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Abstract: Romidepsin is a histone deacetylase inhibitor recently approved by the FDA for the treatment of cutaneous T-cell lymphoma. 
It has led to protracted responses in a significant subset of patients and provides a new treatment option for those refractory to first and 
second line systemic treatments. Given intravenously, its main toxicities are gastrointestinal as well as haematological. This review dis-
cusses the mechanism of action of romidepsin in cutaneous T-cell lymphoma (CTCL), and the clinical trials which provide the basis for 
FDA approval. We conclude by discussing practical aspects of its administration and give our opinion on how it should be incorporated 
into the therapeutic armamentarium for patients with refractory CTCL.
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Introduction
Romidepsin (Istodax, Celgene, Summit NJ) is one of 
two histone deacetylase inhibitors (HDACi) approved by 
the FDA for the treatment of relapsed/refractory cuta-
neous T-cell lymphoma (CTCL). This was based on the 
demonstration of activity in CTCL in a phase I study 
and two large phase II studies which confirmed clini-
cal significant activity. Romidepsin is also approved 
for relapsed/refractory peripheral T cell lymphoma. 
The HDACi are a drug class which show preclinical 
activity across a range of malignancies, particularly the 
hematological malignancies. They have broad biologi-
cal targets and appear not to act solely through inhi-
bition of the histone deacetylases. In this article we 
review the mechanisms of action, drug pharmacokinet-
ics and development, safety and clinical response data 
of romidepsin. We conclude with recommendations 
for its use and supportive care requirements.

Molecular Targets of the HDACi
The HDACs
The HDAC inhibitors target multiple complex and 
interconnected cellular pathways. These mechanisms 
of action have previously been reviewed in detail.1,2 
The conventional wisdom regarding the histone 
deacetylase inhibitors (HDACi) is that they exert 
their antineoplastic effect through differential hyper-
acetylation of histones, consequent changes in the 
structure of chromatin, and changes to gene expres-
sion.1 Overall, pro-apoptotic genes are preferentially 
expressed and cancer cells are more sensitive to the 
sum effects of deacetylase inhibition, and experience 
preferential apoptosis. The drugs are, therefore, clas-
sified according to their target histone deacetylases as 
well as chemical structure.

HDACs themselves are grouped according to their 
homology to yeast proteins. The classes of HDAC vary 
by the localization of the enzyme within the cell as well 
as by relative distribution in different tissues. Class I 
enzymes (HDAC 1–3, 8) are found primarily in the 
nucleus, as is the only member of class IV, HDAC 11. 
Class IIa includes HDAC 4, 5, 7 and 9 which can shuttle 
between the nucleus and cytoplasm, and IIb, HDAC 
6 and 10, which are predominantly cytoplasmic.3 
Romidepsin, isolated from Chromobacterium viola-
ceum [previously called depsipeptide, FK228, 
FR901228] is a bicyclic peptide. It is relatively selec-
tive for HDACs 1 and 2. By contrast, vorinostat, 

the other HDACi approved for CTCL, is a “pan-
HDACi inhibitor” which targets class IIb HDACs and 
perhaps less so the class IIa HDACs.4 A key differ-
ence between the pan-HDACi and the class 1-specific 
HDACi is thought to be the inhibition of HDAC6 by 
the pan-HDACi. However some preclinical data sug-
gests that romidepsin also leads to partial inhibition 
of HDAC6.4 and the potential difference in selectivity 
may not be clinically significant—it appears not to 
have affected response rates in clinical trials of T-cell 
lymphoma. The concept of HDAC selectivity with 
respect to HDAC6 does however impact the rationale 
for future combination studies, and there may also be 
a difference in clinical toxicities.

Apoptosis
The overall effect of HDAC inhibition is induction of 
pro-apoptotic members of the intrinsic pathway (bak, 
bax, bim, bmf) and extrinsic (death receptor) path-
ways (TRAIL, DR4, DR5) and down regulation of 
the anti-apoptotic members (c-FLIP, BCL-2, BCL-xl, 
MCL-1 and XIAP).5–10 The effect of HDACi inhibi-
tors on death receptor pathways may be either through 
upregulation of expression of death receptors,11,12 or 
through expression-independent mechanisms.13–15

Cell cycle arrest
Importantly, HDACi induce cell cycle arrest at 
the G1/S checkpoint, associated with increased 
p21Waf1.16–20 Arrest at the G2/M checkpoint is observed 
in normal cell lines,21 while slippage from this G2/M 
arrest and subsequent apoptosis in malignant cells 
may be a mechanism for tumor cell selectivity of 
these agents.22 The induction of the cell cycle arrest 
may occur in either a p53-dependent or p53-indepen-
dent manner.23–29

