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Chronic stress, sympathetic activation and skeletal
metastasis of breast cancer cells
Florent Elefteriou
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Improved detection programs and new therapies significantly improved the 5-year survival rate of women with breast

cancer. However, some women still relapse and succumb to cancer because of metastatic disease. In particular,

chronically depressed patients do not seem to benefit from newly developed treatments and present with shorter

survival. The reason for this association is unclear, but recent cues from preclinical studies point to the possible

contribution of neuroendocrine factors generated in response to chronic stress and depression. Retrospective clinical

studies also suggest a beneficial effect of sympathetic blockade in terms of less advanced disease at diagnosis, lower

cancer-specific mortality, longer disease-free survival and reduced metastasis development and tumor recurrence,

especially in patients who have taken propranolol before diagnosis. Therefore, b-blockers or therapies normalizing

sympathetic tone might be beneficial as early adjuvant therapies to limit skeletal metastases and growth and eventually

to improve prognosis in patients with breast cancers.
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Introduction

Although as many as 22% of women with stage IV breast cancer
survive at least 5 years with optimal therapies, metastasis to
distant organs remains a common and a still deadly compli-
cation associated with advanced breast cancers. As many as
70–80% of patients with breast cancer present with skeletal
metastases. Metastatic breast cancer commonly arises months
or years after treatment completion for early and localized
breast cancer, and the risk of recurrence varies between
patients, depending on the type of primary tumor, its stage at
the time of initial diagnosis and likely on a number of intrinsic and
extrinsic factors that affect host response. This condition
cannot be cured and is currently managed by palliative
interventions, focused on length and quality of life.

Cancer metastasis is overall an inefficient process through
which cells acquire genetic and/or epigenetic characteristics
that allow them to gain a proliferative advantage and higher
migratory and survival properties. Although the cellular genetic
and phenotypic make-up of a tumor is a major determinant of
metastatic efficiency, oncogenic transformation is not sufficient
for metastatic competence. A receptive microenvironment is
indeed a prerequisite for establishing secondary tumorgrowth.1

The skeleton is a preferential organ for the homing of dis-
seminated breast tumor cells. In the case of breast cancer, the
interaction of cancer cells with the bone microenvironment is
crucial for their ability to colonize this tissue and their

subsequent survival, growth and promotion of the feed-forward
cycle of bone destruction, first described by Mundy and
collaborators.2–4 Thus, pharmacological interference with the
microenvironmental support is an attractive strategy for
repressing early bone metastasis. Toward that end, there is a
need to identify the conditions and factors that make the bone
microenvironment a hospitable tissue for breast cancer cell
colonization and growth.

Understanding the early events and mediators promoting
establishment of metastatic cells in distant organs, especially
bone, is challenging in the setting of human clinical studies. This
is because the steps involved occur at a time the primary tumor
may not yet be detected, and also because one cannot easily
detect low numbers of metastatic cells within the skeleton at the
time they colonize this dense tissue. For lack of techniques to
detect early metastatic cells within the skeleton, retrospective
clinical studies can be useful in pointing to conditions or factors
associated with reduced survival or increased recurrence, as a
way to identify possible mechanisms priming the process of
skeletal metastasis.

Long before epidemiological studies were performed,
ancient medical writers such as Galen (AD 132) noticed that
cancer was dependent on ‘black bile’, which in Greek is
synonymous of melancholia.5 This observation led to the idea
that cancer incidence was associated with emotional factors,
which was eventually scientifically refuted. However, a number
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of studies provided preclinical and clinical evidence that
psychosocial factors may contribute to the progression of the
disease and that the activation of neuroendocrine pathways
may be involved. I will briefly review here the evidence sup-
porting the contribution of sympathetic cues to the process of
skeletal metastasis and discuss the potential of b-blockers as
adjuvant drug during treatment of the primary cancer to prevent
bone metastasis and possibly increase the prognosis of women
with breast cancer.

