H. A. Stone, S. Kim, Microfluidics: Basic issues, applications, and challenges. AIChE J., 47, 2001, 1250-1254. CrossRef | |
G. M. Whitesides, A. D. Stroock, Flexible methods for microfluidics. Phys. Today, 54, 2001, 42-48. | |
D. J. Beebe, A. G. Mensing, G. M. Walker, Physics and applications of microfluidics in bology. Annu. Rev. Biomed. Eng., 4, 2002, 261-286. CrossRef | |
H. A. Stone, A. D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics towards a lab-on-a-chip. Annu. Rev. Fluid Mech., 36, 2004, 381-411. CrossRef | |
J. C. T. Eijkel, A. van den Berg, Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluid., 1, 2005, 249-267. CrossRef | |
S. Ghosal, Electrokinetic flow and dispersion in capillary electrophoresis. Annu. Rev. Fluid Mech., 38, 2006, 309-338. CrossRef | |
G. M. Whitesides, The origins and the future of microfluidics. Nature, 442, 2006, 368-373. CrossRef | |
S. Pennathur, J. C. T. Eijkel, A. van den Berg, Energy conversion in microsystems: is there a role for micro/nanofluidics? Lab Chip., 7, 2007, 1234-1237. CrossRef | |
P. Abgrall, N. T. Nguyen, Nanofluidic devices and their applications, Anal. Chem., 80, 2008, 2326-2341 CrossRef | |
W. Sparreboom, A. van den Berg, J. C. T. Eijkel, Principles and applications of nanofluidic transport, Nature Nanotech., 4, 2009,713-720 CrossRef | |
W. Sparreboom, A. van den Berg, J. C. T. Eijkel, Transport in nanofluidic systems: a review of theory and applications, New J. Phys., 12, 2010, 015004 CrossRef | |
R. B. Schoch, J. Han, P. Renaud, Transport phenomena in nanofluidics, Rev. Mod. Phys., 80, 2008, 839-882. CrossRef | |
R. J. Hunter, Zeta potential in colloid sciences: Principles and applications; Academic Press, London, 1981. | |
R. J. Hunter, Foundations of Colloid Science. 2nd Edition. Oxford University Press, Cambridge, 2000. | |
R. F. Probstein, Physicochemical Hydrodynamics, 2nd edn. Hoboken, New Jersey: Wiley-Interscience, 2003. | |
G. Karniadakis, A. Beskok, N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation. Springer Science, New York, USA, 2005. | |
P. M. Reppert, F. D. Morgan, Temperature dependent streaming potential: 1. Theory, J. Geophys. Res., 108, 2003, 2546 | |
S. P. Fritton, S. Weinbaum, Fluid and solute transport in bone: Flow induced mechanotransduction, Annu. Rev. Fluid Mech., 41, 2009, 347-374. CrossRef | |
R. J. Hunter I and A. E. Alexander, Some notes on the measurement of electrokinetic potentials, J. Colloid Sci., 17, 1962, 781-788 CrossRef | |
G. K. Korpi, P. L. de Bruyn, Measurement of streaming potentials, J. Colloid Interface Sci., 40, 1972, 263-266. | |
E. Donath, A. Voigt, Streaming current and streaming potential on structured surfaces, J. Colloid Interface Sci., 109, 1986, 122-139 | |
I. B. Oldham, F. J. Young, J. F. Osterle, Streaming potential in small capillaries, J. Colloid Sci., 18, 1963, 328-336 CrossRef | |
J. F. Osterle, Electro-kinetic energy conversion. J. Appl. Mech., 31, 1964, 161-164. CrossRef | |
F. A. Morrison Jr., J. F. Osterle, Electrokinetic energy conversion in ultrafine capillaries, J. Chem. Phys., 43, 1965, 2111-2115 CrossRef | |
D. J. Griffiths, Introduction to electrodynamics. Prentice Hall, New Jersey, 1998. | |
S. Chakraborty, Microfluidics and Microfabrication. Springer, London, 2010 | |
J. N. Israelachvili, Intermolecular and Surface Forces. 3rd Edition. Academic Press, London, 2011. | |
I. Borukhov, D. Andelman, H. Orland, Steric effects in electrolytes: A modified Poisson-Boltzmann equation, Phys. Rev, Lett., 79, 1997, 435-438 CrossRef | |
I. Borukhov, D. Andelman, H. Orland, Adsorption of large ions from an electrolyte solution: a modified Poisson-Boltzmann equation, Electrochimica Acta, 46, 2000, 221-229 CrossRef | |
