model. Experimental studies [70,71,77] have
also shown that first order slip model do not compare well with the experimental data beyond Kn>0.1.
Most of the research is based on simple micro channel flow or flows in simple geometry without any
flow separation. Thus, behavior of the slip model in the recirculation zone due to combined effect of
rarefaction and reduction of Reynolds number forms a good validation test [72,73]. Modeling the non-
equilibrium layer close to the walls, known as the Knudsen layer is the most crucial aspect for obtaining
a reliable higher-order slip model. Physics based empirical slip model of Beskok [72] predicts
Knudsen’s minimum, observed  around Kn ≈ 1 as well as the flow rate, velocity profile, and the
pressure distribution. Beskok [72] carried out detailed study of the slip model and validated it with
DSMC results for classical backward facing step under combined effect of rarefaction and adverse
pressure gradient on separated flows as a function of the Reynolds and Knudsen numbers. Beskok [72]
slip equation is based on tangential gas velocity one mean free path away from the wall surface as
follows :

(11)

where ul is the tangential gas velocity one mean free path away from the wall surface and us is the slip
velocity. Using the Taylor series expansion of ul about us results in the following equation :

. (12)

Another example of higher order slip is linearized Maxwell-Burnett boundary condition obtained by
Lockerby et al. [62] using the Burnett constitutive relations, the expressions of slip are as follows

(13)

For stationary flow based on the linearized Maxwell-Burnett boundary condition, the thermal stress
flow due to temperature gradients can be derived as.

. (14)

Higher order slip condition in Knudsen number approaches the classical Maxwell’s first order condition
if we neglect second and higher order terms. A second or higher order slip boundary condition requires
corresponding higher order continuum model i.e. second order slip condition will require Burnett
equation. Struchtrup and Torrilhon [74] have used R13 equations for the expression of the higher order
slip boundary. Many researchers have used the generalized second-order velocity slip boundary
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condition, which in absence of thermal creep contribution can be expressed as

(15)

where A1 and A2 are the first and second order slip coefficients. For flow problems with small Knudsen
number the solution of linearized Boltzmann equation using asymptotic approaches can be used to
obtain the second slip coefficient. For example Cercignani and Lorenzani [75] have obtained the
solution of Navier-Stokes solution by using the second order slip boundary condition for Poiseuille
mass flux problem as

. (16)

Cercignani and Lorenzani [75] have used  the variational technique to solve Boltzmann equation to get
asymptotic near-continuum solution for the Poiseuille mass flux to obtain the slip coefficients. The
Navier-Stokes solution reveals that the second order coefficient A2 with the terms of order Kn2 needs
to be superimposed to the Navier-Stokes solution to capture the true solution of the Boltzmann
equation. Thus, the Knudsen layer correction uKn(y) over Navier-Stokes solution uNS requires a second
order velocity slip model. With the second order slip coefficient the classical hydrodynamical equations
can simulate beyond Kn = 0.1 i.e. second order model extends its applicability beyond slip flow regime
into the transition regime.  Since the cost of solution of Navier-Stokes is negligible compared to the
alternative methods hence large number of of researchers have attempted to develop second order slip
models that can be used beyond Kn = 0.1.Table 3 gives the value of different slip coefficients proposed
in the literature for gas micro flows.

It can be inferred from the table that the first order slip coefficient is mildly dependent on molecular
interaction model as compared to strong dependence seen in second order slip coefficient. Most of the
theoretically derived second order slip models are derived under linearized conditions for flat walls,
steady flow and small gradients. The real conditions can be quite different as geometries can be
complex, flow can be time dependent, etc.  The table reveals that there is a large discrepancy between
the values of the second order coefficient and there seems to be no consensus amongst the researchers
even for the simple flows. It is also most likely that second order coefficient A2 is geometry dependent.
Under such a scenario boundary condition based on set of Burnett equations [62] looks most promising
as it includes the terms of order Kn2, shows reasonable agreement with experimental data and is simple
to implement numerically.

Since the first order slip coefficient itself depends on the accommodation factor hence researchers
[71,75] have suggested an alternative method[51] to calculate sv as

. (17)

Here A1(1) is the first order slip coefficient computed for sv = 1. Maurer et al.[70]  derived the
accommodation factor sv based on A1 as

. (18)

Similarly, second order von Smoluchowski’s temperature-jump boundary conditions can be expressed as

. (19)

Beskok’s second order temperature jump condition [72] is as follows :
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. (20)

Table 3. Value of slip coefficients proposed in the literature for gas micro flows for sv =1.

