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Introduction

‘Epigenetics’ refers to the study of mechanisms that 
cause specific and heritable changes in gene expression 
or cellular phenotype without alteration of the underlying 

deoxyribonucleic acid (DNA) sequence. They encompass 
functionally relevant modifications to the genome that 
do not involve a change in the nucleotide sequence. 
Epigenetic mechanisms impose specific and heritable 
patterns of gene expression. The three key epigenetic 
mechanisms include: DNA methylation, histone 
modifications leading to nucleosome and chromatin 
remodeling and noncoding ribonucleic acid  (RNA) 
mediated posttranslational regulation. The mechanisms 
of DNA methylation and histone modifications are well 
understood. Noncoding RNA molecules are a new 
class of molecules exhibiting epigenetic effects on 
gene regulation. Among the several types of noncoding 
RNAs, microRNAs have been reported to play roles in 
translational repression through either degradation of 
target messenger RNAs (mRNAs) or inhibition of mRNA 
translation.[1]

For a long time, scientists have sought to explain some 
fundamental questions regarding animal behavior and to 
verify if putative factors such as early life experiences, 
adversity, abuse, social interaction, etc., could explain 
adult behavioral patterns or if these patterns are 
essentially ingrained, immutable, and determined solely 
by our genetic makeup-the long standing “Nature versus 
Nurture” debate. The field of ‘Behavioral Epigenetics’ 
explores the relation between behavior and epigenetic 
alterations in specific brain areas and tries to interpret 
behavior in a broader context.[2] It is increasingly becoming 
apparent that epigenetic modifications play a vital role 
in nervous system development, function, and gene 
expression. Added to this we know that several functions 
in the nervous system such as neural development, 
adult neurogenesis, and modulation of synaptic plasticity 

The role that epigenetic mechanisms play in phenomena such 
as cellular differentiation during embryonic development,  
X chromosome inactivation, and cancers is well‑characterized. 
Epigenetic mechanisms have been implicated to be the 
mediators of several functions in the nervous system such 
as in neuronal‑glial differentiation, adult neurogenesis, the 
modulation of neural behavior and neural plasticity, and 
also in higher brain functions like cognition and memory. 
Its particular role in explaining the importance of early life/
social experiences on adult behavioral patterns has caught 
the attention of scientists and has spawned the exciting new 
field of behavioral epigenetics which may hold the key to 
explaining many complex behavioral paradigms. Epigenetic 
deregulation is known to be central in the etiology of several 
neuropsychiatric disorders which underscore the importance 
of understanding these mechanisms more thoroughly to 
elucidate novel and effective therapeutic approaches. In this 
review we present an overview of the findings which point 
to the essential role played by epigenetics in the vertebrate 
nervous system.
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requires stage specific gene expression for their proper 
progress.[3‑5] Studies into the possible role of epigenetics in 
the nervous system have revealed that they play a pivotal 
role not only in the above mentioned process, but also in 
higher brain functions like learning and memory formation. 
These different roles will be the focus of this review.

Neural Stem Cell Fate and Neurodevelopment

The initial cells that give rise to the central nervous 
system  (CNS) arise from the neuroepithilial cells and 
neural stem cells (NSCs) which undergo a process called 
neurogenesis by which they form all the cell types found 
in the nervous system. An intricate network formed by 
extrinsic factors/molecules and the resulting cascade of 
transcription factors that are evoked as a result of signal 
transduction pathway together cause changes to the 
epigenetic state of the neural progenitors and influence 
their decision to differentiate along neural or glial lineages.

