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It has long been established that bone 
mineral is an analogue of the naturally 
occurring calcium phosphate mineral 
hydroxyapatite. Geologic apatite crystals 
may be several feet long, whereas mineral 
crystals in bone range from 10-40 nm in 
their largest dimension. Recent studies by 
Eppell et al. (1,2) used atomic force 
microscopy to measure the precise size of 
these small crystals, confirming the size 
measured in bulk specimens by 
physicochemical techniques. In healthy 
bone, mineral crystals align with their long 
axes roughly parallel to the collagen fibril 
axis (3), providing stiffness and strength to 
the more compliant and weaker collagen 
matrix. Not all crystals in a given bone are of 
the same size or orientation. In fact, there is 
a relatively non-Gaussian distribution of 
mineral crystals in a given osteon or 
trabecula (4). The maximal size achieved by 
crystals is most likely determined by the 
spacing of the collagen fibrils. There is 
controversy, however, as to whether a 
greater proportion of smaller crystals, larger 
crystals, or a broad distribution of crystal 
sizes is preferable. This is a crucial question 
because the therapies currently used for 
osteoporosis affect bone mineral crystal size 
and distribution.  
 

The structural strength of bone is 
determined by bone quantity (i.e., mass, 
density, and size), geometric form, and bone 
quality (5), an elusive term that refers to 
internal architecture and material properties. 
Architecture and material properties are 
influenced by many factors, such as bone 
turnover, mechanical environment, and 
disease. Furthermore, material properties 
are usually thought to depend on many 
factors, such as tissue composition, amount 
of secondary mineralization, collagen 
crosslinking, and the presence of 
microdamage. Because mineral 
composition, particle size, and distribution 
are not always the same, the properties of 
the crystals should also be considered as 
one of the factors contributing to material 
properties, when discussing the ability of 
bone to resist fracture. 
  
Evidence supporting the theory that crystal 
size affects mechanical strength is mainly 
anecdotal, because few investigators have 
measured crystal size distribution in bones 
that have also been mechanically tested. 
Nonetheless, there are examples of 
comparisons between groups of 
experimental animals that have been 
analyzed for crystal size and tested 
mechanically, which provide some initial 
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validation of the theory. Animals with 
increased crystal size and perfection relative 
to age- and sex-matched controls include 
ovariectomized monkeys (6), osteonectin-
null mice (7), and osteopontin-null mice (8). 
Ovariectomized monkeys and osteonectin-
null mice have reduced mechanical 
properties. Because of increased bone size, 
osteopontin-null mice should have increased 
bone structural strength; however, this has 
not yet been reported in the literature. 
Animals with decreased crystal size and 
perfection include ia/ia osteopetrotic rats (9); 
two models of osteogenesis imperfecta in 
mice (10-12), in which the mice have weak 
bones; and osteocalcin-null mice (13), which 
have increased whole bone strength, most 
likely because of increased cortical diameter 
(14). Magnesium-deficient rat bones also 
have larger crystals than do magnesium-
replete controls and show a significant 
decrease in maximum three-point bend 
strength in the absence of significant 
changes in bone diameter or bone mineral 
content (15). In contrast, Hyp mice have 
very ductile bones (16) and decreased 
mineral content, but no significant variation 
in crystal size. Similarly, chicks deficient in 
vitamin B-6 have a different maximum 
fracture load and offset yield, which is 
attributable to differences in bone diameter 
and collagen properties, without showing 
any difference in mineral crystal size (17), 
and ovariectomized sheep show decreased 
compressive strain relative to controls, 
without detectable changes in bone mineral 
crystal size (18). 
 
There are a few examples of investigations 
in which the same bones were used to 
measure bone mechanical properties and 
crystal size and perfection, allowing direct 
correlations to be made. The classic study of 
Chatterji et al. (19) found that in human 
femoral cortical bone, average bone mineral 
particle size distribution shifted to higher 
values, with increasing age after the fourth 
decade, whereas in an early study, these 
same samples showed intrinsic tensile 
strength of bones decreasing after the fourth 
decade (20). In a study based on ultrasound 
and physicochemical measures in rats given 
growth hormone, mineral crystal width and 
cortical porosity were correlated with 
Poisson's ratios. In these animals, measures 
of bone quality (i.e., density and crystal size) 

varied inversely with measures of bone 
quantity (i.e., cortical area and moments of 
inertia) after growth hormone treatments 
(21). The compressive strength of vertebrae 
from rats given fluoridated water varied 
inversely with the width of the crystals 
(22,23).  Because apatite crystal width tends 
to decrease as length of apatite crystals 
increases, these data suggest that crystal 
length may be positively correlated with 
mechanical strength. However, where 
crystal size distribution is sharpened, as in 
alendronate-treated minipig bones (24), an 
increase in mechanical strength was 
reported. 
 
From these disparate data, it could be 
argued that crystal size has neither a 
positive nor negative effect on bone 
mechanical properties. However, in the 
studies mentioned above, the animals were 
examined at different stages of 
development. Some studies used x-ray 
diffraction of ground bone to evaluate crystal 
size, some used electron microscopy of 
selected material, and others used 
vibrational spectroscopic imaging with 1-20 
µm spatial resolution. These methods also 
varied in sensitivity and spatial resolution. 
Different loading modes were used to 
assess mechanical properties, and different 
properties were reported. Furthermore, in 
many instances, bone geometry, a major 
determinant of bone structural strength, was 
not consistently considered. Thus, additional 
studies will be required to test the 
hypothesis that bone mineral crystal size is 
a significant contributor to bone mechanical 
properties.   
 
Distribution of crystal size may be much 
more important than average crystal size. In 
humans and primates with osteoporosis, the 
broad distribution seen in age-matched 
controls disappears (6), whereas in PTH-
treated ovariectomized monkeys, whose 
whole bone strength improves with 
treatment, the distribution of crystal size is 
broadened (25). Other studies in 
osteoporotic patients show a wide range of 
changes in crystal size and perfection, 
perhaps because fracture callus was 
included in the material analyzed, or where 
lack of differences were detected, the 
relative sensitivity of the method used for 
analysis. 
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To resolve the controversy, mechanical 
testing and determination of crystal size and 
distribution should be performed on the 
same samples. Spectroscopic studies might 
include both Fourier transform infrared 
microspectroscopic analysis and Raman 
imaging, as well as atomic force microscopy. 
Mechanical testing should include structural 
measures of bone stiffness and failure load 
in well-defined loading modes, accurate 

determinations of geometry and 
architecture, and assessments of material 
properties. Then, direct correlations between 
crystal size and size distribution could be 
made with structural or material mechanical 
attributes. 
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