2.6 Treatment of slip flow based on effective viscosity
Another approach for extending the Navier-Stokes equation to transition regime is to consider the
rarefaction effects in calculating the Navier-Stokes viscosity coefficient. In order to include the
rarefaction effects Karniadakis et al. [85] proposed the following viscosity coefficient relationship  
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2 After modification for hard sphere gas, refer Hadjiconstantinou [68] for details.
3 Aubert and Colin [79] have also used Deissler’s boundary conditions.
4 A2 = 3sv / (4Pr) for BGK model. For Maxwell gas, A2 = 1.125 
5 A2 = –(2 – sv)/2sv, where sv is the accommodation coefficient.

6 , based on Maxwell-Burnett boundary condition.

7 A2 = 0.31 with Knudsen layer correction, A2 = 0.606 without Knudsen layer correction. 
8 A1 = 1.0, A2 = 0 for Kn ≤ 0.1, A1 = 1.4, A2 = 0.7 for 0.1 < Kn ≤ 0.1, A1 = 1.875, A2 = 0.05 for 1.0 < Kn
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Karniadakis et al. [85] uses only first order slip coefficient which is function of Knudsen number.
While Roohi and Darbandi [86] have used second order slip formula coupled with viscosity coefficient
correction evaluated using IP method expressed as

. (22)

Fichman and Hetsroni [87] found that there is reduction in viscosity in the Knudsen layer due to
interaction of molecules with the wall. This reduction of viscosity leads to an increase in slip velocity
as a consequence of increase of the flow gradient in the direction normal to the wall. The effective
viscosity proposed by Fichman and Hetsroni [87] is 

(23)

where y~ = y/l, is the normal distance from the surface and l is the mean free path. Fichman and
Hetsroni [87] model fails to capture the asymptotic form of the velocity profile in the Knudsen layer
near the surface[88]. Lilley and Sader [88] have shown that flow exhibits a striking power-law
dependence on distance from the solid surface where the velocity gradient is singular i.e. the effective
viscosity is zero, under arbitrary thermal accommodation. The effective viscosity proposed by Lilley
and Sader [88] for  y~ < 1 is

, (24)

where a (sv) and D (sv) are functions of momentum accommodation coefficient, sv, given in [88].

2.7 Treatment of slip flow based on Lattice Boltzmann method
The lattice Boltzmann (LB) method is a mesoscopic approach where details of the molecular motions
are not required.  Recently, Meng and Zhang [89] have shown that that the nine-velocity square lattice
model D2Q9 model is not sufficient to capture flow characteristics in the Knudsen layer.  Simulation
of slip flows using LB method requires improvement in physics for high Knudsen flows to simulate
nonlinear constitutive relations as well as proper method of slip boundary application. Researchers
[90,91] have used diffuse reflection boundary condition simulated as the combination of the bounce-
back and specular reflection boundary condition (similar to procedures developed in continuum kinetic
theory) to simulate slip flows in LB method. There are broadly two approaches in LB method to include
the effect of high Knudsen number : i) choice of discreet velocity set with sufficient symmetry so that
the discreet moments approximates its counterpart based on continuous Boltzmann equation, ii) the
second approach makes use of an effective relaxation time  to capture the Knudsen layer. Sbragaglia
and Succi [91] suggested suitable modification of the construction of the body force in the LB model
in order to obtain the second-order slip. Kim et al [92] have implemented modification to the non-
equilibrium energy flux to capture the slip phenomena up to second order in the Knudsen number. Guo
et al [93] have used multiple effective relaxation times with wall confinement effects to simulate the
Knudsen layer. The LB framework’s extension to non-equilibrium flows still needs to evolve and
mature to simulate transition regime [93].  The LB method are commonly used to simulate fluids with
isothermal equations of state in a weakly compressible limit, it still needs development in the field of
compressible high speed flows.

2.8 Treatment of slip flow based on Kinetic Flux Vector Splitting
We have adopted the approach of continuum solver coupled with slip boundary condition as it is
computationally the least expensive. The slip flow simulation using the continuum solver can be carried
out either by using slip models or by implementing kinetic wall boundary condition. It can be seen that
there are large number of slip models existing in the literature, each with its own geometry specific slip
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coefficients and range of validity in Knudsen regime. Most of these slip models are for simple micro-
channel flows. As described in Part 1 of the paper that even the first order slip model is not perfect as
the slip velocity not only depends on the velocity gradient in the normal direction but also on the
pressure gradient in the tangential flow direction. Researchers [94,95] have used Burnett equations
coupled with slip models. For example Bao and Lin [95] have adopted Beskok’s slip model [72].
Researchers [96-99] have used kinetic wall boundary condition obtained using the distribution
function. Thus we require an approach which is computationally cheap and takes the slip velocity
dependence on the fluid dynamic variations in the tangential direction. The approach also requires
inclusion of the terms of order Kn2 for its validity in the non-continuum slip bordering the transition
region (Kn ≈ 0.1). In the present paper we have implemented slip boundary based on kinetic approach
as described in Part 1 of the paper.  The boundary condition at the surface of the solid object define the
distribution function f Σ