K. Bohinc, V. K. Iglic, A. Iglic, Thickness of electrical double layer. Effect of ion size, Electrochimica Acta, 46, 2001, 3033-3040 CrossRef | |
S. Woelki, H. H. Kohler, A modified Poisson-Boltzmann equation I. Basic relations, Chemical Physics, 261, 2000, 411-419. CrossRef | |
S. Chakraborty, S. Das, Streaming-field-induced convective transport and its influence on the electroviscous effects in narrow fluidic confinement beyond the Debye-Hückel limit, Phys. Rev. E, 77, 2008, 037303. CrossRef | |
A. J. Rutgers, M. De Smet, and W. Rigole, Streaming currents with nonaqueous solutions, J. Colloid Sci., 14, 1959, 330-337 CrossRef | |
D. Hildreth, Electrokinetic flow in fine capillary channels, J. Phys. Chem., 74, 1970, 2006-2015. | |
A.V. Delgado, F. González-Caballero, R. J. Hunter, L. K. Koopal, J. Lyklema, Measurement and interpretation of electrokinetic phenomena, J. Colloid Interface Sci., 309, 2007, 194-224 | |
E. Yariv, O. Schnitzer, I. Frankel, Streaming-potential phenomena in the thin-Debye-layer limit. Part 1. General theory, J. Fluid Mech., 685, 2011, 306-334. CrossRef | |
S. Pennathur, J. G. Santiago, Electrokinetic transport in nanochannels. 1. Theory, Anal. Chem., 77, 2005, 6772-6781 | |
S. Pennathur, J. G. Santiago, Electrokinetic Transport in Nanochannels. 2. Experiments, Anal. Chem., 77, 2005, 6782-6789 CrossRef | |
M. S. Chun, T. S. Lee, N. W. Choi, Microfluidic analysis of electrokinetic streaming potential induced by microflows of monovalent electrolyte solution, J. Micromech. Microeng., 15, 2005, 710-719 CrossRef | |
V. M. Barragán, C. Ruiz-Bauza, J. L. Imaña, Streaming potential across cation-exchange membranes in methanol-water electrolyte solutions, J. Colloid Interface Sci., 294, 2006, 473-481 | |
D. Burgreen, F. Nakache, Electrokinetic flow in ultrafine capillary slits, J. Phys. Chem., 68, 1964, 1084-1091. CrossRef | |
C. L. Rice, R. Whitehead, Electrokinetic flow in a narrow cylindrical capillary, J. Phy. Chem., 69, 1965, 4017-4024 CrossRef | |
S. Levine, J. Marriott, G. Neale, N. Epstein, Theory of electrokinetic flow in fine cylindrical capillaries at high zeta potentials. J. Colloid Interface Sci., 52, 1975, 136-149. | |
S. Levine, J. Marriott, K. Robinson, Theory of electrokinetic flow in a narrow parallel-plate channel, J. Chem. Phys., 71, 1975, 1-11. | |
Z. Broz, N. Epstein, Electrokinetic Flow through porous media composed of fine cylindrical capillaries, J. Colloid Interface Sci., 56, 1976, 605-612 | |
W. Olivares, T. L. Croxton, and D. A. McQuarria, Electrokirietic flow in a narrow cylindrical capillary, J. Phys. Chem., 84, 1980, 867-869 | |
R. A. van Wagenen, J. D. Andrade, Flat plate streaming potential investigations: Hydrodynamics and Electrokinetic equivalency, J. Colloid Interface Sci., 76, 1980, 305-314 | |
B. D. Bowen, Streaming potential in the hydrodynamic entrance region of cylindrical and rectangular capillaries, J. Colloid Interface Sci., 106, 1985, 367-376 | |
W. R. Bowen, F. Jenner, Electroviscous effects in charged capillaries, J. Colloid Interface Sci., 173, 1995, 388-395 | |
S. G. Bike, D. C. Prieve, Electrohydrodynamic lubrication with thin double layers, J. Colloid Interface Sci., 136, 1990, 95-112 | |
H. Ohshima, T. Kondo, Electrokinetic flow between two parallel plates with surface charge layers: Electro-osmosis and Streaming Potential, J. Colloid Interface Sci., 135, 1990, 443-448 | |
S. G. Bike, D. C. Prieve, Electrohydrodynamics of thin double layers: A model for the streaming potential profile, J. Colloid Interface Sci., 154, 1992, 87-96 | |
V. M. Starov, Y. E. Solomentsev, Influence of gel layers on electrokinetic phenomena; 1. Streaming Potential, J. Colloid Interface Sci., 158, 1993, 159-165 | |
