Access provided by Rice University


Harten A., Lax P. D., Van Leer B, On upstream differencing and Godunov type schemes for hyperbolic conservation laws, SIAM Review 1983, 25, 35-61.
CrossRef
Roe P. L., Approximate Riemann solvers, parameter vectors and difference schemes, Journal of Computational Physics, 1981, 43, 357-372.
CrossRef
Osher S., Numerical solution of singular perturbation problems and hyperbolic system of conservation laws, North-Holland Mathematical Studies, 1981, 47, 179.
Sanders R. H. and Pendergast K. H., On the origin of the 3-Kiloparsec arm, Astrophysics Journal, 1974, 88, 489-500.
Steger J. L., Warming R. F., Flux vector splitting of the inviscid gas dynamics equations with application to finite difference methods, Journal of Computational Physics, 1981, 40, 263-293.
CrossRef
Pullin, D. I. Direct simulation methods for compressible inviscid gas flow, J. Comput. Phys., 1980, 34, 231-244.
CrossRef
Reitz, R. D., One-dimensional compressible gas dynamic calculations using the Boltzmann equation, Journal of Computational Physics, 1981, 42, 108-123.
CrossRef
Deshpande SM. A second order accurate, kinetic-theory based method for inviscid compressible flows. NASA Technical Paper No. 2613, 1986.
Mandal JC, Deshpande SM. Kinetic Flux Vector Splitting for Euler equations. Computers and Fluids 1994, 23(2), 447-478.
CrossRef
Perthame B., Boltzmann-type scheme for gas dynamic and the entropy property, SIAM journal of numerical analysis, 1991, 27(6), 1405-1421.
CrossRef
Prendergast K, Xu K. Numerical hydrodynamics from gas-kinetic theory. Journal of Computational Physics 1993, 109, 53-66.
CrossRef
Xu, K. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys. 2001, 171 (48), 289-335.
CrossRef
May G, Srinivasan B, Jameson A. An improved gas-kinetic BGK finite-volume method for three-dimensional transonic flow. Journal of Computational Physics 2007, 220, 856-878.
CrossRef
Raghurama Rao S. V., Deshpande S. M., Peculiar velocity based upwind method for inviscid compressible flows, Lecture Notes in Physics, no. 453, Springer-Verlag, Berlin, 1995, 112-116.
Chou SY, Baganoff D. Kinetic flux-vector splitting for the Navier—Stokes equations. Journal of Computational Physics 1996, 130, 217-230.
CrossRef
Mahendra AK. Application of least squares kinetic upwind method to strongly rotating viscous flows. M. Sc.(Eng) Thesis. Indian Institute of Science, Bangalore, 2003.
Mahendra AK, Singh RK, Gouthaman G. Meshless kinetic upwind method for compressible viscous rotating flows. Comput Fluids, in press. doi:10.1016/j.compfluid.2010.10.015.
Yang J-Y, Hsieh T-Y, Shi Y-H, Xu K, High-order kinetic flux vector splitting schemes in general coordinates for ideal quantum gas dynamics, Journal of computational Physics, 2007, 227, 967-982
CrossRef
van Leer B, Thomas J. L., Roe P. L., Newsome R. W., A comparison of numerical flux formulas for the Euler and Navier-Stokes equations, in AIAA 8th Computational Fluid Dynamics Conference, 1987.
Anil N., Rajan N. K. S., Deshpande S. M., Mathematical analysis of dissipation in m-KFVS Method, Fluid Mechanics Report 2005 FM 1, Indian Institute of Science, Bangalore, 2005.
Prigogine I., Balescu R., Irreversible processes in gases II. The equations of evolution, Physica, 1959, 25, 302-303.
CrossRef
Gibberd R. W., Hoffman D. K., On an algebraic approach to the derivation of Markovian kinetic equations, Physica, 1973, 68, 23-42
CrossRef
Levermore C. D., Moment Closure Hierarchies for Kinetic theories, Journal of statistical Physics, 1996, 83(5/6), 1021-1065.
CrossRef
Hauck C. D., Levermore C. D., Tits A. L., Convex Duality an entropy-based moment closures: Characterizing degenerate densities, SIAM J. Control Optimization, 2008, 47(4), 1977-2015.
CrossRef
Levermore C. D., Morokoff W. J., Nadiga B. T., Moment realizability and the validity of the Navier-Stokes equations for rarefied gas dynamics, Physics of Fluids, 1998, 10(12), 3214-3226.
CrossRef
Müller I, Ruggeri, T. Springer Tracts in Natural Philosophy 37 2nd ed.—Rational Extended Thermodynamics. Springer Verlag, Berlin, 1998.
Levermore, C. D., Pomraning, G. C., A Flux-limited diffusion theory, The Astrophysical Journal, 1981, 248, 321-334.
CrossRef
Popham, R., Narayan, R., Supersonic infall and causality in accretion disk boundary layers, The Astrophysical Journal, 1992, 394, 255-260.
CrossRef
Max, C. E, Theory of the Coronal Plasma in Laser Fusion targets, Physics of Laser Fusion, LLNL report No. UCRL-53107, 1981.
Struchtrup, H., Torrilhon, M. Regularization of Grad's 13 moment equations: derivation and linear analysis. Physics of Fluids, 2003, 15(9), 2668-2680.
CrossRef
Struchtrup, H. Macroscopic transport equations for rarefied gas flows-approximation methods in kinetic theory. Interaction of Mechanics and Mathematics Series. Heidelberg, Germany, Springer, 2005.
Elizarova, T. Quasi-Gas Dynamic Equations. Springer-Verlag, Berlin, 2009.
Sheretov, Y. Quasi-hydrodynamic equations as a model of flows of compressible viscous, heat-conducting medium. In: Applications of Functional Analysis in Approximation Theory [in Russian], 1997, 127-155. Tver, Moscow.
Brenner, H. Navier-Stokes revisited, Physica A, 2005, 349, 60-132.
CrossRef
Ottinger H. C., Beyond Equilibrium Thermodynamics, Wiley, Hoboken, 2005.
Greenshields C. J., Reese J. M. The structure of shock waves as a test of Brenner's modifications to the Navier-Stokes equations, J. Fluid Mech. 2007, 580, 407-429.
CrossRef
Guo Z., Xu K., Numerical Validation of Brenner's Hydrodynamic Model by Force Driven Poiseuille Flow, Adv. Appl. Math. Mech., 2009, Vol. 1, No. 3, 391-401
Zhdanov VM, Roldughin VI. Non-equilibrium thermodynamics and kinetic theory of rarefied gases. Physics-Uspekhi 1998, 41(4), 349-378
CrossRef
Bhatnagar P. L., Gross E. P., Krook M. A Model for Collision Processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 94, 1954 pp.511-525.
CrossRef
Shakhov, E. M. Generalization of the Krook kinetic relaxation equation, Fluid Dyn. 3, 95, 1968.
Holway H Kinetic theory of shock structure uing an ellipsoidal distribution function. In: Rarefied Gas Dynamics, Vol. I (Proc. Fourth International Symposium University of Toronto, 1964), pages 193-215. Academic Press, New York, 1966.
Andries, P., Le Tallec, P., Perlat, J., and Perthame, B., The Gaussian-BGK model of Boltzmann equation with small Prandtl number European Journal of Mechanics: B Fluids 19(6), 2000, 813-830
CrossRef
Liu, G. A method for constructing a model form for the Boltzmann equation, Phys. Fluids A 2, 277, 1990
CrossRef
Mieussens L., Struchtrup H., Numerical solutions for the BGK-Model with velocity-dependent collision frequency, CP663, Rarefied Gas Dynamics: 23rd International Symposium, edited by A. D. Ketsdever and E. P. Muntz, 2003
Zheng, Y, Struchtrup H., Ellipsoidal statistical Bhatnagar-Gross-Krook model with velocitydependent collision frequency, Physics of fluids, 17, 127103(1)-127103(17), 2005
Cercignani, C. Mathematical Methods in Kinetic Theory. Plenum, New York., 1990
Chapman, S., Cowling, T. G. The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge, 1970.
Grad, H. On the Kinetic theory of rarefied gases. Commun. Pure Appl. Maths 2, 1949, 331
CrossRef
Shan X, He X, Discretization of the velocity space in solution of Boltzmann equation, Physics Review Letters, 80, 1998, 65.
CrossRef
Gorban A. N., Karlin I. V., Zinovyev A. Y., Constructive methods of invariant manifolds for kinetic problems, Physics Reports, 2004, 396, 197-403.
CrossRef
van Kampen N. G., Chapman-Enskog as an application of the method for eliminating fast variables, Journal of Statistical Physics, 1987, 46(3/4), 709-727.
CrossRef
Dellar P. J., Macroscopic description of rarefied gases from the elimination of fast variables, Physics of Fluids, 2007, 19, 107101(1)-107101(14).
Woods L. C. Frame-indifferent kinetic theory. Journal of Fluid Mechanics, 1983, 136, 423-433.
CrossRef
Balakrishnan R. An approach to entropy consistency in second-order hydrodynamic equations. Journal of Fluid Mechanics 2004, 503, 201-245.
CrossRef
Jin, S., Slemrod, M. Regularization of the Burnett equations via relaxation. Journal of Statistical Physics, 2001, 103 (5/6), 1009-1033.
CrossRef
Wang Chang, C. W. On the theory of the thickness of weak shock waves, Technical report no. APL/JHU, CM-503. Dept. of Eng. Research, University of Michigan, 1948.
Liepmann, H., Narasimha, R., Chahine, M. Structure of a plane shock layer. Physics of Fluid, 1962, 5(11).
Wang W-L, Boyd ID, Predicting continuum breakdown in hypersonic viscous flows, Physics of fluids, 2003, 15(1), 91-100.
Chae D., Kim C., Rho O, Development of an improved gas-kinetic BGK scheme for inviscid and viscous flows, J. Comput. Phys. 2000, 158, 1.
CrossRef
Schwartzentruber, T., Boyd, I. A hybrid particle-continuum method applied to shock waves. Journal of Computational Physics, 2006, 215, 402-416.
CrossRef
Kolobov VI, Arslanbekov RR, Aristov V, Frolova AA, Zabelok SA. Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement. Journal of Computational Physics, 2007, 223, 589-608.
CrossRef
Lockerby D. A., Struchtrup H, Reese J. M., Switching criteria for hybrid rarefied gas flow solvers, Rarefied Gas Dynamics:26th International Symposium, ed. T. Abe, 2009, CP1084, 434-440.
Arkilic EB, Schmidt M. A., Breuer KS. Gaseous Slip Flow in Long Microchannels. Journal of Microelectromechanical systems, 1997, 6(2), 167-178.
CrossRef
M. Gad-el Hak. The Fluid Mechanics of Microdevices - The Freeman Scholar Lecture. ASME Journal of Fluids Engineering, 1999, 121(403), 5-33.
CrossRef
Mieussens L. Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in Plane and Axisymmetric Geometries. Journal of Computational Physics 2000, 162, 429-466.
CrossRef
Sugimoto H, Soni Y. Numerical analysis of steady flows of a gas evaporating from its cylindrical condensed phase on the basis of kinetic theory. Physics of Fluid A 1992, 4(2), 419-440.
Sharipov, F. M., Kremer, G. M. Non-isothermal Couette flow of a rarefied gas between two rotating cylinders. Eur. J. Mech. B/Fluids, 1999, 18(1), 121-130.
CrossRef
Sharipov, F. M., Cumin, L. M. G., Kremer, G. M. Transport phenomena in rotating rarefied gases. Physics of Fluid, 2001, 13(1), 335-346.
Baker L. L., Hadjiconstantinou N. G., Variance reduction for Monte Carlo solutions of the Boltzmann equation, Physics of Fluids, 2005, 17, 051703(1)-051703(4).
Homolle T. M. M., Hadjiconstantinou N. G., Low-variance deviational simulation Monte Carlo, Physics of Fluids, 2007, 19, 041701(1)-041701(4).
Cercignani C, Lampis M. Kinetic models for gas-surface interactions. Transport Theory and Statistical Physics, 1971, 1(2), 101-114.
CrossRef
Lord R. G., Some extension to the C-L gas surface scattering kernel. Physics of Fluids A, 1991, 3, 706-710.
CrossRef
Xu K, Li Z. Microchannel flow in the slip regime: gas-kinetic BGK-Burnett solutions. Journal of Fluid Mechanics 2004, 513, 87-110.
CrossRef
Maxwell, J. On stresses in rarefied gases arising from inequalities of temperature. Philosophical Transactions Royal Society of London, 1879, 170, 231-256.
CrossRef
Kennard E. H., Kinetic Theory of Gases, McGraw-Hill, New York, 1938.
Shen S, Chen G, Crone R. M., Ananya-Dufresne M, A kinetic-theory based first order slip boundary condition for gas flow, Physics of Fluids, 2007, 19, 086101(1)-086101(6).
Ikenberry E, Truesdell C. On the pressures and the flux of energy in a gas according to Maxwell's kinetic theory I, J. of Rat. Mech. Anal. 1956, 5, 1-54.
< >

Issue Details

International Journal of Emerging Multidisciplinary Fluid Sciences


International Journal of Emerging Multidisciplinary Fluid Sciences

Print ISSN: 1756-8315

Related Content Search

Find related content

By Keyword
By Author

Subscription Options

Individual Offers