1 (vx, vy, vz, I) of the reflected particles as a sum of diffuse and specular
reflections. The state update based on KFVS implementation at the boundary after taking Ψ moment
and writing in terms of inner product can be expressed as

(25)

where 

(26)

(27)

. (28)

In above, U is the state vector and GX±, GY± represents the split positive and negative octant  fluxes
and  GZ± is the usual negative split flux resulting from the total distrbution f Σ

1 (vx, vy, vz, I) [100].  By
using the higher order Chapman-Enskog distribution the kinetic treatment of slip can be extended to
higher Knudsen number, Kn > 0.1 by adding the Burnett split flux terms. Full kinetic approach with the
addition of Burnett split fluxes associated with second order Chapman-Enskog will make the
computation quite costly. One of the simplest way to extend the KFVS based slip boundary condition
is by further updating the slip velocity using the second order Kn2 terms associated with the Burnett
constitutive relations [62].  

(29)

The second order Kn2 Burnett correction terms given by Lockerby et al. [62] is expressed as

.
(30)

It should be noted that for polyatomic molecules this corrections requires a modification as Burnett
coefficients are different. This Burnett correction to the slip velocity is under-relaxed by factor, rf which
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is below 0.1 such that

. (31)

3. VARIANCE REDUCTION KINETIC FLUX VECTOR SPLITTING FOR ROTATING FLOWS
Rossby number and Ekman number are the two dimensionless numbers characterizing the rotating
flow. The Rossby number is defined as the ratio between the inertial and the Coriolis forces, and the
Ekman number is defined as the ratio of the viscous forces to the Coriolis forces. To understand rotating
flow one needs to understand the rotating frame of reference as compared to the inertial frame of
reference. The Boltzmann equation can be solved in two reference frames: i) non-inertial frame i.e.
frame rotating with the cylinders and ii) inertial frame i.e. in the laboratory frame in which the cylinders
rotate. It should be noted that the relation between heat flux and temperature gradient, stress and
velocity gradient is frame dependent [7]. In most of the rotational problems the secondary flow features
are embedded in a primary rotating flow field. The variance reduction approach effectively captures the
secondary flow feature ( measured by Rossby number ) embedded in a strongly rotating primary flow
field.

3.1 Variance Reduction Kinetic Flux Vector Splitting (VRKFVS) for treatment for strong
rotation
Validity of the Navier-Stokes equation as well as diffusion equation requires sufficient collision of
particles and relaxation of the distribution to weak spatial gradients and slow temporal variations. There
are cases when gradients are substantial on the scale of mean free path or temporal changes are
relatively rapid compared to mean collision time. Causality is violated, since the particle flux is
obviously limited by the finite particle speed. One way to proceed is to use Boltzmann equation which
is strictly causal by taking higher moments with appropriate closure relations. Investigation revealed
that the shear stress depends on the shear amplitude as it reaches a maximum and then decreases as the
velocity gradient increases. It should be noted that the shear amplitude for the non-inertial rotational
problem should be observed in the correct frame of reference with variance reduction approach. In the
variance reduction approach Boltzmann equation is written as a perturbation from its state of
equilibrium [17,18]. Gas under isothermal condition with temperature T = T0 uniformly rotating with
angular velocity w in a cylinder of radius rwall can be described by rigid body rotation [3]. The flow
variables with rigid body condition are expressed as 

(32)

where the subscript RB denotes the state of rigid body rotation.  Boltzmann equation observed in the
rigid body rotational frame leads to a very interesting result as velocity distribution associated with the
rigid body solution satisfies both the inviscid as well as viscous solution. The velocity distribution
associated with this rigid body rotation, fRB is a Maxwellian. This variant of BGK-Boltzmann equation
is then expressed in the variance reduction form as
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The steep gradients observed in stationary inertial frame now appear to be a weak perturbation. Taking
ψ moments of the resulting variant of Boltzmann equation leads to upwind Navier-Stokes equation
based on Variance Reduction Kinetic Flux Vector Splitting (VRKFVS) form as 

(35)

where URB is the state update vector , (GX±
I )RB, (GY±

I )RB and (GZ±
I )RB are the split fluxes based on rigid

body rotation. The viscous fluxes (GX±
V )∆, (GY±

V )∆ and (GZ±
V )∆ are computed based on relative velocity

field over the rigid body rotation. Rossby number which gives relative importance of  inertial with respect
to Coriolis forces is also a measure of departure from the rigid body solution. Solution for the

small perturbation from the rigid body rotation can be obtained in terms of Rossby number, [3].
We have defined the local Rossby number, e based on z-component of vorticity vector Ωz as 

. (36)

This local Rossby number is used as a measure of departure from the rigid body solution, for example
if e < es solver switches to this special form of Navier-Stokes equations based on VRKFVS. Mahendra
et al.[18] based on numerical experiments have observed accuracy with es = 0.1. 