H. Ohshima, Streaming potential across a charged membrane, J. Colloid Interface Sci., 164, 1994, 510-513 | |
H. J. Keh, Y. C. Liu, Electrokinetic flow in a circular capillary with a surface charge layer, J. Colloid Interface Sci., 172, 1995, 222-229 | |
J. Lyklema, M. Minor, On surface conduction and its role in electrokinetics, Colloids and Surfaces A: Physicochem. Eng. Aspects, 140, 1998, 33-41 CrossRef | |
J. Lyklema, Electrokinetics after Smoluchowski, Colloids and Surfaces A: Physicochem. Eng. Aspects, 222, 2003, 5 -14 CrossRef | |
R. J. Hunter, The significance of stagnant layer conduction in electrokinetics, Adv. Colloid Interface Sci., 100 -102, 2003, 153-167 CrossRef | |
D. Gillespie, A review of steric interactions of ions: Why some theories succeed and others fail to account for ion size, Microfluid. Nanofluid., 2014, (DOI: 10.1007/s10404-014-1489-5) | |
M. Kilic, M. Z. Bazant, A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-Layer charging. Phys. Rev. E, 75, 2007, 021502 CrossRef | |
L. Gong, J. Wu, L. Wang, K. Cao, Streaming potential and electroviscous effects in periodical pressure-driven microchannel flow. Phys. Fluids, 20, 2008, 063603(1-7). | |
A. Mansouri, C. Scheuerman, S. Bhattacharjee, D. Y. Kwok, L. W. Kostiuk, Transient streaming potential in a finite length microchannel, J. Colloid Interface Sci., 292, 2005, 567-580 | |
J. Chakraborty, S. Ray, S. Chakraborty, Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressure-driven microfluidic devices, Electrophoresis, 33, 2012, 419-425 CrossRef | |
A. Shenoy, J. Chakraborty, S. Chakraborty, Influence of streaming potential on pulsatile pressure-gradient driven flow through an annulus, Electrophoresis, 34, 2013, 691-699 CrossRef | |
C. L. A. Berli, M. L. Olivares, Electrokinetic flow of non-newtonian fluids in microchannels, J. Colloid Interface Sci., 320, 2008, 582-589. | |
A. Bandopadhyay, S. Chakraborty, Steric-effect-induced alterations in streaming potential and energy transfer efficiency of non-newtonian fluids in narrow confinements, Langmuir, 27, 2011, 12243-12252 CrossRef | |
H. M. Park, J. Y. Lim, Streaming potential for microchannels of arbitrary cross-sectional shapes for thin electric double layers, J. Colloid Interface Sci., 336, 2009, 834-841 | |
N. A. Mortensen, L. H. Olesen, H. Bruus, Transport coefficients for electrolytes in arbitrarily shaped nano- and microfluidic channels, New J. Physics, 8, 2006, 37(1-15) | |
E. Brunet, A. Ajdari, Thin double layer approximation to describe streaming current fields in complex geometries: Analytical framework and applications to microfluidics, Phys. Rev. E, 73, 2006, 056306 CrossRef | |
J. D. Sherwood, E. Lac, Streaming potential generated by two-phase flow in a polygonal capillary, J. Colloid Interface Sci., 349, 2010, 417-423 | |
C. Werner, H. Korber, R. Zimmermann, S. Dukhin, H.-J. Jacobasch, Extended electrokinetic characterization of flat solid surfaces, J. Colloid Interface Sci., 208, 1998, 329-346 | |
A. Szymczyk, P. Fievet, M. Mullet, J. C. Reggiani, J. Pagetti, Comparison of two electrokinetic methods - electroosmosis and streaming potential - to determine the zeta-potential of plane ceramic membranes, J. Membrane Sci., 143, 1998, 189-195 CrossRef | |
W. R. Bowen, X. Cao, Electrokinetic effects in membrane pores and the determination of zeta-potential, J. Membrane Sci., 140, 1998, 267-273 CrossRef | |
A. Szymczyk, B. Aoubiza, P. Fievet, J. Pagetti, Electrokinetic phenomena in homogeneous cylindrical pores, J. Colloid Interface Sci., 216, 1999, 285-296 | |
P. Fievet, A. Szymczyk, B. Aoubiza, J. Pagetti, Evaluation of three methods for the characterisation of the membrane-solution interface: streaming potential, membrane potential and electrolyte conductivity inside pores, J. Membrane Sci., 168, 2000, 87-100. CrossRef | |