During early gestation, NSCs lack multipotency and 
undergo mainly asymmetric divisions to form neurons. 
During late gestation, they acquire multipotency and 
undergo asymmetric divisions to form astrocytes 
and oligodendrocytes.[6‑8] Cytokine signaling by the 
interleukin‑6 (IL‑6) family cytokines are the chief extrinsic 
signals for turning on astrocytic differentiation.[9,10] 
Leukemia inhibiting factor (LIF) and ciliary neurotrophic 
factor (CNTF) are able to induce astrocyte cell fate via 
the Janus kinase (JAK) signal transduction activation of 
signal transducers and activators of transcription (STAT3) 
factor. The methylation status of the STAT3 binding 
site of the astrocyte marker called glial fibrillary acidic 
protein (GFAP) determines if an astocyte fate is induced 
or not. The hypomethylated state of the STAT3 binding 
site in the GFAP promoter at late gestation allows the 
activation of astrocytic genes.[11] Bone morphogenic 
protein (BMP‑2), a member of the IL‑6 family works by 
increasing histone acetylation at the promoter of S100b, 
another astrocyte marker during late gestation.[12]

Methyl-CpG binding domain  (MBD) proteins are 
important in maintaining neuronal identity and differential 
plasticity.[13] They are abundantly expressed in neurons, 
but not in astrocytes and oligodendrocytes. Ectopic 
expression of MBD1 has been known to inhibit astrocyte 

differentiation while promoting neuronal differentiation in 
neuroepithelial cells which have become hypomethylated 
at the STAT3 binding site in the GFAP promoter, the 
reason being that they can still bind to DNA regions 
upstream of the STAT3 binding site and silence gene 
transcription by recruitment of repressor proteins.[13] 
Recently, long noncoding RNA (lncRNAs) has been shown 
to play a role in establishing and maintaining neural cell 
identity.[14]

What leads to the demethylation at the STAT3 
binding site at late gestation?, The key epigenetic switch 
which turns on astrocyte development. Feng et  al.,[15] 
observed the expression patterns of de novo DNA 
methyltransferases Dnmt‑3a and  ‑3b. They observed 
that they are differentially expressed in different types 
of CNS cells and their expression profiles indicated that 
they were dynamically regulated in the embryonic and 
adult CNS. They concluded that Dnmt‑3a could possibly 
play a role in neuronal and astroglial differentiation 
based on its expression profile. Dnmt‑1 (a maintenance 
methyltransferase) deficiency has been known to cause 
precocious astrogliogenesis.[16] Dnmt‑3a and  ‑3b also 
have maintenance functions.[17] Thus de-methylation 
may occur due to the downregulation of the maintenance 
methytransferases at late gestation. Apart from DNA 
methylation, histone modifications are involved in turning 
on astrocyte cell fate. Fibroblast growth factor‑2 (FGF‑2) 
and CNTF increase the accessibility of a complex formed 
by STAT3 and CREB (cAMP response element binding) 
binding protein (CBP) to the GFAP promoter by inducing 
H3K4 methylation and suppressing H3K9 methylation 
around the STAT3 binding site to induce astrogliogenesis.

Other transcriptional regulators nuclear receptor 
co‑repressor  (N‑CoR) and orphan nuclear receptor 
TLX (tailless homolog) are responsible for promoting a 
neuronal cell fate by suppressing the GFAP gene. Knockout 
mutant lines for these genes showed precocious GFAP 
expression and increased differentiation to astrocytes 
respectively.[18,19] The role of basic Helix‑Loop‑Helix (bHLH) 
transcription factor Neurogenin1(Ngn1) which suppresses 
astrocyte cell fate even in the presence of CNTF and LIF 
was studied by Sun and colleagues.[20] They proposed 
a ‘sequestration model’ to explain the switch from 
neurogenesis to gliogenesis. Ngn1 sequesters an activator 
complex CBP/p300/Smad1 to the promoter of neuronal 
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fate inducing gene NeuroD. As gestation proceeds, Ngn1 
is downregulated. STAT3 now complexes with Smad1 to 
initiate astrogliogenesis. The RE1 silencing transcription 
factor  (REST/NRSF) complex also mediates neuronal 
gene expression.[21,22] When bound to the repressor 
element 1 or NRSE  (RE‑1/NRSE) site, transcription of 
neuronal genes is inhibited. Its dissociation from the site is 
sufficient to turn on some neuronal genes (Class I genes). 
An additional complex of corepressor CoREST and methyl 
DNA‑binding protein (MeCP2) is involved in repression 
which binds to a site nearby the RE‑1/NSRE site to 
repress transcription. It dissociates from this site in the 
event of membrane depolarization. When both inhibitory 
complexes are dissociated, a second class of neuronal 
genes  (Class  II) is expressed.[21] A review by Ballas[22] 
details the role played by the REST/NRSF complex in 
mediating neuronal gene expression.

