e-Journal

Full Text HTML

Short Paper
Short Paper | Regular issue | Vol. 85, No. 9, 2012, pp. 2291-2303
Received, 23rd June, 2012, Accepted, 13th July, 2012, Published online, 20th July, 2012.
DOI: 10.3987/COM-12-12531
Enaminones as Building Blocks in Heterocyclic Preparations: Synthesis of Novel Pyrazoles, Pyrazolo[3,4-d]pyridazines, Pyrazolo[1,5-a]pyrimidines, Pyrido[2,3-d]pyrimidines Linked to Imidazo[2,1-b]thiazole System

Sobhi M. Gomha* and Hatem A. Abdel-Aziz

Department of Organic Chemistry, Cairo University, Giza-Haram 12613, Egypt

Abstract
The unreported 2-[E-3-(N,N-dimethylamino)acryloyl]-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole 3 was prepared via the reaction of 2-acetyl-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole 2 with dimethylformamide dimethyl acetal (DMF-DMA). Enaminone 3 underwent regioselective 1,3-dipolar cycloaddition with nitrilimines 5a-f, to afford the corresponding pyrazoles 7a-f. The reaction of 7a,d,g with hydrazine hydrate, afforded the pyrazolo[3,4-d]pyridazines 8a-c, respectively. Enaminone 3 also reacted with a hydrazines, hydroxylamine hydrochloride, 5-aminopyrazole 11, 6-aminothiouracil 15 and hippuric acid 22. The structures of the newly synthesized compounds were confirmed by spectral data and elemental analyses.

Enaminones are poly-dentate reagents that have been utilized extensively in this decade as building blocks in organic synthesis.1-9 Furthermore, many enaminones were found to exhibit several biological activities as antitumor, antibacterial and anticonvulsant agents.10,11
On the other hand, imidazoles possess important biological, pharmacological and therapeutic activities,
12,13 where midazoles are present in compounds that have antiasthmatic,16 anti-inflammatory,17 antiulcerative,18 antithrombotic,19 fungicidal20 and herbicidal activities.21 Furthermore, some imidazo[2,1-b]thiazoles were active against various cancer cell lines.22 Much interest has also been focused on the chemistry and anticonvulsant, analgesic,23 antibacterial24 and antisecretory25 activities displayed by compounds incorporating this heterocyclic system. Moreover, this system is similar in to Levamisole, a well-known immunomodulator.26 In continuation of our recent work aiming at the synthesis of a variety of heterocyclic ring systems with remarkable biological importance,27-39 in the present paper we planed to incorporate the imidazo[2,1-b]thiazole moiety with the title derivatives to combine the benefits of their effects to give a compact structure with expected biological activity.

In the course of our investigation, we have found that the 2-[
E-3-(N,N-dimethylamino)acryloyl]-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole (3) is an excellent building block for the synthesis of a variety of heterocyclic ring systems. The enaminone derivative 3 was obtained from the reaction of 2-acetyl-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole (2)40 with dimethylformamide dimethyl acetal (DMF-DMA) (Scheme 1). The structure of compound 3 was confirmed by its elemental analysis and spectral data. For example, the 1H NMR spectrum revealed two doublet signals at δ 5.35, 7.76 ppm with coupling constant, J = 12.5 Hz assignable to olefinic protons (CH=CH) in E-configuration41-43 besides two singlet signals of the dimethylamino group at δ 2.89 and 3.16 ppm.

Treatment of the enaminone 3 with nitrilimines 5a-m, [liberated in situ from the corresponding hydrazonyl halides 4a-m, respectively, with triethylamine in refluxing toluene], it afforded the 3,4-disubstituted-1H-pyrazoles 7a-m, respectively (Schemes 2). The latter reaction products were assumed to be formed via initial 1,3-dipolar cycloaddition of the nitrilimines 5a-m to the activated double bond in compound 3 to afford the non-isolable cycloadducts 6a-m which undergoes loss of dimethylamine yielding the final pyrazole derivatives 7a-m.44-46

The
1H NMR spectra of the isolated products 7a-m revealed, in each case a singlet signal in the region of 8.40-8.72 ppm which indicates the presence of the pyrazole H-5 rather than H-4. This conclusion was further confirmed chemically by the reaction compounds 7a,d,g with hydrazine hydrate, to afford pyrazolo[3,4-d]pyridazines 8a-c, respectively (Scheme 2).

