Access provided by Rice University


Wang, W.G. and Mogensen, M. (2005). High-performance Lanthanum-ferrite-based cathode for SOFCs. Solid State Ionics 176: 457-462.
CrossRef
Hussain, M.M., Li, X., and Dincer, I. (2006). Mathematical Modeling of Planar Solid Oxide Fuel Cells. J. Power Sources 161:1012-1022.
CrossRef
Virkar, A.V., Chen, J., Tanner, C.W. and Kim, J.W. (2000). The Role of Electrode Microstructure on Activation and Concentration Polarizations in Solid Oxide Fuel Cells. Solid State Ionics 131:189-198.
CrossRef
Yakabe, H., Hishinuma, M., Uratani, M., Matsuzaki, Y. and Yasuda, I. (2000). Evaluation and Modeling of Performance of Anode-supported Solid Oxide Fuel Cell. J. Power Sources 86: 423-431.
CrossRef
Lehnert, W., Meusinger, J. and Thom, F. (2000). Modelling of Gas Transport Phenomena in SOFC Anodes. J. Power Sources 87:57-63.
CrossRef
Ackmann, T., Haart, L.G.J., Lehnert, W. and Thom, F. Modelling of Mass and Heat Transport in Thick-Substrate Thin-Electrolyte Layer SOFCs. Proc. 4th European Solid Oxide Fuel Cell Forum 2000, Lucerne/Switzerland, 431-438.
Yuan, J., Rokni, M. and Sundén, B. (2003). Three-Dimensional Computational Analysis of Gas and Heat Transport Phenomena in Channels Relevant for Anode-Supported Solid Oxide Fuel Cells. Int. J. Heat Mass Transfer 46:809-821.
CrossRef
Yakabe, H., Ogiwara, T., Hishinuma, M. and Yasuda, I. (2001). 3-D Model Calculation for Planar SOFC, J. Power Sources 102:144-154.
CrossRef
Barzi, Y.M., Ghassemi, M., Hamedi, M.H. and Afshari, E (2007). Numerical Analysis of Output Characteristics of a Tubular SOFC with Different Fuel Compositions and Mass Flow Rates. In: Proceedings of Solid Oxide Fuel Cells 10 (SOFC-X), Eguchi, K., Singhal, S.C., Yokokawa, H. and Mizusaki, J. (eds.). ECS Transactions, 7: 1919-1928.
Yuan, J. and Sundén, B., (2006). Analysis of Chemically Reacting Transport Phenomena in an Anode Duct of Intermediate Temperature SOFCs, ASME J. Fuel Cell Sci., Tech. and Engn., 2: 89-98.
Aguiar, A., Adjiman, C.S. and Brandon, N.P. (2004). Anode-supported Intermediate Temperature Direct Internal Reforming Solid Fuel Cell. I: Model-based Stead-state Performance. J. Power Sources 138:120-136.
CrossRef
Hecht, E.S., Gupta, G.F., Zhu, H., Dean, A.M, Kee, R. J., Luba, M. and Deutschmann, O. (2005). Methane Reforming Kinetics within a Ni-YSZ SOFC Anode Support, Appl. Catalysis A: General 295:40-51.
CrossRef
Janardhanan, V.M. and Deutschmann, O. (2006). CFD Analysis of a Solid Oxide Fuel Cell with Internal Reforming: Coupled Interactions of Transport of Transport, Heterogeneous Catalysis and Electrochemcial Processes, J. Power Sources 162:1192-1202.
CrossRef
Hofmann, P., Panopoulos, K.D., Fryda, L.E. and Kakaras, E. (2009). Comparison between Two Methane Reforming Models Applied to a Quasi-two-dimensional Planar Solid Oxide Fuel Cell Model, Energy, 34:2151-2157.
CrossRef
Hecht, E.S., Gupta, G.K., Zhu, H., Dean, A.M., Kee, R.J., Maier, L and Deutschmann, O. (2005). Methane Reforming Kinetics within a Ni-YSZ SOFC Anode Support, Applied Catalysis A: General 295:40-51.
CrossRef
Yuan, J., Yang, G., Andersson, M. and Sundén, B., (2008). CFD Approach for Chemical Reaction Coupled Heat Transfer in SOFCs, in Proceedings of 7th International Symposium on Heat Transfer (cd-rom), 2008, Beijing, China.
Mostinsky, I.L., "Diffusion coefficient," in: International Encyclopedia of Heat & Mass Transfer, Hewitt, G.F., Shires, G.L. and Polezhaev, Y.V. (eds.), 1996, CRC Press, Florida, USA.
>

Issue Details

International Journal of Micro-Nano Scale Transport


International Journal of Micro-Nano Scale Transport

Print ISSN: 1759-3093

Related Content Search

Find related content

By Keyword
By Author

Subscription Options

Individual Offers