C. Werner, R. Zimmermann, T. Kratzmuller, Streaming potential and streaming current measurements at planar solid/liquid interfaces for simultaneous determination of zeta potential and surface conductivity, Colloids and Surfaces A: Physicochem. Eng. Aspects, 192, 2001, 205-213 CrossRef | |
D. Erickson, D. Li, Streaming potential and steaming current methods for characterizing heterogeneous solid surface. J. Colloid Interface Sci., 237, 2001, 283-289. | |
F. Baldessari, J. G. Santiago, Electrokinetics in nanochannels: Part I. Electric double layer overlap and channel-to-well equilibrium. J. Colloid Interface Sci., 325, 2008, 526-538. | |
J. Jammati, H. Niazmand, M. Renksizbulut, Pressure-driven electrokinetic slip-flow in planar microchannels. Int. J. Thermal Sci., 49, 2010, 1165-1174. CrossRef | |
H. M. Park, T. W. Kim, Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip. Lab Chip., 9, 2009, 291-296. CrossRef | |
S. Chakraborty, Z. Duan, Y. S. Muzychka, K. D. Anand, Implications of hydrophobic interactions and consequent apparent slip phenomenon on the entrance region transport of liquids through microchannels, Phys. Fluids, 20, 2008, 043602. CrossRef | |
C. Zhao, C. Yang, On the competition between streaming potential effect and hydrodynamic slip effect in pressure-driven microchannel flows. Colloids and Surfaces A: Physiochem. Eng. Aspects, 386, 2011, 191-194. CrossRef | |
C. L. A. Berli, Theoretical modelling of electrokinetic flow in microchannel networks, Colloids and Surfaces A: Physicochem. Eng. Aspects, 301, 2007, 271-280. CrossRef | |
J. Chakraborty, S. Chakraborty, Combined influence of streaming potential and substrate compliance on load capacity of a planar slider bearing, Phys. Fluids, 23, 2011, 082004 CrossRef | |
Y. S. Choi, S. J. Kim, Electrokinetic flow-induced currents in silica nanofluidic channels, J. Colloid Interface Sci., 333, 2009, 672-678 | |
A. Szymczyk, H. Zhu, B. Balannec, Pressure-driven ionic transport through nanochannels with inhomogenous charge distributions, Langmuir, 26, 2010, 1214-1220 CrossRef | |
H. Zhao, Streaming potential generated by a pressure-driven flow over superhydrophobic stripes, Phys. Fluids, 23, 2011, 022003 CrossRef | |
H. M. Park, Determination of the Navier slip coefficient of microchannels exploiting the streaming potential, Electrophoresis, 33, 2012, 906-915 CrossRef | |
S. Das, S. Chakraborty, Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements, Langmuir, 26, 2010, 11589-11596 CrossRef | |
J. Chakraborty, S. Chakraborty, Influence of hydrophobic effects on streaming potential, Phys. Rev. E, 88, 2013, 043007 CrossRef | |
R. Saini, A. Garg, D. P. J. Barz, Streaming potential revisited: The influence of convection on the surface conductivity, Langmuir, 30, 2014, 10950-10961 CrossRef | |
A. Bandopadhyay, J. Dhar, S. Chakraborty, Effects of solvent-mediated nonelectrostatic ion-ion interactions on a streaming potential in microchannels and nanochannels, Phys. Rev. E, 88, 2013, 033014 CrossRef | |
C. J. C. Biscombe, M. R. Davidson, D. J. E. Harvie, Electrokinetic flow in parallel channels: Circuit modelling for microfluidics andmembranes, Colloids and Surfaces A: Physicochem. Eng. Aspects, 440, 2014, 63- 73 CrossRef | |
L. H. Yeh, Y. Ma, S. Xue, S. Qian, Electroviscous effect on the streaming current in a pH-regulated nanochannel, Electrochemistry Communications, 48, 2014, 77-80 CrossRef | |
S. Mondal, S. De, Mass transfer of a neutral solute in porous microchannel under streaming potential, Electrophoresis, 35, 2014, 681-690 CrossRef | |
S. Das, S. Chakraborty, S. K. Mitra, Redefining electrical double layer thickness in narrow confinements: Effect of solvent polarization, Phys. Rev. E, 85, 2012, 051508 CrossRef | |