Treatment of enaminone 3 with N-nucleophile such as hydrazine hydrate and phenylhydrazine in absolute ethanol under reflux afforded pyrazoles 9a and 9b, respectively. The structures of the products were substantiated by the 1H NMR spectra which displayed new pair of doublets at δ 6.53 and 7.85 ppm with J = 7.5 Hz corresponding to pyrazole protons at positions 4 and 5, respectively. The products were formed via initial addition of the amino group in hydrazine to the enaminone double bond, followed by elimination of dimethylamine and water molecules to give the final isolable products 9a,b as previously mentioned47 (Scheme 3).
Similarly, enaminone
3 reacted with hydroxylamine hydrochloride in refluxing absolute ethanol in the presence of anhydrous potassium carbonate to yield isoxazole 10. It is thus assumed that, the product 10 was formed via initial condensation of amino group of hydroxylamine with carbonyl group of enaminone 3 followed by elimination of dimethylamine (Scheme 3). Structure 10 was assigned for the reaction products on the basis of the 1H NMR spectral data in which a resonance for H-4 and H-5 of isoxazole appeared typically at δ 6.68 and 8.45 ppm, respectively.48

The behavior of compound 3 towards aminopyrazole derivative 11 as potential precursors for the interesting biologically active pyrazolo[1,5-a]pyrimidines49 was also investigated. Thus, when the enaminone 3 was treated with 5- amino-3-phenyl-1H-pyrazole 11 in refluxing acetic acid, it afforded 3-methyl-5,6-diphenyl-2-(2-phenylpyrazolo[1,5-a]pyrimidin-6-yl)imidazo[2,1-b]thiazole (13) (Scheme 3). The structure of the latter compound was established on the basis of its elemental analysis and spectral data which exclude the other possible structure 14 (see Experimental).

We have also investigated the reaction of enaminone
3 with 6-amino-2-thioxo-(1H)-pyrimidin-4-one (14) which produced 2,3-dihydro-5-(1-naphthalenyl)-2-thioxopyrido[2,3-d]pyrimidin-4(1H)-one (17) or the isomeric structure 18 (Scheme 3). The 1H NMR spectrum of the latter reaction product revealed a doublet signal at δ 8.30 ppm assigned to a pyridine H-2 proton and not a pyridine H-4 proton.49 which is consistent with isomeric structure 17. In addition, according to literature reports the reaction of heterocyclic amines to the double bond of the enaminone occurs with concurrent elimination of dimethylamine rather than condensation of a water molecule.50,51 On the basis of these findings, structure of 18 was discarded and the product isolated from the studied reaction was assigned structure 17.

Next, treatment of the enaminone
3 with hippuric acid 19 in refluxing acetic anhydride led to the formation of a product that was assigned the N-(6-(3-methyl-5,6-diphenylimidazo[2,1-b]thiazol-2-yl)-2-oxo-2H-pyran-3-yl)benzamide (22).52 This structure of the latter compound was confirmed on the basis of its elemental analysis and spectral data (see Experimental). Compound 22 is assumed to be formed via the reaction of the intermediate oxazolone 20 which is formed in situ with the enaminone 3, yielding the non-isolable intermediate 21, that further rearranges into the pyranone 22 (Scheme 4).

EXPERIMENTAL
All melting points were measured on a Gallenkamp melting point apparatus. The infrared spectra were recorded in potassium bromide disks on a Pye Unicam SP 3300 and Shimadzu FT IR 8101 PC infrared spectrophotometers. The NMR spectra were recorded on a Varian Mercury VX-300 NMR spectrometer. 1H NMR and 13C NMR (300 MHz) were run in deuterated dimethylsulphoxide (DMSO-d6). Chemical shifts were related to that of the solvent. Mass spectra were recorded on a Shimadzu GCMS-QP 1000 EX mass spectrometer at 70 e.V. Elemental analyses were carried out at the Microanalytical Center of Cairo University, Giza, Egypt. 2-Acetyl-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole (2),40 hippuric acid (19)53 and hydrazonoyl halides 4a-m54-57 were prepared following the procedures reported in the literature.