Other effects of HDACi
HDACi inhibitors induce reactive oxygen species.30–32 
They are anti-angiogenic in particular models of dis-
ease (reviewed in Ellis)33 as well as in tissue samples 
taken from patients with cutaneous lymphoma34 and 
myeloma.35

Mechanism of action in cutaneous  
T-cell lymphoma
The relative importance of each of these cellular effects 
of the HDACi with respect to anti-tumor function is 
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uncertain and is likely to be tumor-type dependent. 
Signal transducer and activator of transcription 3 
(STAT-3) are up regulated in CTCL and may be 
directly involved in clinical progression.36 In primary 
samples from a phase II study of vorinostat, phospho-
STAT3 was increased, at baseline, in the cytoplasm 
and nucleus of malignant lymphocytes. Following 
treatment, 9 of 11 clinically responding patients had 
reduced phospho-STAT3 in the nucleus, but an over-
all increase in the cytoplasmic compartment.34 This 
suggested that the HDACi in someway impeded 
the translocation of activated STAT3 to the nucleus, 
reducing expression of its target genes. Conversely, 
work by Shao,37 suggests that panobinostat, another 
pan-HDACi active in CTCL, actually reduces overall 
cellular STAT3.

Duvic et  al confirmed preclinical observa-
tions regarding the potential antiangiogenic effects 
of HDACi, demonstrating up regulation of anti-
angiogenic thrombospondin-1  in samples taken 
from patients with CTCL following treatment 

with vorinostat.34 Panobinostat down regulates 
expression of the genes ANGPT1 and GUCY1A3, 
which are both angiogenic.38

Finally, it is likely that the HDAC inhibitors 
influence the immune milieu through alterations in 
cytokine profiles. Recent work by Tiffon39 suggests 
that IL-10 and IL-2 expression by CTCL cells is 
decreased in a dose-dependent manner in vitro fol-
lowing exposure to romidepsin and vorinostat. While 
the IL-2 receptor is expressed on CTCL cells, and 
an IL-2 autocrine feedback loop is thought to drive 
CTCL, IL-10 is classically produced by Treg cells 
and in the setting of CTCL impairs DC maturation 
and antigen presentation.39 While clinical data are 
lacking, these observations support a hypothesis 
that HDACi modulate the immune derangement 
observed in CTCL, potentially altering cytokines 
that drive disease progression and symptoms. 
Clinical and symptomatic responses to the HDACi 
may be a product of altered immunology, not merely 
cell apoptosis. Further support for this hypothesis is 
the observation that the HDACi are highly active in 
Hodgkin lymphoma, a disease marked by a cytokine 
drive for the reactive Th2 cells in stroma surrounding 
Reed-Sternberg cells.8,40

Table 1. Clincal characteristics and responses in the two 
phase II studies of romidepsin.

First author Whittaker51 Piekarz50

Total number of patients 96 71
Age; median (range) 57 (mean) 57 (28–84)
CTCL stage (n,%)
IA 0 1 (1.4)
IB 15 (16) 6 (8.5)
IIA 13 (14) 2 (2.8)
IIB 21 (22) 15 (2.1)
III 23 (24) 6 (8.5)
IVA 25 (25) 28 (3.9)
IVB 0 13 (18.3)
.5% Sézary cells in blood 37 (39) NS
Prior oral bexarotene 32 (33) 45 (63.4)
Prior chemotherapy 74 (77) 65 (91.5)
Overall response (%) 34 34
Complete responses; n (%) 6 (6) 4 (7)
Median weeks to  
response (range)

8 (3.6–19.2) 8 (4–24)

Median duration of  
response; months (range)

15 (0–19.8) 13.7 (1–76)

TTP (months) 8 (0–21.7) 15.1 for those  
responding 
5.9 for SD
1.9 for the rest

Duration of treatment;  
median months (range)

NS 4 (1–72)

Abbreviations: TTP, time to progression; PFS, progression free survival; 
NS, not stated; SD, stable disease.

Table 2. Response criteria for the two romidepsin studies.