Neural Behavior

Early work by  Meaney and Szyfon the effects of 
maternal care on the epigenome could precisely and 
elegantly confirm how early life experiences leave 
indelible epigenetic marks consequently determining 
behavior. Since then a number of studies carried out in 
similar vein have assessed the role of several putative 
factors known to influence behavior. Epigenetic effects 
have been explained well in the case of mouse models, 
but the lack of clear‑cut evidence in humans makes it 
difficult to ascertain the role played by them in the human 
context.[23‑25]

Early life experiences and stressful events can have 
long‑lasting effects on brain development and the 
capacity of an individual to respond to stress later on in 
life.[26] This happens by the alteration of neuroendocrine 
responses, metabolic and immune system function.[25] 
During sensitive stages, especially in early development, 
stimuli are transmitted to the brain and influence functions 
of neurons and key neural pathways which determine 
behavior in later life.[26] The quality of the prenatal and 
early postnatal environment are important phases where 
some of the basis for adult behavior could be hard wired 
including vulnerability to stress, susceptibility to disease, 
cognitive deficits, etc.[27,28] 

The following table lists some of the known effects of 
early‑life experiences and environmental factors which 
have been shown to have an epigenetic cause [Table 1].

Epigenetics in neural plasticity, memory, and learning

Long‑term changes in synaptic plasticity in the 
fundamental basis for learning and memory. In Aplysia, 
histone acetylation and deacetylation dynamics modulates 
the turning on or off of the memory‑related genes. CBP 
which has histone acetyltransferase  (HAT) activity 
is important for long‑term memory particularly in the 
context of contextual fear conditioning and novel object 
recognition.[40‑42] An excitatory neurotransmitter induced the 
expression of CREB binding protein (CBP1/CBP) leading 
to the activation of CCAAT-enhancer binding proteins 
(C/EBP) required for long‑term facilitation (LTF). Inhibition 
of C/EBP can occur leading to long‑term depression by the 
histone deacetylase (HDAC) repressor complex containing 
activating transcription factor 4 and HDAC (ATF4/HDAC5) 
on the target gene promoter.[43] In mammalian models of 
synaptic plasticity N‑methyl‑D‑aspartate (NMDA) receptors 
and mitogen activated protein kinase/ extracellular 
signal-regulated kinase (MEK-ERK/MAPK)  signalling 
have been implicated to increase histone acetylation (H3) 
especially in contextual fear conditioning.[44‑46] SWItch/
sucrose non‑fermentable family of chromatin remodeling 
proteins associate with HATs or HDACs and other 
transcription factors to activate and repress target memory 
related genes.[47] Poly ADP‑ribosylation carried out by 
polyADP‑ribose polymerase‑1 is need for long‑term 
memory.[48] Brain‑derived neurotrophic factor (BDNF) is a 
key regulator of synaptic plasticity and memory formation.[49] 
Bredy et al.,[50] observed histone modifications around 
specific bdnf promoters which correlated with memory 
formation. During the consolidation of fear memories 
differential methylation is observed in the bdnf promoter 
which is dynamically regulated.[51] Detailed reviews have 
dealt with the important role played by epigenetics and 
the bdnf gene in synaptic plasticity, learning, and memory 
formation.[49,52,53]

Recently, Moutri and colleagues at the Salk Institute at 
La Jolla, California observed a surge of long interspersed 
nuclear elements (LINE) which are normally inhibited in 
NSCs (through chromatin condensation and Sox 2/HDAC1 
repression).[54‑56] They proposed that these elements which 
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can insert new copies of themselves into other areas of 

the genome could have deeper functional consequences 

than was previously understood. Epigenetics and 

retrotransposition may confer properties such as somatic 

variability, plasticity, and the required complexity to the 

cells of the CNS to carry out their complex tasks.