3.2 Continuum breakdown in rotating flow field
Rossby number, e can also be defined as the deviation from equilibrium rigid body rotation, expressed
as 

(37)

where moment variable or any other admissible . f0 is
Maxwellian distribution function and f1 is the Chapman-Enskog distribution function corresponding to
the Navier-stokes equation.

The local Knudsen number for a rotating flow field based on the degree of departure from the non-
equilibrium flow state will then be a function of Rossby number, e as follows

(38)

where f is a higher order distribution function.

4. MODIFIED SPLIT-STENCIL LEAST SQUARE KINETIC UPWIND METHOD FOR
NAVIER-STOKES 
For carrying out numerical simulation of Navier-Stokes equations for complex multibody configuration
with many components the generation of suitable grid becomes the bottleneck. Conventional approach
requires grids which include structured multi-block meshes, chimera or overset grids, unstructured
grids, Cartesian grids and hybrid grids [17]. Recently meshfree or meshless methods have gained
popularity. All meshless numerical methods share a common feature that no mesh is needed and the
solver is capable of operating on an arbitrary distribution of points. Smooth Particle Hydrodynamics
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(SPH), Reproducing Kernel Particle Method (RKPM), Moving Least-Square Reproducing Kernel
Method, Least Square Kinetic Upwind Method (LSKUM), Element Free Galerkin Method (EFG), h-p-
Clouds, Partition of Unity Finite Element Method, etc [17] are some of the methods belonging to this
family of meshless methods. In the present meshless solver the points are generated around each
component of the multibody configuration using simple grid generator and then the points around each
components are merged to form the cloud of points. Meshless method in this case requires cloud of
points and its connectivity.

4.1 Pre-processing for multi-body configuration

Figure 2.  Pre-processing of cloud of points

The task of generating suitable grid for a complex multi-body configuration can be accomplished by
breaking down a geometrically complex object as a union of several geometrically simple objects,
generating grid around each simple object and then finally merging all the grid points into a cloud of
points enveloping the complex multi-body configuration. We need an appropriate pre-processor to
carry out merging of points and then generating connectivity. Let us define nodes generated around
simple objects as sub-clouds that will merge to form the cloud. 

For example define sub-clouds around a circle shaped body as a sub-cloud which is to be merged
with background b sub-cloud. A pre-processor is required to merge many sub-clouds as shown in
Figure 2. The union of two sub-clouds can be written as 

(39)

where

(40)

(41)

. (42)

The term sC(a) ∩ sC(b) denote nodes belonging to sub-clouds sC(a) of object a and sub-cloud of
sC(b) object b which are very close to each other i.e. within the tolerance hmin specified by the user.
While Bc(a) and Bc(b) denote blank nodes i.e. nodes which will perform no computation. Bc(a) can
also be defined as a set of sub-clouds lying inside the body or in any other non-computing domain of
a and similarly Bc(b) can be defined as a set of sub-clouds lying inside the body or in any other non-
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computing domain of b. Thus, the term sCc(a) and sCc(b) denote the set of all the nodes which do not
belong to sub-clouds sC(a), sC(b) and these nodes lie inside the body or in any other non-computing
domain of a and b respectively.  The term sC(a) ∪ sC(b) denotes the merging phase where the nodes
that lie inside the body or in any other non-computing domain are deleted by ray-tracing algorithm. The
merging phase also deletes the nodes based on the criterion d(Pi, Pj) ≤ hmin. The parameter d(Pi, Pj)
gives the Euclidean distance between Pi and Pj.