Neuroendocrine Factors and Bone Metastasis

Chronic psychosocial stress and severe depression are two
conditions that have been linked to increased breast cancer
recurrence, reduced survival and poor prognosis.6–12 These
conditions are particularly relevant to both breast and ovarian
cancer, as women are more predisposed to depression than
males.11,13,14 In addition, major depression is a frequent but
under-recognized and under-treated condition among breast
cancer patients.15,16 The use of b-blockers, on the other hand,
has been associated with prolonged survival in women treated
for breast cancer,17–20 as well as in patients affected with
prostate,21,22 lung,23 ovarian24 and cutaneous melanoma.25,26

A commonality among these studies is that the conditions and
drugs involved affect the sympathetic nervous system (SNS),
whose activity is stimulated by chronic stress and depression
and inhibited by b-blockers.

The SNS is part of the autonomic nervous system that
controls involuntary body functions. Its main mediator is
norepinephrine (NE), a neurotransmitter that acts via b-adre-
nergic receptors (bARs). These receptors are expressed
broadly, including in bone cells and in cancer cells of multiple
origins. The skeleton is richly innervated by sympathetic nerves
and, as indicated above, a preferential organ for the metastasis
of breast and prostate cancer cells. Studies in mice have shown
that b1/2AR non-selective agonists, such as isoproterenol
(ISO), or chronic unpredictable stress, known to stimulate
sympathetic outflow and the Hypothalamic-Pituitary-Adrenal
axis (HPA), alter bone remodeling and lead to bone loss. These
effects are mediated by the stimulation of bone resorption and
the inhibition of bone formation.27,28 On the other hand, mice
receiving the b-blocker propranolol, a b1/2AR non-selective
antagonist, gain bone, especially in conditions associated with
high bone turnover.27 Accordingly, mutant mice lacking the
b2AR display a late-onset increase in bone mass caused by
high bone formation and low bone resorption.28,29 Adrenergic
agonists promote osteoclastogenesis via action on osteoblasts
and stimulation of Rankl (Receptor Activator of Nuclear Factor
Kappa-B Ligand) expression.28 It also regulates hematopoietic
stem cell bone marrow trafficking via CXCL12/SDF1 (stromal
cell-derived factor-1),30 as well as insulin secretion via its effect
on osteoblasts.30–32 Therefore, the bone marrow environment is
innervated and responsive to sympathetic outflow or b1/2AR
pharmacological stimulation, and the osteoblast lineage is
critical to this response.

Remarkably, the cytokines involved in these actions of
sympathetic nerves on bone cells are known to contribute to
skeletal cancer cell metastasis.33–35 SDF1 for instance is
expressed by osteoblasts and is considered a major cytokine
for successful homing and survival of prostate and breast
cancer cells in bone.36,37 High CXCR4 expression has also been

correlated to poor clinical outcome in patients with breast
cancers.38,39 Similarly, RANKL is expressed by osteoblasts and
osteocytes (as well as Tcells and chondrocytes) in bone. Its role
in osteoclastogenesis is well established in the setting of bone
remodeling as well as osteolytic bone destruction associated
with breast metastatic tumors. It also stimulates melanoma,
breast, prostate and lung cancer cell migration in vitro40,41 and
melanoma cancer cell bone metastasis in vivo.35 Finally, RANK
immunohistochemical positivity in combination with CXCR4
positivity identified breast cancer patients whose disease has a
high probability to metastasize to bone.38 Collectively, these
observations suggested that sympathetic activation, in
response to chronic stress or depression, may transform the
bone marrow environment into a favorable tissue for metastatic
establishment.

Chronic Stress Favors Ovarian, Prostate and Breast Cancer
Bone Metastasis

The aforementioned hypothesis is difficult to address through
clinical studies; thus, several groups relied on preclinical
models, which allow investigators to use a number of consistent
and controlled experimental paradigms of stress or depression
and to inoculate and track metastatic cancer cells at different
stages of the metastatic process. Although these models are
imperfect and plagued with several limitations, they can provide
useful mechanistic information if results are interpreted with
these limitations in mind and inform the design of future clinical
intervention studies.