2-[E-3-(N,N-dimethylamino)acryloyl]-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole (3). A mixture of the 2-acetyl-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole (2) (3.32 g, 10 mmol) and dimethylformamide dimethyl acetal (DMF-DMA) (1.19 g, 10 mmol) in dry xylene (30 mL) was refluxed for 3 h, then allowed to cool. The yellow precipitate was filtered off, washed with petroleum ether (60/80 oC), dried and crystallized from EtOH to afford compound 3. Yield 86%; mp 224 oC; IR (KBr) ν cm-1: 1654 (C=O); 1H NMR (DMSO-d6) δ: 2.17 (s, 3H, CH3), 2.89 (s, 3H, CH3), 3.16 (s, 3H, CH3), 5.35 (d, 1H, CH, J = 12.5 Hz), 7.22-7.64 (m, 10H, ArH’s), 7.76 (d, 1H, CH, J = 12.5 Hz); MS m/z (%): 389 (M++2, 4), 388 (M++1, 6), 387 (M+, 20), 237 (7), 136 (31), 98 (100), 55 (63). Anal. Calcd for C23H21N3OS (387.14): C, 71.29; H, 5.46; N, 10.84. Found: C, 71.08; H, 5.24; N, 10.46%.
Synthesis of 2-[(1,3-disubstituted-1
H-4-pyrazolyl)carbonyl]-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole derivatives (7a-m).
To a stirred solution of the appropriate enaminone derivative 3 (10 mmol) and the appropriate hydrazonoyl halides 4a-m (10 mmol) in toluene (20 mL), an equivalent amount of triethylamine (0.5 mL) was added. The reaction mixture was heated under reflux for 6 h. The precipitated triethylamine hydrochloride was filtered off, and the filtrate was evaporated under reduced pressure. The residue was triturated with MeOH. The solid product, so formed in each case, was collected by filtration, washed with water, dried, and crystallized from EtOH to afford the corresponding pyrazole derivatives 7a-m.
2-[(3-Acetyl-1-phenyl-1H-4-pyrazolyl)carbonyl]-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole (7a): Yield 78%; mp 236 oC; IR (KBr) v cm-1: 1712, 1646 (2C=O); 1H NMR (DMSO-d6) δ: 2.18 (s, 3H, CH3), 2.54 (s, 3H, COCH3), 7.22-7.64 (m, 15H, ArH’s), 8.42 (s,1H, pyrazole-H5); 13C NMR (DMSO-d6): δ 12.61 (CH3), 28.42 (CH3), 114.45, 120.27, 120.59, 121.25, 121.85, 122.34, 123.34, 123.85, 124.33, 125.75, 127.16, 127.31, 128.63, 128.61, 129.10, 129.31, 130.73, 133.61, 138.73, 142.61 (Ar-C), 189.82 (C=O), 192.51 (C=O); MS m/z (%): 503 (M++1, 12), 502 (M+, 32), 228 (27), 136 (31), 101 (58), 55 (100). Anal. Calcd for C30H22N4O2S (502.15): C, 71.69; H, 4.41; N, 11.15. Found: C, 71.51; H, 4.23; N, 11.33%.
2-[(3-Acetyl-1-(4-tolyl)-1
H-4-pyrazolyl)carbonyl]-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole (7b): Yield 82%; mp 136 oC; IR (KBr) v cm-1: 1708, 1646 (2C=O); 1H NMR (DMSO-d6) δ: 2.19 (s, 3H, CH3), 2.34 (s, 3H, ArCH3), 2.54 (s, 3H, COCH3), 7.20-7.62 (m, 14H, ArH’s), 8.40 (s, 1H, pyrazole-H5); MS m/z (%): 516 (M+, 58), 227 (75), 104 (58), 55 (100). Anal. Calcd for C31H24N4O2S (516.16): C, 72.07; H, 4.68; N, 10.85 . Found: C, 71.90; H, 4.51; N, 10.72%.
2-[(3-Acetyl-1-(4-chlorophenyl)-1H-4-pyrazolyl)carbonyl]-3-methyl-5,6-diphenylimidazo[2,1-b]-thiazole (7c): Yield 81%; mp 178 oC; IR (KBr) v cm-1: 1708, 1648 (2C=O); 1H NMR (DMSO-d6) δ: 2.18 (s, 3H, CH3), 2.53 (s, 3H, COCH3), 7.21-7.66 (m, 14H, ArH’s), 8.43 (s, 1H, pyrazole-H5); MS m/z (%): 537 (M++1, 13), 536 (M+, 45), 227 (34), 104 (39), 98 (100). Anal. Calcd for C30H21ClN4O2S (536.11): C, 67.09; H, 3.94; N, 10.43. Found: C, 67.01; H, 3.90; N, 10.26%.