S. Das, A. Guha, S. K. Mitra, Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping Electric Double Layers, Anal. Chim. Acta, 804, 2013, 159- 166 CrossRef | |
P. Goswami, S. Chakraborty, Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip, Langmuir, 26, 2010, 581-590 CrossRef | |
F. Munshi, S. Chakraborty, Hydro-electrical energy conversion in narrow confinements in presence of transverse magnetic fields with electrokinetic effects, Phys. Fluids, 21, 2009, 122003 CrossRef | |
S. Chakraborty, Generalization of interfacial electrohydrodynamics in the presence of hydrophobic interactions in narrow fluidic confinements, Phy. Rev. Lett., 100, 2008, 097801 CrossRef | |
J. C. T. Eijkel, Liquid slip in micro- and nanofluidics: Recent research and its possible implications. Lab Chip, 7, 2007, 299-301 CrossRef | |
X. Xuan, Streaming potential and electroviscous effect in heterogeneous microchannels, Microfluid. Nanofluid., 4, 2008, 457-462 CrossRef | |
J. Chakraborty, R. Dey, S. Chakraborty, Consistent accounting of steric effects for prediction of a streaming potential in narrow confinements, Phys. Rev. E, 86, 2012, 061504 CrossRef | |
A. Bandopadhyay, S. Chakraborty, Combined effects of permittivity variations and finite ionic sizes on streaming potentials in nanochannels, Langmuir, 28, 2012, 17552-17563 CrossRef | |
S. Das, S. Chakraborty, Effect of conductivity variations within the electric double layer on streaming potential estimation in narrow fluidic confinements, Langmuir, 26, 2010, 11589-11596 CrossRef | |
C. Yang and D. Li, Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels, J. Colloid Interface Sci., 194, 1997, 95-107 | |
C. Yang, D. Li, Analysis of electrokinetic effects on the liquid flow in rectangular microchannels, Colloids and Surfaces A: Physicochem. Eng. Aspects, 143, 1998, 339-353. CrossRef | |
C. Yang, D. Li, J. H. Masliyah, Modeling forced liquid convection in rectangular microchannels with electrokinetic effects, Int. J. Heat Mass Transfer, 41, 1998, 4229-4249 CrossRef | |
D. Li, Electro-viscous effects on pressure-driven liquid flow in microchannels, Colloids and Surfaces A: Physicochem. Eng. Aspects, 195, 2001, 35-57 CrossRef | |
L. Ren, D. Li, W. Qu, Electro-viscous effects on liquid flow in microchannels, J. Colloid Interface Sci., 233, 2001, 12-22 | |
W. Olthuis, B. Schippers, J. C. T. Eijkel, A. van den Berg, Energy from streaming current and potential. Sens. Actuators B, 111-112, 2005, 385-389. CrossRef | |
F. H. J. van der Heyden, D. J. Bonthuis, D. Stein, C. Meyer, C. Dekker, Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett., 6, 2006, 2232-2237. CrossRef | |
F. H. J. van der Heyden, D. J. Bonthuis, D. Stein, C. Meyer, C. Dekker, Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett., 7, 2007, 1022-1025. CrossRef | |
F. H. J. van der Heyden, D. Stein, C. Dekker, Streming currents in a single nanofluidic channel. Phys. Rev. Lett., 95, 2005,116104. CrossRef | |
F. H. J. van der Heyden, D. Stein, K. Besteman, S. G. Lemay, C. Dekker, Charge inversion at high ionic strength studied by streaming currents. Phys. Rev. Lett., 96, 2006, 224502. CrossRef | |
J. Yang, F. Lu, L. W. Kostiuk, D. Y. Kwok, Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. J. Micromech. Microeng., 13, 2003, 963-970. CrossRef | |
M. S. Chun, H. W. Kwak, Electrokinetic flow and electroviscous effect in a charged slit-like microfluidic channel with nonlinear Poisson-Boltzmann field, Korea-Australia Rheology Journal, 15, 2003, 83-90 | |
H. Daiguji, P. Yang, A. J. Szeri, A. Majumdar, Electrochemomechanical energy conversion in nanofluidic channels, Nano Lett., 4, 2004, 2315-2321 CrossRef | |