Studies focused on ovarian cancers suggested that ovarian
cancer cells are directly influenced by sympathetic cues. In
xenograph models based on the use of HeyA8 and SKOV3ip1
cells, sympathetic activation by restrain stress increased weight
and vascular endothelial growth factor (VEGF)-mediated
vascularization of intraperitoneal tumors.42 The observation
that Adbr1 and Adrb2-deficient ovarian cancer cell lines did not
respond to mouse chronic immobilization stress with an
increase in tumor weight indicated that this effect of sympa-
thetic activation on primary tumor growth was mediated via the
bARs expressed in cancer cells. Sood et al. also reported that
chronic stress induced by daily restrain or ISO injections
protected tumor cells from apoptosis upon loss of anchorage
and detachment of the extracellular matrix in an orthotopic
model of human ovarian cancer.43 Other studies indicated that
bAR stimulation increases the expression of VEGF and
angiogenesis in human breast ovarian and melanoma
cancer cells42,44,45 and pro-metastatic matrix metalloprotei-
nases and other inflammatory mediators in gastric tumors.46

aAR blockade was also shown to block the proliferative effect of
catecholamines on breast cancer cells in vitro,47 although the
stimulatory effect of catecholamine on breast cancer cells is not
seen in all studies.48 These effects of sympathetic nerves on
primary tumors are consistent with the known innervation of the
prostate,49,50 ovaries51 and the skin.52 It is still unclear whether
these direct effects of catecholamines on primary tumor cells
have any repercussion on their ability to disseminate to
secondary sites, although studies on prostate and ovarian
cancer support a role for the b2AR and b3AR in tumor
development and dissemination to distant organs.42,53 It is
possible that the activation of sympathetic nerves in the primary
tumor leads not only to increased tumor growth but also to
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remodeling of the host stroma to lead to a tissue, cell and
cytokine profile that is favorable for cancer cell egress and
dissemination to distant organs.

Studies related to breast cancer provided strong evidence for
indirect effects of sympathetic cues on key host metastatic
sites, including bones, lymph nodes and lungs, which are
known to receive sympathetic innervation. A study by Sloan
et al.,63 based on the use of 66cl4 breast cancer cells injected in
the mammary fat pad of mice subjected to daily restrain or ISO
injections, showed that sympathetic activation in mice sti-
mulated the infiltration of activated macrophages (as well as
myeloid-derived suppressor cells) into the parenchyma of the
breast primary tumor and thereby induced a pro-metastatic
gene expression signature that favors dissemination to distant
organs. In vivo macrophage suppression, but not T-cell
absence, inhibited metastasis of these cells to the lung under
stress conditions, demonstrating the functional contribution of
macrophages to this increase in lung metastasis. Whether a
similar mechanism involving macrophages could be involved in
metastasis to the skeleton remains to be determined. These
studies showed that psychological factors, via activation of the
SNS, can activate a metastatic switch within a growing primary
tumor and that macrophages/monocytes could functionally
extend the influence of sympathetic signaling beyond the
distance of neurotransmitter diffusion from neuronal fibers,
especially in tissues with nerve terminal densities lower than the
adrenal or the central nervous system (like breast or bone), to
help the dissemination of cancer cells to distant organs. Another
study by Szpunar et al. showed that, although mouse 4T1 breast
cancer cells do not express aARs and bARs, modulation of NE
levels by NE reuptake inhibition with desipramine promoted
tumor growth (but not metastasis to the lung), suggesting that
sympathetic outflow can affect tumor growth without a direct
input on cancer cells.54

To investigate the mechanism by which sympathetic acti-
vation may alter the establishment of metastatic breast cancer
cells in the skeleton, we have used intracardiac injections of the
human osteotropic breast cancer cell line MDA-MB-231-VU in
mice subjected to ISO treatment or daily immobilization stress
(CIS). In this experimental setting, chosen for its focus on
skeletal metastasis, we found that ISO and SNS activation
by CIS stimulated the establishment of MDA-MB-231-VU
cells within the skeleton.48 By subjecting mice to CIS or

ISO treatment prior to MDA-MB-231-VU cell intracardiac
inoculation, we were able to show that sympathetic nerves or
bAR agonists promoted bone colonization via an indirect effect
on the host stroma rather than via a direct effect on cancer cells.
In this experimental paradigm, the number of lesions and
metastatic foci was increased compared with control, whereas
it was not if stimulation occurred after cancer cell inoculation.
Tumor burden, however, was increased in both conditions
compared with controls, most likely because CIS and ISO
treatment promoted osteoclastogenesis, increased bone
turnover and bone matrix growth factor release, thereby feeding
the ‘vicious’ feed-forward cycle of bone destruction. These
effects were also observed with an osteotropic murine 4T1
clone in Balb-c mice, broadening these results to a distinct
cancer cell line and to an immunocompetent host (unpublished
data). Collectively, these data suggest that the affinity of breast
cancer cells for the skeleton can be significantly increased by
the action of sympathetic cues on this tissue.

