Kimura, J., Electrodiagnosis in Diseases of Muscle and Nerve: Principles and Practice, 3rd edition, Philiiadelphia, F. A. Davis, 2001. | |
Stieglitz, T., Meyer, J.-U., Neural Implants in Clinical Practice. In: Urban, G. A. (Ed.) BIOMEMS, Dordrecht: Springer-Verlag, 2006, 41-70. | |
Stieglitz T., Meyer, J.-U.: "Biomedical Microdevices for Neural Implants". In: Ur-ban, G. A. (Ed.) BIOMEMS. Dordrecht: Springer-Verlag, 2006, 71-138. | |
Stieglitz, T., Development of a Micromachined Epiretinal Vision Prosthesis, Journal of Neural Engineering, 2009, 6 (6), 065005, 11 pages. | |
Stieglitz, T., Rubehn, B., Henle, C., Kisban, S., Herwik, S., Ruther, P., Schuettler, M., Brain-Computer Interfaces: An Overview of the Hardware to Record Neural Signals from the Cortex. Progress in Brain Research. 2009, 175, 297-315. | |
Kipke, D. R., Shain, W., Buzsaki, G, Fetz, E., Hendersin, J. M., Hetke, J. F., Schalk, G., Advanced Neurotechnologies for Chronic Neural Interfaces: New Horizons and Clinical Opportunities, Journal of Neuroscience, 2008, 28(46), 11830-11838. CrossRef | |
Lebedev, M. A., Nicolelis, M. A. L., Brain-machine interfaces: past, present and future. Trends in Neurosciences, 2006, 29, 536-546. CrossRef | |
Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., et al. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 2006, 442, 164-171. CrossRef | |
Albert, G. C., Cook, C. M., Prato, F. S., Thomas. A. W., Deep Brain Stimulation, Vagal Nerve Stimulation and Transcranial Stimulation: An Overview of Stimulation Parameters and Neurotransmitter Release. Neuroscience and Biobehavioral Reviews, 2009, 33, 1042-1060. CrossRef | |
Urban, G. A, Micro- and Nanobiosensors - State of the Art and Trends, Measurement Science and Technology, 2009, 20, 012001 (18 pages). CrossRef | |
Wilson, G. S., Gifford, R., Biosensors for real time in vivo measurements; Biosensors and Bioelectronics, 2005, 20, 2388-2403. CrossRef | |
Metz, S., Bertsch, A., Bertrand, D., Renaud, P., Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosensors and Bioelectronics, 2004, 19(10), 1309-1318. CrossRef | |
Zhang, M., Mao, L., Enzyme based amperometric biosensors for continuous and on-line monitoring of cerebral extracellular microdialysate. Frontiers in Bioscience, 2005, 10, 345-352. CrossRef | |
Frey, O., Holtzman, T., McNamara, R., Theobald, D. E. H., van der Wal, P. D., de Rooij, N. F., Dalley, J. W., Koudelka-Hep, Electrochemically aided adsorption: enzyme-based choline and glutamate biosensors for silicon microprobe arrays" Biosensors and Bioelectronics (2009). | |
Sekioka, N., Kato, D., Kurita, R., Hirono, S., Niwa, O., Improved detection limit for an electrochemical γ-aminobutyric acid sensor based on stable NADPH detection using electron cyclotron resonance sputtered carbon film electrode. Sensors and Actuators B- Chemical, 2008, 129, 442-449. CrossRef | |
Keller, C. J., Casha, S. S., Narayanana, S. Wang, C., Kuzniecky, R., Carlson, C., Devinsky, O., Thesen, T., Doyle, W., Sassaroli, A., Boas, D. A., Ulbert, I.,. Halgren, E, Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex, Journal Neuroscience Methods, 2009, 179, 208-218. CrossRef | |
Zhu, T. C., Finlay, J. C,. Hahn, S. M., Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo", Journal of Photochemistry and Photobiology B: Biology, 2005, 79, 231-241. CrossRef | |
Williams, D. F., On the Nature of Biomaterials. Biomaterials, 2009, 30, 5897-5909. CrossRef | |
Williams, D. F., On the Mechanisms of Biocompatibility. Biomaterials, 2008, 29, 2941-2953. CrossRef | |
Merrill, D. R., Bikson, M., Jeffreys, J. G. R., Electrical Stimulation of Excitable Tissue: Design of Efficacious and Safe Protocols. Journal of Neuroscience Methods, 2005, 141, 171-198. CrossRef | |