Whittaker51 Lymph nodes: RECIST 
Skin: composite of SWAT score,  
and erythroderma scores 
PR: 50% improvement in the sum  
of cheson, SWAT and erythroderma 
scores but with $30% improvement in 
skin, and no worsening at any site. 
PD: new cutaneous or non-cutaneous 
tumour or .25% improvement in the 
sum of the three assessments or $15% 
worsening of skin 
CR: response at all sites 
Pruritis: VAS with 30 mm reduction for at 
least 2 cycles considered significant

Piekarz50 Skin or viscera: RECIST 
Lymph nodes: IWG/cheson 
Erythroderma: present or absent 
Flow response: present or absent 
PR: either a response in the skin or 
lymph nodes 
CR: a response in all sites of disease

Abbreviations: PGA, Physician’s global assessment of clinical condition; 
mSWAT, modified severity weighted assessment tool; IWG, international 
working group; SPD, sum of perpendicular diameters; VAS, visual 
analogue scale; CR, Complete response; PR, partial response.
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Pharmacokinetics of romidepsin
Romidepsin is only available as an intravenous 
formulation. It is a pro drug that requires intracellular 
activation though reduction of a disulfide bond.41 Like 
other HDAC inhibitors, the active drug interacts with 
the zinc ion in this histone deacetylase. Romidepsin 
is extensively metabolized in vivo, primarily by 
cytochromes (CYP) P450 3A4 and to a lesser extent 
by CYP3A5. In rats 66% of the dose is excreted into 
the bile, thought to be via PGP/ABCB1. In addition to 
being a substrate for PGP/ABCB1, romidepsin also 
induces PGP/ABCB1. In studies of CTCL cell lines 
PGP was over expressed in romidepsin-resistant cells, 
suggesting that it may induce a mechanism for its 
own resistance.42 Following a four-hour intravenous 
infusion of romidepsin, the half-life of the drug is 
3.5 hours. More than 90% is protein bound and two 
thirds excreted in the bile. The pharmacokinetics 
do not appear to be affected by repeated dosing.43,44 
In the large phase II study of romidepsin in T-cell 
lymphoma, the effects of common polymorphic 
variations of PGP/ABCB1, CYP3A4, CYP3A5 
and SLCO1B3 were studied. While inter-patient 
clearance of romidepsin varied by as much as 37%, 
no statistically significant association with the 
presence of these polymorphisms was found.45 In a 
recent study of a one hour infusion time in a multiple 
myeloma combination study, drug exposure and 
probably clinical efficacy was shown to be reduced, 
arguing against clinical use of infusion times less 
than 4 hours.46

Clinically significant drug interactions
Drug-drug interactions need to be considered when 
administering inhibitors of CYP3A4/CYP3A5. 
The clinical trial protocols generally excluded co-
medication with such drugs so there is limited clinical 
data. Pharmacodynamic interactions with agents that 
are known to prolong the QTc interval should also 
be avoided, as will be discussed below. Specifically 
excluded supportive care drugs included aprepitant 
and palanosetron. Ondansetron and granisetron were 
allowed but the FDA has recently issued a warning 
about the former suggesting an increased risk of a 
prolonged QT interval using this agent. Romidepsin 
competes with estrogen for its receptor so the oral 
contraceptive pill must be assumed to be less effec-
tive in patients on romidepsin.

Early clinical studies
The maximum tolerated dose in phase I studies 
including patients with a wide variety of malignan-
cies was 17–18 mg/m2 infused over 4 hours on days 1 
and 5 of a 21-day cycle and 13.3 mg on days 1,8 and 
15 of a 28 day cycle, with thrombocytopenia and con-
stitutional symptoms the most common dose-limiting 
toxicities.43,44,47,48

Trials of romidepsin in CTCL
Phase II studies in CTCL and peripheral T-cell 
lymphoma followed early observations of clinical 
response in the phase 1 study.49 Data from two large 
non-randomized studies have led to the registration of 

Figure 1. Complete resolution of mycosis fungoides tumor lesion following romidepsin therapy.
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romidepsin for CTCL.50,51 In both studies, romidepsin 
was delivered at a dose of 14  mg/m2 intravenously 
days 1, 8 and 15 of a 28-day cycle. The NCI study 
by Piekarz et al had a 2-stage design with the initial 
cohort of 27 patients having been treated with not 
more than 2 lines of systemic, therapy, the subse-
quent 44 having received a median of 4 prior lines of 
treatment; 4 complete remissions and 20 partial remis-
sions were observed, and the overall response rate 
was 34%. The median duration of response and time 
to progression was 13.7 and 15.1  months, respec-
tively, for those patients achieving a CR or PR. Rates 
of improvement in symptoms such as pruritis were 
not reported. Those who achieved only stable disease 
maintained it for a median of 5.9 months. Responses 
occurred at a median of 8 weeks. Histone acetylation 
in peripheral blood mononuclear cells at 24 hours was 
associated with clinical response.52

The second, 33-centre phase II study with a single 
recruitment stage demonstrated similar results.51 
Patients had been treated with a median of 4 prior 
systemic treatments. Response criteria were more 
rigorous, formal nodal responses were recorded, and 
change in pruritis according to a visual analogue scale 
were recorded. Despite this, a near identical response 
rate of 34% with a time to response of 8 weeks and 
median response duration of 15  months was again 
demonstrated. There was at least a 30% reduction in 
pruritis score.