4.2 Meshless solver m-SLKNS 
The present meshless solver is a modified form of Split-Stencil least square kinetic upwind method
for Navier-Stokes (SLKNS) [18]. SLKNS splits the set of neighbours (also defined as connectivity,
N(P0) = {∀Pi:d(P0, Pi) < h} for node P0 ) so as to capture the viscous flow features while enforcing
upwinding.  Let f be any function of x, y and z and further it is assumed that it is given at all nodes i.e.
it is given at all points in a cloud. We are interested in finding the derivatives of f at all the nodes. The
derivatives are obtained in the following way. Consider a point o surrounded by n points then error at
any point  in the neighbourhood of o gives us, 

(43)

(44)

(45)

where ∆xi = xi – xo, ∆yi = yi – yo, ∆zi = zi – zo and ∆fi = fi – fo. Finding the derivative at point o is a least
squares problem where error norm  is to be minimized with respect to fxo, fyo and fzo using stencil
N(Po). Most of least square approaches use the normal equations approach to find Φo = [fxo, fyo, fzo]

T

∈Rn such that � AN Φo – ∆fN �2 is minimized where data matrix AN ∈Rn×m and observation ∆fN = [∆f1,
∆f2,…,∆fm]Τ ∈Rm where subscript N denotes stencil N(Po). Whereas, modified SLKNS (m-SLKNS)
minimizes Σ�ex�2, Σ�ey�2 and Σ�ez�2 with respect to fxo, fyo and fzo respectively for each carefully
selected sub-stencils Nx(Po), Ny(Po) and Nz(Po) with nx, ny and nz points or nodes . Thus, m-SLKNS is
similar to SLKNS  as the basic stencil N(P0) gets divided into 6 different kind of upwind sub-stencils:
N+

x (Po), N-
x (Po), N+

y (Po), N-
y (Po), N+

z (Po) and N-
z (Po) are defined by connectivity parameters  as

follows.  
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To illustrate the derivative calculation consider f to be any function of x, y in two-dimensions with
cloud of points and split stencils Nx (Po) and Ny (Po) bounded within a 45 degree line as shown in Figure
3. Let us define error for any point Pi based on Taylor series around Po for f as

N P P N P z
x

z

y

zz o i z o i
i

i

i

i

+ ∈ ≤ ≤ ≤








( ) = ( ) 0 1 1: , ,∆ ∆
∆

∆
∆

,,

: , ,N P P N P z
x

z

y

zz o i z o i
i

i

i

i

− ∈ ≥ ≤ ≤





( ) = ( ) 0 1 1∆ ∆

∆
∆
∆ 



N P P N P y
x

y

z

yy o i y o i
i

i

i

i

+ ∈ ≤ ≤ ≤








( ) = ( ) 0 1 1: , ,∆ ∆
∆

∆
∆

,,

: , ,N P P N P y
x

y

z

yy o i y o i
i

i

i

i

− ∈ ≥ ≤ ≤





( ) = ( ) 0 1 1∆ ∆

∆
∆
∆ 



N P P N P x
y

x

z

xx o i x o i
i

i

i

i

+ ∈ ≤ ≤ ≤








( ) = ( ) 0 1 1: , ,∆ ∆
∆

∆
∆

,,

: , ,N P P N P x
y

x

z

xx o i x o i
i

i

i

i

− ∈ ≥ ≤ ≤





( ) = ( ) 0 1 1∆ ∆

∆
∆
∆ 



ez
z z

x

z

y

zi
i exact i

i

i

i

i

i
xo

i

i
yo= − − − −( )φ φ φ φ φ

∆
∆
∆

∆
∆

∆
∆

= φφzo O
x

z

y

z
z i nz+ (

( )
,
( )

, ) ,
∆
∆

∆
∆

∆
2 2

= 1,   for �

ey
y y

x

y

z

yi
i exact i

i

i

i

i

i
xo yo

i

i

= − − − −( )φ φ φ φ φ
∆

∆
∆

∆
∆

∆
∆

= φφzo O
x

y
y

z

y
i ny+ (

( )
, ,

( )
) ,

∆
∆

∆ ∆
∆

2 2

= 1,   for �

ex
x x

y

x

z

xi
i exact i

i

i

i
xo

i

i
yo

i

i

= − − − −( )φ φ φ φ φ
∆

∆
∆

∆
∆

∆
∆

= φφzo O x
y

x

z

x
i nx+ ( ,

( )
,
( )

) ,∆ ∆
∆

∆
∆

2 2

= 1,   for �

Ajit Kumar Mahendra, G.Gouthaman and R.K.Singh 65

Volume 3 · Number 1 · 2011



for connectivity set Nx (Po) (49)

and for connectivity set Ny (Po). (50)

Thus we have two sets of the square of error Σ�ex�2 and Σ�ey�2 defined as 

(51)

(52)

where slope hi = .