Mirsky, V. M., Riepl, M., and Wolfbeis, O. S. (1997). Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosensors and Bioelectronics, 1997, 12, 977-989. CrossRef | |
Grill, W. M. and Mortimer, J. T., (1994). Electrical Properties of Implant Encapsulation Tissue. Annals of Biomedical Engineering, 1994, 22, 23-33. CrossRef | |
Duan, Y. Y., Clark, G. M., and Cowan, R. S. C., A Study of Intra-Cochlear Electrodes and Tissue Interface by Electrochemical Impedance Methods In Vivo. Biomaterials, 2004, 25, 3813-3828. CrossRef | |
Williams, J. C., Hippensteel, J. A., Dilgen, J., Shain, W. G., and Kipke, D. R., Complex Impedance Spectroscopy for Monitoring Tissue Responses to Inserted Neural Implants. Journal of Neural Engineering, 2007, 4, 410-423. CrossRef | |
Mercanzini, A., Colin, P., Bensadoun, J.-C., Bertsch, A., and Renaud, P., In Vivo Electrical Impedance Spectroscopy of Tissue Reaction to Microelectrode Arrays. IEEE Transactions on Biomedical Engineering, 2009, 56, 1909-1918. CrossRef | |
Rohatgi, P., Langhals, N. B., Kipke, D. R., Patil, P. G., In vivo performance of a microelectrode neural probe with integrated drug delivery, Neurosurgical Focus, 2009, 27(1), E8 (11 pages). | |
Papageorgiou, D. P., Shore, S. E., Bledsoe, S. C., Wise, K. D., A Shuttered Nerual Probe with on Chip Flowmeters for Chronic In Vivo Drug Delivery. IEEE/ASME Journal of Microelectromechanical Systems, 2006, 15(4), 1025-1033. CrossRef | |
Wise, K. D., Angell, J. B., & Starr, A., An integrated circuit approach to extracellular microelectrodes. The 8th ICMBE, Palmer House, Chicago, IL, July 20, 1969. Digest of the 8th ICMBE, 1969, 1, 14. | |
Nordhausen, C. T., Maynard, E. M., Normann, R. A., Single unit recording capabilities of a 100 microclectrode array. Brain Research, 1996, 726, 129-140. CrossRef | |
Wise, K. D., Anderson, D. J., Hetke, J. F., Kipke, D. R., Najafi, K., Wireless implantable microsystems: high denisity electronic interfaces to the nervous system. Proceedings of the IEEE, 2004, 92, 76-96. CrossRef | |
Neves, H. P.; Ruther, P., The NeuroProbes Project, Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 6442-6444. | |
Rousche, P. J., Pellinen, D. S., Pivin, D. P. Jr., Williams, J. C., Vetter, R. J., Kipke, D. R. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Transactions Biomedical Engineering 2001, 48(3),361-371. CrossRef | |
Stieglitz, T., Gross, M., Flexible BIOMEMS with Electrode Arrangements on Front and Back Side as Key Component in Neural Prostheses and Biohybrid Systems, Sensors and Actuators B-Chemical, 2002, 83, 8-14. CrossRef | |
Takahashi, H., Ejiri, T., Nakao, M., Nakamura, N., Kaga, K., Herve, T., Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials. IEEE Transactions on Biomedical Engineering, 2003, 50, 510-516. CrossRef | |
Mercanzini, A., Cheung, K., Buhl, D. L., Boers, M., Maillard, A., Colin, P., Bensadoun, J.-C., Bertsch, A., Renaud, P., Demonstration of cortical recording using novel flexible polymer neural probes, Sensors and Actuators A, 2008, 143, 1(2), 90-96. CrossRef | |
Campbell, P. K., Jones, K. E., Huber, R. J., Horch, K. W., Normann, R. A., A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Transactions on Biomedical Engineering, 1991, 38, 758-768. CrossRef | |
Bai, Q., Wise, K. D., Anderson, D. J., A High-Yield Microassembly Structure for Three-Dimensional Microelectrode Arrays, IEEE Transactions on Biomedical Engineering, 2000, 47(3), 281-289. CrossRef | |
Najafi, K., Wise, K. D. An implantable multielectrode array with on-chip signal processing. IEEE Journal of Solid-State Circuits, 1986, 21, 1035-1044. CrossRef | |
Kisban, S., Herwik, S., Seidl, K., Rubehn, B., Jezzini, A., Umiltà, M. A., Fogassi, L., Stieglitz, T., Paul, O., Ruther, P., Microprobe Array with Low Impedance Electrodes and Highly Flexible Polyimide Cables for Acute Neural Recording, Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 175-178. | |