Safety and side effects
Gastrointestinal side effects including change in taste, 
nausea, vomiting and anorexia are commonly seen fol-
lowing romidepsin treatment, occurring in more than 
half of patients. Nausea is generally easily controlled 
with standard anti-emetic prophylaxis. Reversible 
thrombocytopenia, probably a consequence in phos-
phorylation of the myosin light chain and defective 
megakaryocytic budding,53 occurred in 40% of patients 
in the NCI study and was of grade III/IV severity 
in 6%. Patients in the international study developed 
only grade I/II thrombocytopenia, affecting 11%.51 
Grade III/IV neutropenia occurred in 14% of patients 
and grade I/II fatigue affected approximately a third 
of patients. Laboratory abnormalities were relatively 
uncommon, with derangements of AST and ALT occur-
ring in approximately 10%, and relatively mild.

Minor T-wave flattening was seen in 71% of 
patients in the NCI study, with ST-segment depression 
in 9%. A more detailed study of the initial 42 patients 
in the NCI study demonstrated that these changes 
were not associated with changes in cardiac troponin, 
clinically significant arrhythmia, or change to ventric-
ular ejection fraction.54 It is generally accepted that 
prolongation of the QTc is a class effect of HDACi. 
Care should be taken to avoid agents that prolong 
the QTc. Replacement of potassium and magne-
sium to achieve normal results within normal limits 
is routine, and can add considerably to the overall 
time required to administer the drug on a given day 
in the oncology unit. Entry to the clinical studies of 
romidepsin precluded patients with known significant 
or uncontrolled cardiac disease, a fact that must be 
considered when considering the drug in a commu-
nity practice.

Comparison with other systemic 
treatments
Interpretation of clinical studies in cutaneous lym-
phoma can be difficult as uniform response criteria 
have only recently been agreed55 and have not been uti-
lized in the larger clinical studies to date. In addition, 
large well-structured trials have generally been limited 
to recently developed agents such as the HDACi and 
denlileukin diftitox. Randomized comparisons with 
conventional chemotherapeutic agents are not available. 
It is not possible to make definitive statements about 
which of romidepsin and vorinostat are superior. Both 
appear to have a similar toxicity and safety profile. 
In the author’s experience the incidence of throm-
bocytopenia is higher with romidepsin whilst taste 
changes and mild renal dysfunction in higher with 
vorinostat. The romidepsin trial results showing com-
plete remissions and duration of remissions of many 
months are compelling. This needs to be weighed up 
against the inconvenience of a regular 4-hour intra-
venous infusion. Clearly however, both HDACi have 
numerous advantages over standard chemotherapy 
regimens; physicians familiar with systemic chemo-
therapy for CTCL will generally note a higher initial 
response rate with such agents albeit with a relatively 
brief duration of response, and as a consequence of a 
high rate of cytopenias, a high rate of infection and a 
potential for hospitalization.56
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In the absence of standard algorithms for CTCL, 
it is our practice to reserve the HDACi for patients 
who have failed at least one initial therapy, in line 
with the trial data and the FDA label. The possibility 
of protracted responses with a relatively low risk 
of infections makes these agents appealing. Most 
patients who will respond, do so within 8 weeks so a 
therapeutic trial will usually be short.56

The HDACi have given clinicians an entirely 
new class of agent to treat hematological malig-
nancy and in particular the T-cell lymphomas. We 
don’t yet know precisely why they work in hema-
tological diseases more so than the solid tumors. 
With a better understanding of what patient or dis-
ease factors predict a response to these agents, new 
more targeted novel agents may be developed. Until 
then, rational combinations of the HDACi with 
other novel agents may improve clinical responses 
and patient outcomes, and warrant exploratory clini-
cal studies. Romidepsin is likely to be an important 
drug for patients with CTCL, however practical 
impediments to its delivery will render it a niche 
agent in the treatment of this rare group of diseases.
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