Figure 3. Typical split connectivity around point Po

Minimizing the sum of the squares of error Σ�ex�2 and Σ�ey�2 with respect to fxo and will fyo lead to
CΦo = ∆Φxy where

and . (53)

The derivatives fxo and fyo can be obtained as

and

. (54)
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Two eigen values of matrix C are 

. (55)

If the chosen split connectivity stencils Nx (Po) and Ny (Po) are bounded within a 45 degree line then in
such case hi ≤ 1 for Nx (Po) and (hi)

–1 ≤ 1 for Ny (Po), thus the matrix C is always well-conditioned.
Advantage of this method is its low storage requirement as we are only storing the off diagonal terms
of the matrix C. The second advantage is for each sub-stencils we can assign separate weights based on
geometry or gradients.

The modified KFVS for Navier-Stokes for 3-D geometries [17,18] can be derived by using Courant
splitting at the Boltzmann level as 

.
(56)

and the dissipation control factor, j = j (r/e) is the function of the local Rossby
number and density. Ψ moment leads to split flux Navier-Stokes state update equations as follows

.

(57)

GX±, GY± and GZ± represent the split inviscid and viscous fluxes. Viscous fluxes are upwinded and
treated similar to inviscid fluxes. Second order accuracy in SLKNS is acheived through a two-step
procedure similar to one used in LSKUM described in [101], this when coupled with inner iterations
leads to second order of accuracy. 

5. RESULTS AND DISCUSSIONS
The meshless solver m-SLKNS was validated with variety of test cases. First two test case consists of
continuum supersonic and transonic flow over NACA0012 aerofoil chosen to validate the meshless
solving capability of the m-SLKNS solver. Third test case of velocity distribution in cylindrical annuli
was chosen to validate the diffuse reflection slip boundary condition. Fourth validation test case is a
well known velocity inversion behavior observed for rarefied flows chosen to test the axi-symmetric
solving capability of the solver. The fifth validation case is the simulation of rarefied flow in a rotating
eccentric cylinder. This test case validates the slip modeling abilities of the solver under condition of
rarefaction and adverse pressure gradient. The sixth case is the flow field around a stationary body in
the rotating subsonic and supersonic flow field. Solver m-SLKNS captures the vortex in the sub-sonic
rarefied pocket ahead of the stationary body under supersonic flow conditions. 
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5.1 Supersonic viscous flow over NACA0012 aerofoil 

Figure 4. Cloud of points around NACA0012 aerofoil

This validation test consists of free stream supersonic flow at M∞=1.5 past a NACA0012 aerofoil at an
angle of attack α=0°. The Reynolds number based on the aerofoil chord is 10000. Total  10143 cloud
of points was generated using C-type mesh of size 207×49 shown in Figure 4. The computation reveals
a fish tail shock shown in  Figure 5. 

Figure 5.  Mach contours

5.2 Transonic viscous flow over NACA0012 aerofoil 
This test consists of free stream transonic flow at M∞=0.8 past a NACA0012 aerofoil at an angle of
attack α=10°. The Reynolds number based on the aerofoil chord is 500.  Figure 6 shows the Mach
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contours with two counter rotating vortex. Figure 7 shows the coefficient of friction plot which
compares well with the results of SLKNS code [18], Fortunato and Magi [102] and Catalano et
al.[103].

Figure 6. Mach contours with zoomed view showing streamlines in the region of flow
separation.

Figure 7. Plot of coefficient of friction

5.3 Slip flow in an annulus
Avci and Aydin [104] investigated laminar slip flow in a micro-annulus between two concentric
cylinders of inner radius ri and ro outer radius. Avci and Aydin [104]  considered a slip flow with fully
diffuse reflection and found out a relationship in terms of dimensionless radius rd = ri/ro for
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dimensionless velocity distribution as

(58)

where A, B and rm are, respectively given as

(59)

Here Knudsen number, Kn is defined with respect to hydraulic diameter, dh of the annuli as 

(60)

In this test case we considered cylindrical annuli with inner radius of 0.02 m and outer radius of 0.1 m
with argon flowing at an average pressure of 2 Pa. The solver m-SLKNS was run for slip flow case at
Kn = 0.0227. Figure 8 shows the plot of dimensionless velocity which compares well with the
analytical results of Avci and Aydin[104] based on Maxwell’s velocity slip boundary condition.

Figure 8. Velocity distribution
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Figure 9.Velocity inversion

5.4 Velocity inversion
Couette flow between concentric inner rotating and outer stationary cylinders is one of a classical fluid
dynamics problem. However, under certain condition of rarefaction and wall (when accommodation
coefficient is small), the velocity profile inverts i.e. the gas rotates faster near the stationary wall. This
phenomenon was first predicted by Einzel et al [105]. Many researchers [62,106,107] have carried out
analytical and DSMC studies to explain this anomalous behavior. In this test case Argon gas is confined
between inner and outer cylinder that have tangential momentum accommodation coefficient of 0.1 and
radii of 3l and 5l respectively, where mean free path, l = 6.25 × 10–8m. Inner cylinder rotates with
angular speed, w = 5.17 × 10 rad/s and outer cylinder is held stationary[106]. Meshless solver m-
SLKNS was able to capture this anomalous behaviour of velocity inversion.  Figure 9 shows the plot
of the non-dimensional tangential velocity with respect to non-dimensional radial distance for m-
SLKNS and DSMC.