Stieglitz, T., Beutel, H., Schuettler, M., & Meyer, J.-U., Micromachined, polyimide-based devices for flexible neural interfaces. Biomedical Microdevices, 2000, 2, 283-294. CrossRef | |
Cheung, K. C., Renaud, P., Tanila, H., Djupsund, K., Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosensors and Bioelectronics, 22(8),1783-1790. CrossRef | |
Stieglitz, T., Hoffmann, R., Kaminsky, J. Investigations on mechanical properties of polyimide-based shaft electrodes for intracortical neural interfaces, in prep., 2009 | |
Polikov, V. S., Tresco, P. A., & Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. Journal of Neuroscience Methods, 2005, 148, 1-18. CrossRef | |
Menz, W., Mohr, J., Paul, O., Microsystem Technology, Wiley-VCH, 2001. | |
Steigert, J., Brett, O., Muller, C., Strasser, M., Wangler, N., Reinecke, H., Daub, M., Zengerle, R. A Versatile and Flexible Low-temperature Full-wafer Bonding Process of Monolithic 3D Microfluidic Structures in SU-8, Journal of Micromechanics and Microengineering, 2008, 18(), 1-8. | |
Hu, M., Lindemann, T., Gottsche, T., Kohnle, J., Zengerle, R., Koltay, P., Discrete Chemical Release from a Microfluidic Chip, Journal of Microelectromechanical Systems, 2007, 16(4), 786-794. CrossRef | |
Fernandez, L. J., Tijero, M., Vilares, R., Berganzo, J., Mayora, K., Blanco, F. J., SU-8 Based Microneedle for Drug Delivery in Nanomedicine Applications with Integrated Electrodes, [9], 2007, pp. 1720-1722. | |
Sparks, D. Hubbard, T., Micromachined Needles and Lancets with Design Adjustable Bevel Angles, Journal of Micromechanics and Microengineering, 2004, 14 (8), 1230-1233. CrossRef | |
Lee, C. C. Wang, C. Y., A Low-temperature Bonding Process Using Deposited Gold TiN Composites, Thin Solid Films, 1992, 208 (2), 202-209. CrossRef | |
Kutchoukov, V. G., Laugere, F., van der Vlist, W., Pakula, L., Garini, Y., Bossche, A., Fabrication of Nanofluidic Devices Using Glass-to-Glass Anodic Bonding, Sensors and Actuators A-Physical, 2004, 114 (2-3), 521-527. CrossRef | |
Xue, Z. L. Qiu, H. H, Integrating Micromachined Fast Response Temperature Sensor Array in a Glass Microchannel, Sensors and Actuators A-Physical, 2005, 122 (2) 189-195. CrossRef | |
Shih, W. P., Hui, C. Y., Tien, N. C., Collapse of Microchannels During Anodic Bonding: Theory and Experiments, Journal of Applied Physics, 2004, 95 (5), 2800-2808. CrossRef | |
Chen, J. K., Wise, K. D., Hetke, J. F., Bledsoe, S. C., A Multichannel Neural Probe for Selective Chemical Delivery at the Cellular Level, IEEE Transactions on Biomedical Engineering, 1997, 44 (8), 760-769. CrossRef | |
Cheung, K. C., Djupsund, K. Dan, Y. Lee, L. P., Implantable Multichannel Electrode Array Based on SOI Technology, Journal of Microelectromechanical Systems, 2003, 12 (2), 179-184. CrossRef | |
Dijkstra, M., de Boer, M. J., Berenschot, J. W.,. Lammerink, T. S. J, Wiegerink, R. J., Elwenspoek, M., A Versatile Surface Channel Concept for Microfluidic Applications, Journal of Micromechanics and Microengineering, 2007, 17, 1971-1977. CrossRef | |
de Boer, M. J., Tjerkstra, R. W., Berenschot, J. W., Jansen, H. V., Burger, C. J., Gardeniers, J. G. E., Elwenspoek, M., van den Berg, A., Micromachining of Buried Microchannels in Silicon, Journal of Microelectromechanical Systems, 2000, 9 (1), 94-103. CrossRef | |
Papautsky, I. Brazzle, J., Swerdlow, H., Frazier, A. B., A Low-temperature IC-Compatible Process for Fabricating Surface-micromachined Metallic Microchannels, Journal of Microelectromechanical Systems, 1998, 7 (2), 267-273. CrossRef | |
Lin, L. W., and Pisano, A. P., Silicon-processed Microneedles, Journal of Microelectromechanical Systems, 1999, 8 (1), 78-84. CrossRef | |
Metz, S., Holzer, R., Renaud, P., Polyimide-based microfluidic devices. Lab Chip, 2001, 1(1), 29-34. CrossRef | |