The strong stimulatory effect of sympathetic activation and
ISO treatment on the expression of Rankl in osteoblast cultures
in vitro, as well as in bone in vivo, as well as the specificity of this
increase in tissues where breast cancer cells metastasize, i.e.
bone, liver and lung,48 led us to address whether this cytokine
could mediate the stimulatory effect of sympathetic activation
on breast cancer cell metastasis to the skeleton. Several studies
demonstrated the direct contribution of RANKL to mammary
tumorigenesis55–57 and melanoma bone metastasis.35 In the
context of bone and breast cancer cells, we found that bAR
agonists did not promote breast cancer cell proliferation in vitro
and in a subcutaneous tumor growth model in vivo, thus
supporting a main action on the host to promote skeletal
establishment, rather than a direct effect on cancer cells.
However, ISO stimulated the migration of MDA-231-VU cells
in vitro, and this effect was inhibited by osteoprotegerin (OPG),
the decoy receptor for RANKL, but not by AMD3100, a blocker
of the receptor for SDF1/CXCL12.

The in vivo contribution of host-derived RANKL to breast
cancer bone metastasis could not be investigated by using
a classical systemic loss of function experiment using
OPG for instance, as this approach would have affected
osteoclastogenesis/bone turnover and the release of skeletal
growth factors that could impact breast cancer cell estab-
lishment and proliferation in bone, in addition to the putative
pro-migratory effect of RANKL on breast cancer cell homing
to bone. Therefore, we chose to silence expression
of the receptor for RANKL (RANK) in osteotropic MDA-MB-
231-VU cells with the hypothesis that it should reduce their
dissemination into the skeleton. This knockdown diminished
MDA-MB-231-VU cell migration in vitro, did not affect cell
proliferation and most importantly significantly decreased the
establishment of these cells in bone in vivo following intra-
cardiac injection and ISO pretreatment.48 These results suggest
that sympathetic signals promote the skeletal establishment of
breast cancer cells via a host-derived, RANKL-mediated
mechanism (Figure 1). Of note is that nearly 40% of breast
cancer metastatic tumors do not express RANK;58 hence,
additional mechanisms likely contribute to breast cancer cell
metastasis to bone. High levels of catecholamines and cor-
ticosteroids generated upon chronic stress for instance have
immunosuppressive effects on natural killer (NK) cells, lym-
phocytes and macrophages, by affecting proliferation,

Figure 1 Sympathetic neurons act on osteoblasts to stimulate breast cancer cell
establishment in bone, via the pro-migratory and pro-resorptive effect of RANKL.
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differentiation or function of these cells.59–62 bAR loss of
function experiments, targeting the b2AR in either osteoblasts,
specific immune cell lineages or in cancer cells, will be one
experimental strategy to determine the relative contribution of
the major cell type(s) responding to the effect of sympathetic
activation in the setting of bone metastasis. It will also be
informative to determine whether tissue distribution of a non-
osteotropic disseminating cancer clone could be altered by
sympathetic activation in favor to skeletal sites versus soft
tissues, such as liver or brain.

In conclusion, breast cancer metastatic cells may be affected
by sympathetic cues in various manners, directly or indirectly,
depending on their origin (breast, prostate, ovary, skin and so
on) and stages of tumor development (primary growth, egress
into the blood stream, survival, establishment at distant sites,
dormancy and growth at these sites). Regardless of the
mechanism, it appears from these preclinical studies that
interventions aimed at reducing sympathetic nerve activity or
downstream signals (including RANKL) may hold promise for
limiting tumor cell dissemination to distant organs and thus
for improving the prognosis of patients with cancers at risk for
metastasis.