Structural Plasticity: The Adult Neurogenesis 
Paradigm

Adult neurogenesis occurs in two principal areas in the 

brain namely the subgranular zone of the hippocampus 

dentate gyrus and the subventricular zone. In a review 

Table 1: Early‑life experiences/environmental factors and their associated epigenetic modification
Early life 
event/specific 
experience

Adult behavior that 
was affected

Region/gene where the 
epigenetic modification 
was observed

Possible connection Additional remarks Reference

Maternal effect: 
Pup licking and 
grooming (LG) 
and arched‑back 
nursing (ABN)

Stress response 
(moderate to high 
hypothalamic‑pituitary‑ 
adrenal (HPA) 
response) and 
fearfulness

Exon 17 (non‑coding) region 
of GR gene.
Modifications: 
Deoxyribonucleic 
acid (DNA) methylation, 
histone acetylation

De‑methylation at 
NGFI‑A binding site 
allows to increased 
GR expression and 
moderate HPA stress 
response

DNA methylation patterns
Emerged in the first week of life
Reversed by cross‑fostering
Reversal by histone 
deacetylase (HDAC) inhibitor 
trichostatin A (TSA)

23,24,25

Maternal effect: 
LG

Maternal care 
behavior of female rats 
mediated by oxytocin 
responsiveness

Estrogen receptor (ER)‑α 
gene expression in medial 
preoptic area (MPOA) of 
hippocampus
Modification: DNA 
methylation

Female offspring of 
low LG mothers have 
high levels of ERα 
promoter methylation 
hence low oxytocin 
responsiveness

Clearly shows epigenetic 
perpetuation of behavior 
across generations

29,30

Maternal 
deprivation (MD)

Hippocampus‑dependent 
memory tasks such as 
reflex development

Reelin gene
Modification: DNA 
methylation

Increased DNA 
methylation decreased 
reelin expression in the 
hippocampus

Neurobehavioral changes 
were linked to reelin 
expression in hippocampus

31

Early‑life abuse Neural mechanisms of 
cognition and emotion

BDNF gene expression in 
prefrontal cortex (PFC). 
Modification: DNA 
hypermethylation in the 
regulatory region of BDNF 
gene

Decreased BDNF 
expression in PFC 
leads to cognitive 
deficits and aberrant 
emotional behavior

Altered methylation pattern 
was found to be transmitted 
to offspring of females 
exposed to abuse
Rescue through HDAC 
inhibitor Zebularin

32

Early‑life abuse Predisposition to 
suicidal behavior

Glucocorticoid 
receptor (GR) promoter
Modification: DNA 
hypermethylation

Decreased GR 
expression linked to 
suicidal tendencies

Observed in post mortem 
brains

33

Social defeat/
bullying by 
bigger mouse

Depression‑like 
behavior

BDNF gene
Modification: Histone 
modification

Histone methylation at 
BDNF promoters led 
to suppressed BDNF 
gene activity in the 
hippocampus

Anti‑depressant Ipimarine 
administration reversed 
depressive traits by 
downregulation of HDAC 5

34

Social conflict 
model

Social stress Inflalimbic medial prefrontal 
cortex (mPFC)
Modification: H3 acetylation 
and H3 phosphoacetylation

Plausible link between 
stress induced 
chromatin remodeling 
and increased ΔFosB 
expression

ΔFosB immunoreactive cells 
were increased in mPFC

35

Mouse strains 
of differential 
stress response

Susceptibility to stress 
and depression

GDNF promoter in NAc 
Modification: DNA 
methylation, histone 
modifications

Epigenetic regulation 
of GDNF promoter in 
the NAc

36

Other neurobehavioral phenomenon with known epigenetic links
Observed phenomenon Epigenetic link Additional remarks Reference
Cognitive deficits and hyper‑anxiety like 
behaviors

KAP1 mediated epigenetic 
repression; Genes Mkrn3 and Cdkn1c
Modification: H3K9 trimethylation, H3 
and H4 acetylation

KAP1 knockouts show 
overexpression of genes that 
induce anxiety

37

Age associated memory impairment in rats Hippocampus
Modification: H4K12 acetylation

Deregulation of H4K12 
acetylation leads to failure 
to initiate hippocampal gene 
expression program

38

Posttraumatic stress disorder Altered DNA methylation profiles Occurs possibly through low 
levels of DNA methylation in 
immune related genes

39
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by Hsieh and Eisch,[4] a detailed view of hippocampal 
neurogenesis and its implications in neuropsychiatric 
disorders has been discussed. The impediments in 
understanding the neurogenesis puzzle are associated 
with the difficulty in tracking adult‑generated neurons 
in vivo, isolating NSCs and the association of several 
signals arising from niche cells such as astrocytes, 
nearby neurons, and endothelial cells.[57] However 
much has been learnt about the intrinsic epigenetic 
mechanisms involved in the process.