H. Daiguji, Y. Oka, T. Adachi, K. Shirono, Theoretical study on the efficiency of nanofluidic batteries, Electrochemistry Communications, 8, 2006, 1796-1800 CrossRef | |
M. C. Lu, S. Satyanarayana, R. Karnik, A. Majumdar and C. C. Wang, A mechanical-electrokinetic battery using a nano-porous membrane, J. Micromech. Microeng., 16, 2006, 667-675 CrossRef | |
X. Xuan, D. Li, Thermodynamic analysis of electrokinetic energy conversion, J. Power Sources, 156, 2006, 677-684 CrossRef | |
A. Mansouri, S. Bhattacharjee, L. Kostiuk, High-power electrokinetic energy conversion in a glass microchannel array. Lab Chip, 12, 2012, 4033-4036 CrossRef | |
J. D. Sherwood, Y. Xie, A. van den Berg, J. C. T. Eijkel, Theoretical aspects of electrical power generation from two-phase flow streaming potentials, Microfluid. Nanofluid., 15, 2013, 347-359 CrossRef | |
C. C. Chang, R. J. Yang, Electrokinetic energy conversion in micrometer-length nanofluidic channels, Microfluid. Nanofluid., 9, 2010, 225-241 CrossRef | |
C. C. Chang, R. J. Yang, Electrokinetic energy conversion efficiency in ion-selective nanopores, Appl. Phys. Lett., 99, 2011, 083102 CrossRef | |
D. Gillespie, High energy conversion efficiency in nanofluidic channels, Nano Lett., 12, 2012, 1410-1416 CrossRef | |
A. Bandopadhyay, P. Goswami, S. Chakraborty, Regimes of streaming potential in cylindrical nano-pores in presence of finite sized ions and charge induced thickening: An analytical approach, J. Chem. Phys., 139, 2013, 224503 CrossRef | |
C. Bakli, S. Chakraborty, Electrokinetic energy Conversion in nanofluidic channels: Addressing the loose ends in nanodevice efficiency, Electrophoresis, 2014 (DOI: 10.1002/elps.201400317) | |
A. Bandopadhyay, S. S. Hossain, S. Chakraborty, Ionic-size dependent electroviscous effects in ion-selective nanopores, Langmuir, 30, 2014, 7251-7258 CrossRef | |
S. Chanda, S. Sinha, S. Das, Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters, Soft Matter, 10, 2014, 7558 CrossRef | |
C. L. M. H. Navier, Memoirs de l'Academie Royale des Sciences de l'Institut de France, 1, 1823, 414. | |
Y. Zhu, S. Granick, Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys. Rev. Lett., 87, 2001, 096105 CrossRef | |
Y. Ren, D. Stein, Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology, 19, 2008, 195707. CrossRef | |
C. Davidson, X. Xuan, Electrokinetic energy conversion in slip nanochannels, J. Power Sources, 179, 2008, 297-300 CrossRef | |
R. Chein, K. Tsai, L. Yeh, Analysis of effect of electrolyte types on electrokinetic energy conversion in nanoscale capillaries, Electrophoresis, 31, 2010, 535-545 CrossRef | |
C. Davidson, X. Xuan, Effect of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels. Electrophoresis, 29, 2008, 1125-1130. CrossRef | |
A. Garai, S. Chakraborty, Steric effect and slip-modulated energy transfer in narrow fluidic channels with finite aspect ratios, Electrophoresis, 31, 2010, 843-849 CrossRef | |
N. T. Nguyen, Y. Xie, L. J. de Vreede, A. van den Berg, J. C. T. Eijkel, Highly enhanced energy conversion from the streaming current by polymer addition, Lab Chip, 13, 2013, 3210-3216 CrossRef | |
C. L. A. Berli, Electrokinetic energy conversion in microchannels using polymer solutions, J. Colloid Interface Sci., 349, 2010, 446-448. | |
C. Zhao, C. Yang, Electrokinetics of non-Newtonian fluids: a review, Adv. Colloid Interface Sci., 201-202, 2013, 94-108. CrossRef |
Streaming Potential in Narrow Fluidic Confinements - A Theoretical Perspective
Prakash GoswamiRelated information
1 Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
, Aditya BandopadhyayRelated information2 Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
, Suman ChakrabortyRelated information