From physical point of view the rotating cylinder imparts the circumferential momentum to the
molecules undergoing diffuse reflection. At smaller Knudsen number most of the momentum transfer
is due to molecular collisions. When the outer cylinder is specularly reflecting then no circumferential
momentum is transferred to the outer cylinder [107]. As a consequence the gas accelerates and reaches
the stationary state of rigid body rotation (the distribution function is a Maxwellian), satisfying the
Onsager’s principle of least dissipation of energy valid for processes close to equilibrium. 

5.5 Rarefied flow in a rotating eccentric cylinders 
The flow confined between two eccentric cylinders is much more complex than the axisymmetric case.
This flow even though confined within such a simple geometry generates myriad nonlinearities
associated with the Navier-Stokes equation. Consider a flow of argon confined between outer rotating
and inner stationary eccentric isothermal cylinders. Researchers [108,109] have given approximate
closed form solution to describe such a flow, others have used approximate analytical solutions by
either using an eccentricity parameter [110] or the Reynolds number [111].  Numerical techniques were
also developed [112-114] to simulate continuum flows for this eccentric geometry. Socio and Marino
[115,116] studied this problem using direct simulation Monte-Carlo (DSMC) and carried out detailed
study by taking effects of eccentricity and  different wall rotational  speed  for different gas rarefaction
for wide range of Knudsen number. Let r0 be the outer radius and ri be the inner radius. The Knudsen
number is defined as
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. (61)

Total 14962 points were taken for this particular case for validating m-SLKNS solver using VRKFVS
scheme. Figure 10 shows the cloud of points and figure 11 shows the region of continuum breakdown
based on gradient length Knudsen number. Numerical simulation for eccentricity of 0.45 at Mach = 0.5
for Kn = 0.0175 and Kn = 0.1 was carried out with isothermal wall held at temperature of 300 deg. K.
Figure 12 shows the plot of local Knudsen number contours for Kn = 0.0175. Figure 13 reveals
contours of temperature similar to observed in DSMC for the case with Kn = 0.1. In this case the
maximum temperature observed is  308.82 deg. K and minimum temperature is 293.21 deg. K using
m-SLKNS solver based on VRKFVS scheme. Thus, maximum temperature ratio is 1.029 and minimum
temperature ratio is 0.977. Socio and Marino[116] have observed  maximum temperature ratio as 1.033
and minimum at 0.979 using DSMC. Simulation revealed that the onset of vortex was being helped by
the eccentricity while gas rarefaction had an opposite influence in subsidence of the vortex. The vortex
for eccentricity of 0.45 at Mach = 0.5 subsides at much lower Kn = 0.72, this does not compare well
with the results of Kn = 1.0 by Socio and Marino [116]. One of the reasons of disagreement might be
the extension of the present kinetic based boundary to higher Knudsen number flow using corrections
with Kn2 order Burnett terms.  It should be noted that Socio and Marino [115,116] employed the bi-
polar coordinate system to simplify the geometric representation at the cost of complications introduced
due to the rectilinear trajectories of the particles. The density contour plot reveals the density rises
exponentially towards the periphery. The bipolar coordinate system used in DSMC leads to large size
cells towards the rotating peripheral region where density rises sharply. While in m-SLKNS solver the
cloud of points were more clustered radially towards the peripheral wall as well as in the azimuthal
region.

Figure 10. Cloud of points
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Figure 11. Shaded portion shows the region of  Navier-Stokes breakdown

Figure 12. Plot of local Knudsen number with region showing separation of flow at
Kn=0.0175

Ajit Kumar Mahendra, G.Gouthaman and R.K.Singh 73

Volume 3 · Number 1 · 2011



Figure 13. Temperature contour for Mach = 0.5, eccentricity = 0.45, Kn = 0.1

5.6 Stationary body in the rotating flow field
Consider a stationary cylinder of radius 0.01 m placed at a radial location of 0.075 m within a rotating
flow confined between outer isothermal rotating cylinders of radius 0.1 m and inner isothermal
stationary cylinder of radius 0.05 m. Two cases with subsonic wall speed (Mach = 0.5) and supersonic
wall speed (Mach = 2.0) with argon gas were chosen for simulation. Figure 14 shows the total 20807
points in the flow domain. 