Ma et al., investigated activity‑dependent neurogenesis 
in the adult hippocampus; one of the main types of neural 
plasticity exhibited by the mammalian brain.[58] They 
discovered the interesting role played by growth arrest and 
DNA-damage-inducible protein beta (Gadd45) in active 
DNA demethylation of specific promoters of genes required 
for adult neurogenesis. Mature dentate gyrus neurons were 
activated by electroconvulsive therapy (ECT) which saw 
a concomitant increase in hippocampal neurogenesis. 
Gadd45b which belongs to a family of proteins implicated 
in DNA repair[59,60] was strongly induced by ECT. 
Gadd45b knockouts showed less effective ECT induced 
neurogenesis and also attenuated dendritic growth of 
newborn neurons compared to their wildtype counterparts. 
Significant demethylation was found at regulatory regions 
of the bdnf and FGF‑1 genes which promote dendritic 
growth and neural progenitor proliferation, respectively.[58] 
Chromatin immunoprecipitation (ChIP) assays confirmed 
the binding of Gadd45b to the regulatory regions of these 
genes confirming its role in effecting locus specific DNA 
demethylation in the mammalian system. The same author 
followed‑up this discovery with a review titled ‘Epigenetic 
choreographers of neurogenesis in the adult mammalian 
brain’,[61] which dealt with intrinsic epigenetic mechanisms 
and extrinsic niche signaling involved in adult neurogenisis.

Epigenetic Dysregulation is Associated with Many 
Neuropsychiatric Disorders

As a consequence of the important role played by 
epigenetics in a number of processes in the nervous 
system, it is hardly surprising that the deregulation of 
epigenetic mechanisms has been implicated in a number 
of neuronal diseases.

Table 2 lists epigenetic links to certain neuropsychiatric 

disorders, drug addiction, and effect of substance use 

during pregnancy.

Conclusions and future perspectives

The studies presented above indicate that intrinsic 

epigenetic mechanisms play a crucial role in several 

processes occurring in the nervous system from NCS 

differentiation to complex tasks like learning and 

memory formation. The dynamic nature of epigenetic 

modifications have made them ideal for carrying out 

many of these functions which rely on precise spatial and 

timely orchestration of gene expression patterns. The 

large repertoire of modifications that can be performed 

on the histone tails and the addition and removal of 

methylation marks on cytosines make it possible to 

carry out many of these functions. With new types of 

modifications being discovered like the recent discovery 

of hydroxymethylcytosine and the implication of DNA 

repair enzymes in de novo demethylation, we are 

beginning to understand the scale of the molecules that 

are involved in these processes. Epigenetic mechanisms 

have in essence been co‑opted by the nervous system 

to perform several of the complex tasks that it performs 

and as such it explains elegantly how many of these 

functions are carried out at the molecular level. Its 

particular success in explaining the effect of early life 

experiences, maltreatment, and social stress in animal 

models of behavior has garnered much attention and 

very soon we may have answers of how exactly they 

operate in the human context. So it seems that some 

of society’s complex problems could be explained by 

simple molecular mechanisms occurring at the cellular 

level and also opens the doors for possible therapeutic 

interventions at the proper times to counteract the effects 

of abuse or neglect. Diseases with an epigenetic basis 

for their pathology are being investigated to device more 

directed approaches towards treating these ailments. 

Overall, the understanding of the role of epigenetics in 

the nervous system has opened doors for investigation in 

a plethora of subfields and promises to provide answers 

some of the deepest questions concerning the human 

brain and also cures for many neuropsychiatric diseases.
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