Stress, b-Blockers and Survival in Patients with Breast
Cancer

An interesting observation in the course of these studies was
that the b-blocker propranolol could prevent CIS-induced lung
and bone metastasis of 66cl4 and MDA-MB-231-VU cells,
respectively.48,63 These results support the specific role of
catecholamines and bARs in these effects of chronic stress on
lung and skeletal metastasis and also suggest that activation of
the HPA axis is not preponderant in this stimulatory effect,
although it certainly does not exclude its contribution. In that
regards, the stimulatory effect of high-dose glucocorticoids on
b2AR expression in osteoblasts for instance suggests that SNS
and HPA activation may synergize to favor skeletal metastasis
of breast cancer cells.64

The observation that propranolol reduced skeletal and lung
establishment of breast cancer cells also suggests that b-
blockers could have a beneficial effect clinically in women with
breast cancer. This was indeed observed in a small number of
retrospective studies.65 b-blockers are safe and well-char-
acterized drugs, used clinically for the treatment of congestive
heart failure and high blood pressure. Although these drugs do
not seem to affect breast cancer incidence and tumorigenesis,
a beneficial effect in terms of less advanced disease at
diagnosis and lower cancer-specific mortality was observed in
patients who have taken propranolol 1 year before diagnosis.19

Longer disease-free survival18 and reduced metastasis
development and tumor recurrence were also observed in
several studies,17,20 whereas some studies did not measure a
significant effect of b-blockers on breast cancer recurrence or
survival.66,67 In these latter studies, the majority of patients were
taking b1AR-selective antagonists, which is different from all
preclinical studies mostly based on effects via the b2AR and the
use of b1/b2 non-selective antagonists. Finally, the observation
of no association between post-diagnostic use of b-blockers
and breast cancer-specific mortality further reinforces the
notion that the early stages of metastatic dissemination
represent the best window of opportunity for treatment to
increase prognosis.68

Conclusion and Future Directions

The contribution of psychosocial factors to the clinical pro-
gression of breast cancer is supported by an increasing amount
of preclinical data in mouse models and by retrospective clinical
studies. Collectively, these studies support the pathophysio-
logical relevance of the cross-talk between the neuronal and
skeletal systems, provide new therapeutic opportunities to
reduce or prevent metastatic spread in patients with low grade
primary tumors and raise a number of interesting questions. For
instance, experimental data support an effect of sympathetic
signals on breast cancer bone metastasis via main effects on
the host stroma; however, a direct effect of catecholamines on
b2AR-positive breast cancer cells remains possible. This could
affect early metastatic events such as tumor cell invasion,
angiogenesis of the primary tumor, cancer cell survival or
resistance to chemotherapy, as shown in studies related to
other types of solid cancers.42,43,69–75 A stromal-mediated
mechanism also implies that other types of metastatic cancers
may be influenced by depression, chronic stress and sub-
sequent sympathetic activation.42,70–72,75 The relative con-
tribution of activation of the HPA axis and adrenal-derived
epinephrine (versus nerve-derived NE) to bone remodeling and
metastasis remains to be better characterized. As not every
breast cancer cell line or tumor biopsy expresses the RANKL
receptor (RANK), it will be important to determine whether and
how RANK expression/signaling is regulated in cancer cells at
the various stages of the metastatic process and to investigate
the possible existence of additional mechanisms by which
sympathetic activation may stimulate tumor metastasis. The
molecular mechanism whereby RANKL promotes cancer cell
migration also remains unclear. In addition, it is unknown
whether the inhibitory effect ofb2AR blockade on bone and lung
metastasis observed in preclinical models contributes to the
increase in relapse-free survival observed in patients with
breast cancer who were taking b-blockers before breast cancer
diagnosis. Lastly, the stimulatory effect of sympathetic acti-
vation on the production of inflammatory cytokines (tumor
necrosis factor-a, interleukin-1, interleukin-6 and interferon-g)
that signal in neurons of the central nervous system controlling
energy metabolism is also to consider in the context of cachexia
seen in patients with metastatic cancers. Collectively, these
studies warrant further investigations to address the potential of
b-blockade or behavioral therapies to limit breast cancer
spread to distant organs and to increase the prognosis of
women diagnosed with breast cancer.
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