For the case with wall speed of Mach = 0.5 we can observe the spread of the stagnation temperature
against the flow and towards the radial direction; it almost covers the whole domain. This happens
because the body faces its own wake. Towards the periphery between the rotating cylinder and the
stationary cylinder the flow accelerates on the expense of the internal energy, thereby cooling the gas.
Figure 15 shows the plot of the temperature contour. Figure 16 shows the Mach contour. 

For the case with supersonic wall speed with Mach = 2.0 a vortex ahead of the stationary body in
the subsonic pocket can be observed [17,117]. Figure 17 shows the Mach contour and a vortex ahead
of the body. At higher speed this vortex becomes weak. It should be noted that the pressure is function
of density and entropy per unit mass. If ∇r × ∇p ≠ 0 then, this baroclinic effect creates the vorticity in
the subsonic pocket [118].  The baroclinic term c is derived by taking the curl of the pressure gradient
in the Navier-Stokes equation 

. (62)

Rajput [119] has conducted detailed study to understand the effect of stationary bodies under strong
rotation. The size of the sub-sonic pocket becomes small at very high rotational speed. As a
consequence a very fine grid is required to capture the weak vortex at very high rotational speed. It
should be noted that as the wall speed increases the central core becomes rarefied and non-continuum
regions starts appearing.
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Figure 14. Cloud of points

Figure 15. Temperature contour

Figure 16. Mach contour for subsonic case
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Figure 17. Mach contour for supersonic case with the zoom view near the stationary body
showing the vortex

In the three dimensional case due to relieving effect of flow moving out axially the effect of shock is
not so severe. For example consider an hemisphere of radius 0.005 m placed mid way at a radius of
0.075 m in a annular cylindrical sector of outer radius 0.1 m and inner radius of 0.05 m and height of
0.035 m rotating at 2000 revolutions per second with density of air at wall being 0.01271 Kg/m3.
Figure 18 shows the points generated using cylindrical and spherical meshes, the total number of points
in the cloud was 122921. 

Figure 18. Cloud of points generated using cylindrical and spherical mesh
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Figure 19. shows the non-continuum transition region (Kn >0.1) due to the development of rarefied core
at high speed. This region requires corrections with Burnett terms to the first order kinetic slip boundary
condition. More appropriate way to simulate this region is to couple the Navier-Stokes solver with either
DSMC or Boltzmann equation.  In the present case far-field boundary condition uses incoming distribution
as Maxwellian (approximating the interior rarefied core as collisonless region)  and outgoing distribution
as Chapman-Enskog as described in Part 1 of the paper. Figure 20 shows the contours of density. Figure 21
shows the Mach contours. The shock is smeared due to coarse distribution of points. Figure 21 also shows
that the subsonic pocket which is smaller due to the choice of the flow domain. The effect of shock is not
so severe because of the relieving effect of three dimensional geometry. This test case even with a coarse
cloud of points demonstrates the robustness of the m-SLKNS solver using VRKFVS scheme in handling
the entire stretch of the flow from supersonic region to rarefied non-continuum regions.

Figure 19. Region of non-continuum transition region 

Figure 20. Plot of density

Figure 21. Mach contours
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6. CONCLUSIONS 
There are many approaches for numerical flow modeling of slip and rarefied flows. Molecular based
approach is computationally expensive compared to continuum solver based approach. The slip flow
simulation using the continuum solver can be carried out either by using slip models or implementing
kinetic wall boundary condition. It can be seen that there are large number of second order slip models
existing in the literature each with its own slip coefficients and range of validity in the non-continuum
slip and the transition region. Most of these slip models are for simple micro-channel flows without any
flow separation. More-so-ever slip boundary condition should effectively capture slip flow features
under combined effects of adverse pressure gradient and rarefaction. The Kinetic Flux Vector Splitting
(KFVS) scheme with kinetic slip flow boundary condition was found very useful in simulating rotating
slip flows. The approach of adding second order Kn2 terms associated with the Burnett constitutive
relations to KFVS based slip boundary condition needs further investigations. Since the real life
problems have difficult geometry and grid generation for such geometries becomes a bottleneck, the
meshless method based on least square approach was able to handle stretched connectivity and simulate
many problems of interest.

The solver also uses Variance Reduction Kinetic Flux Vector Splitting (VRKFVS) scheme to capture
slip flow features and typical features of the strongly rotating flows characterized by steep density
gradient, supersonic flows and thin boundary layers towards the peripheral region with a rarefied
central core. Development of hybrid solver by coupling the rarefied region with the particle solver or
by direct numerical solution of Boltzmann equation will be the part of the future scope of the study.
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