Takeuchi, S., Ziegler, D., Yoshida, Y., Mabuchi, K., Suzuki, T., Parylene flexible neural probes integrated with microfluidic channels. Lab on a Chip, 2005, 5, 519-523. CrossRef | |
Metz, S., Jiguet, S., Bertsch, A., Renaud, P., Polyimide and SU-8 Microfluidic Devices Manufactured by Heat-depolymerizable Sacrificial Material Technique, Lab on a Chip, 2004, 4 (2), 114-120. CrossRef | |
Psoma, S. D., Jenkins, D. W., Comparative Assessment of Different Sacrificial Materials for Releasing SU-8 Structures, Reviews on Advanced Materials Science, 2005, 10 (2), 149-155. | |
Tay, F. E. H., van Kan, J. A., Watt, F., Choong, W. O., A Novel Micro-machining Method for the Fabrication of Thick-film SU-8 Embedded Micro-channels, Journal of Micromechanics and Microengineering, 2001, 11 (1), 27-32. CrossRef | |
Hirai, Y., Inamoto, Y., Sugano, K., Tsuchiya, T., Tabata, O., Moving mask UV lithography for three-dimensional structuring, Journal of Micromechanics and Microengineering, 2007, 17 (2), 199-206. CrossRef | |
Chung, C., Allen, M., Uncrosslinked SU-8 as a Sacrificial Material, Journal of Micromechanics and Microengineering, 2005, 15 (1), N1-N5. CrossRef | |
Alderman, B. E. J., Mann, C. M., Steenson, D. P., Chamberlain, J. M., Microfabrication of Channels Using an Embedded Mask in Negative Resist, Journal of Micromechanics and Microengineering, 2001, 11 (6), 703-705. CrossRef | |
Woias, P., Micropumps—past, progress and future prospects. Sensors and Actuators B, 2005, 105, 28-38. CrossRef | |
Melin, J., Quake, S. R., Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation. Annual Reviews of Biophysical and Biomolecular Structures, 2007, 36, 213-231. | |
Iverson, B. D., Garimella, S. V., Recent Advances in Microscale Pumping Technologies: A Review and Evaluation. Microfluidics and Nanofluidics, 2008, 5, 145-174. CrossRef | |
Amirouche, F., Zhou, Y., Johnson, T., Current micropump technologies and their biomedical applications. Microsystem Technolologies, 2009, 15, 647-666 | |
Nisar, A., Afzulpurkar, N., Mahaisavariya, B., Tuantranont, A., MEMS-based micropumps in drug delivery and biomedical applications, Sensors and Actuators B, 2008, 130, 917-942 CrossRef | |
Laser, D. J,. Santiago, J. G., A review of micropumps. J. Micromechanics and Microengineering, 2004, 14, R35-R64. CrossRef | |
Nandi, P., Lunte, S. M., Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: A review. Analytica Chimica Acta, 2009, 651, 1-14. CrossRef | |
Dale, N., Hatz, S., Tian, F., Llaudet, E., Listening to the brain: microelectrode biosensors for neurochemicals. Trends in Biotechnology, 2005, 23 (8), 420-428. CrossRef | |
van der Zeyden, M., Oldenziel, W. H., Rea, K., Cremers, T. I., Westerink, B. H., Microdialysis of GABA and glutamate: Analysis, interpretation and comparison with microsensors. Pharmacology, Biochemistry and Behavior, 2008, 90, 135-147. CrossRef | |
Razzacki, S. Z., Thwar, P. K., Yang, M., Ugaz, V. M, Burns, M. A., Integrated microsystems for controlled drug delivery. Advanced Drug Delivery Reviews, 2004, 56, 185-198. CrossRef | |
Retterer, S. T., Smith, K. L., Bjornsson, C. S., Neeves, K. B., Spence, A. J., Turner, J. N., Shain, W., Isaacson, M. S., Model neural prostheses with integrated microfluidics: a potential intervention strategy for controlling reactive cell and tissue responses. IEEE Transactions on Biomedical Engineering, 2004, 51(11), 2063-2073. CrossRef | |
Retterer, S. T., Smith, K. L., Bjornson, C. S., Turner, J. N., Isaacson, M. S., Shain, W., Constant pressure fluid infusion into rat neocortex from implantable microfluidic devices. Journal of Neural Engineering, 2008, 5, 385-391. CrossRef |
Integration of Microfluidic Capabilities into Micromachined Neural Implants
Thomas StieglitzRelated information
1 Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany