Neinhuis, C., Barthlott, W., Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot., 1997, 79(6), 667-677. CrossRef | |
Rothstein, J. P., Slip on superhydrophobic surfaces, Annu. Rev. Fluid Mech., 2010, 42, 89-109. CrossRef | |
Samaha, M. A., Tafreshi, H. V., Gad-el-Hak, M., Superhydrophobic surfaces: From the lotus leaf to the submarine, C. R. Mec., 2012, 340(1), 18-34. CrossRef | |
Lee, C. Y., Zhang B. J., Park, J., Kim, K. J., Water droplet evaporation on Cu-based hydrophobic surfaces with nano and micro-structures, Int. J. Heat Mass Transfer, 2012, 55(7-8), 2151-2159. CrossRef | |
Ojha, M, Chatterjeea, A., Mont, F., Schubert, E. F., Wayner, P. C. Jr., Plawsky, J. L., The role of solid surface structure on dropwise phase change processes, Int. J. Heat Mass Transfer, 2010, 53(5), 910-922. CrossRef | |
Srikar, R., Gambaryan-Roisman, T., Steffes, C., Stefan, P., Tropea, C., Yarin, A. L., Nanofiber coating of surfaces for intensification of drop or spray impact cooling, Int. J. Heat Mass Transfer, 2010, 52(25), 5814-5826. CrossRef | |
Kulinich, S. A., Farhadi, S., Nose, K., Du, X. W., Superhydrophobic surfaces: Are they really ice-repellent?, Langmuir, 2011, 27(1), 25-29. CrossRef | |
Liu, Z., Gou, Y., Wang, J., Cheng, S., Frost formation on a superhydrophobic surface under natural convection conditions, Int. J. Heat Mass Transfer, 2008, 51(25), 5975-5982. CrossRef | |
Liu, Z., Zhang, X., Wang, H., Meng, S., Cheng, S., Influences of surface hydrophilicity on frost formation on a vertical cold plate under natural convection conditions, Experimental Thermal and Fluid Science, 2007, 31(7), 789-794. CrossRef | |
Rahman, M. A., Jacobi, A. M., Drainage of frost melt water from vertical brass surfaces with parallel microgrooves, Int. J. Heat Mass Transfer, 2012, 55(5), 1596-1605. CrossRef | |
Zhang, F., Zhao, L., Chen, H., Xu, S., Evans, D. G., Duan, X., Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum, Angrew. Chem. Int. Ed., 2008, 47(13), 2466-2469. CrossRef | |
Grignard, B., Vaillant, A., de Coninck, J., Piens, M., Jonas, A. M., Detrembleur, C., Jerome, C., Electrospinning of a functional perfluorinated block copolymer as a powerful route for imparting superhydrophobicity and corrosion resistance to aluminum substrates, Langmuir, 2011, 27(1), 335-342. CrossRef | |
Ou, J., Perot, J. B., Rothstein, J. P., Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Phys. Fluids, 2004, 16, 4635. CrossRef | |
Ybert, C., Barentin, C., Cecile, C. -B., Jospeh, P., Bocquet, L., Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries, Phys. Fluids Rev. Lett., 2007, 19, 123601. | |
Lee, C., Choi, C-H., Kim, C-J., Structured surfaces for giant liquid slip, Phys. Rev. Lett., 2008, 101(6), 064501. CrossRef | |
Maynes, D., Jeffs, K., Woolford, B., Webb, B. W., Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction, Phys. Fluids, 2007, 19, 093603. CrossRef | |
Lee, C., Kim, C., Maximizing the giant slip on superhydrophobic microstructures by nanostructuring their sidewalls, Langmuir, 2009, 25(21), 12812-12818. CrossRef | |
Cassie, A. B. D., Baxter, S., Wettability of porous surfaces, Trans. Faraday Soc., 1944, 40, 546-551. CrossRef | |
Wenzel, R. N., Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 1936, 28(8), 998-994. | |
Poetes, R., Holtzmann, K., Franze, K., Steiner, U., Metastable underwater superhydrophobicity, Phys. Rev. Lett., 2010, 105(16), 166104. CrossRef | |
Samaha, M. A., Tafreshi, H. V., Gad-el-Hak, M., Sustainability of superhydrophobicity under pressure, Phys. Fluids, 2012, 24(11), 112103. CrossRef | |
Samaha, M. A., Tafreshi, H. V., Gad-el-Hak, M., Inuence of flow on longevity of superhydrophobic coatings, Langmuir, 2012, 28(25), 9759-9766. CrossRef | |
Bobji, M. S., Kumar, S. V., Asthana, A., Govardhan, R. N., Underwater sustainability of the "Cassie" state of wetting, Langmuir, 2009, 25(20), 12120-12126. CrossRef | |
Sakai, M., Yanagisawa, T., Nakajima, A., Kameshima, Y., Okada, K., Effect of surface structure on the sustainability of an air Layer on superhydrophobic coatings in a water-ethanol mixture, Langmuir, 2008, 25(1), 13-16. CrossRef | |
Samaha, M. A., Ochanda, F. O., Tafreshi, H. V., Tepper, G. C., Gad-el-Hak, M., In Situ, non-invasive characterization of superhydrophobic coatings, Rev. Sci. Instrum., 2011, 82, 045109. CrossRef | |
Ng, C-O., Wang, C. Y., Stokes shear flow over a grating: Implications for superhydrophobic slip, Phys. Fluids, 2009, 21(1), 013602. CrossRef | |
Jeong, J-T., Slip boundary condition on an idealized porous wall, Phys. Fluids, 2001, 13, 1884-1890. CrossRef | |
Byun, D., Park, H. C., Drag reduction on micro-structured superhydrophobic surface, in: Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, IEEE., 2006, 818-823. | |
Bejan, A., Convection Heat Transfer, 3rd edn., John Wiley & Sons, Hoboken, New Jersey, USA, 2004. | |
Eckert, E., Gross, J. F., Convection Heat Transfer, McGraw-Hill Book Company, New York, New York, USA, 1963. | |
Bergman, T. L., Lavine, A. S., Incropera, F. P., DeWitt, D. P., Fundamentals of Heat and Mass Transfer, 7th edn., John Wiley & Sons, Hoboken, New Jersey, USA, 2011. | |
Martin, M., Boyd, I., Momentum and heat transfer in a laminar boundary layer with slip flow, J. Thermophys. Heat Tr., 2006, 20(4), 710-719. CrossRef | |
Martin, M., Boyd, I., Falknerskan flow over a wedge with slip boundary conditions, J. Thermophys. Heat Tr., 2010, 24(2), 263-270. CrossRef | |
Navier, C. L. M. H., Memoire sur les lois du mouvement des fluides, Mem. Acad. Sci. Inst. France, 1893, 6, 389-440. | |
Lauga, E., Brenner, M., Stone, H. A., Microfluids: the no-slip boundary condition, in: A. Y. C. Tropea, J. Foss (Eds.), Handbook of Experimental Fluid Dynamics, Springer, New York, New York, USA, 2007. | |
Lauga, E., Stone, H. A., Effective slip in pressure-driven stokes flow, J. Fluid Mech., 2003, 489(8), 55-77. CrossRef | |
Schlichting, H., Boundary-Layer Theory, 7th edn., McGraw-Hill, New York, USA, 1979. |
Convective Mass Transfer From Submerged Superhydrophobic Surfaces
Christina BarthRelated information
1 Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284
, Mohamed SamahaRelated information2 Department of Mechanical & Aerospace Engineering, Princeton University, Princeton, NJ 08544
, Hooman TafreshiRelated information1 Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284
, Mohamed Gad-el-HakRelated information1 Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284