2-[(3-Benzoyl-1-phenyl-1H-4-pyrazolyl)carbonyl]-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole (7d): Yield 82%; mp 184 oC. IR (KBr) v cm-1: 1698, 1650 (2C=O). 1H NMR (DMSO-d6) δ: 2.20 (s, 3H, CH3), 7.23-7.57 (m, 20H, ArH’s), 8.46 (s, 1H, pyrazole-H5); 13C NMR (DMSO-d6): δ 12.24 (CH3), 114.65, 120.68, 120.91, 121.13, 121.67, 122.13, 123.14, 123.67, 123.87, 124.02, 124.35, 124.65, 125.24, 125.78, 127.11, 127.38, 128.77, 128.82, 129.17, 130.11, 130.70, 133.21, 139.87, 140.67 (Ar-C), 178.99 (C=O), 188.65 (C=O); MS m/z (%): 564 (M+, 13), 304 (10), 136 (37), 98 (100), 77 (53). Anal. Calcd for C35H24N4O2S (564.16): C, 74.45; H, 4.28; N, 9.92. Found: C, 74.30; H, 4.10; N, 9.70%.
2-[(3-Benzoyl-1-(4-tolyl)-1
H-4-pyrazolyl)carbonyl]-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole (7e): Yield 82%; mp 178 oC. IR (KBr) v cm-1: 1696, 1651 (2C=O); 1H NMR (DMSO-d6) δ: 2.21 (s, 3H, CH3), 2.32 (s, 3H, ArCH3), 7.21-7.58 (m, 19H, ArH’s), 8.44 (s, 1H, pyrazole-H5); MS m/z (%): 578 (M+, 5), 386 (53), 194 (10), 98 (65), 77 (100). Anal. Calcd for C36H26N4O2S (578.18): C, 74.72; H, 4.53; N, 9.68. Found: C, 74.55; H, 4.31; N, 9.45%.
2-[(3-Benzoyl-1-(4-chlorophenyl)-1
H-4-pyrazolyl)carbonyl]-3-methyl-5,6-diphenylimidazo[2,1-b]-thiazole (7f): Yield 82%; mp 198 oC; IR (KBr) v cm-1: 1698, 1654 (2C=O); 1H NMR (DMSO-d6) δ: 2.20 (s, 3H, CH3), 7.21-7.57 (m, 19H, ArH’s), 8.45 (s, 1H, pyrazole-H5). MS m/z (%): 598 (M+, 5), 386 (53), 136 (39), 98 (100), 77 (54); Anal. Calcd for C35H23ClN4O2S (598.12): C, 70.17; H, 3.87; N, 9.35%. Found: C, 70.01; H, 3.80; N, 9.30%.
2-[(3-Ethoxycarbonyl-1-phenyl-1
H-4-pyrazolyl)carbonyl]-3-methyl-5,6-diphenylimidazo[2,1-b]-thiazole (7g): Yield 77%; mp 166 oC; IR (KBr) v cm-1: 1714, 1648 (2C=O); 1H NMR (CDCl3) δ: 1.20 (t, 3H, CH3, J = 7.1 Hz), 2.20 (s, 3H, CH3), 4.32 (q, 2H, CH2, J = 7.1 Hz), 7.20-7.64 (m, 15H, ArH’s), 8.61 (s, 1H, pyrazole-H5); 13C NMR (DMSO-d6): δ 12.11 (CH3), 14.82 (CH3), 63.84 (CH2), 116.34, 119.83, 120.48, 121.35, 121.89, 122.21, 123.24, 123.65, 124.16, 125.43, 127.24, 127.56, 127.81, 128.61, 129.17, 129.04, 130.34, 134.41, 138.95, 143.58 (Ar-C), 169.53 (C=O), 186.32 (C=O); MS m/z (%): 532 (M+, 47), 366 (68), 324 (25), 191(49), 148 (100), 77 (45). Anal. Calcd for C31H24N4O3S (532.16): C, 69.91; H, 4.54; N, 10.52. Found: C, 69.71; H, 4.53; N, 10.39%.
2-[(3-Ethoxycarbonyl-1-(4-tolyl)-1
H-4-pyrazolyl)carbonyl]-3-methyl-5,6-diphenylimidazo[2,1-b]-thiazole (7h): Yield 77%; mp 172 oC; IR (KBr) v cm-1: 1715, 1648 (2C=O); 1H NMR (CDCl3) δ: 1.17 (t, 3H, CH3, J = 7.1 Hz), 2.20 (s, 3H, CH3), 2.33 (s, 3H, ArCH3), 4.30 (q, 2H, CH2, J = 7.1 Hz), 7.20-7.64 (m, 14H, ArH’s), 8.62 (s, 1H, pyrazole-H5); MS m/z (%): 546 (M+, 47), 366 (54), 323 (29), 191(34), 148 (51), 77 (100). MS m/z (%): 546 (M+, 12), 456 (71), 428 (23), 272 (20), 77 (100). Anal. Calcd for C32H26N4O3S (546.17): C, 70.31; H, 4.79; N, 10.25. Found: C, 70.19; H, 4.70; N, 10.15%.
2-[(3-Ethoxycarbonyl-1-(4-chlorophenyl)-1
H-4-pyrazolyl)carbonyl]-3-methyl-5,6-diphenylimidazo-[2,1-b]thiazole (7i): Yield 70%; mp 178 oC. IR (KBr) v cm-1: 1718, 1649 (2C=O); 1H NMR (DMSO-d6) δ: 1.17 (t, 3H, CH3, J = 7.1 Hz), 2.21 (s, 3H, CH3), 4.25 (q, 2H, CH2, J = 7.1 Hz), 7.22-7.68 (m, 14H, ArH’s), 8.62 (s, 1H, pyrazole-H5); MS m/z (%): 567 (M++1,7), 566 (M+, 23), 249 (21), 180 (19), 184 (100), 77 (43). Anal. Calcd for C31H23ClN4O3S (566.12): C, 65.66; H, 4.09; N, 9.88%. Found: C, 65.55; H, 3.98; N, 9.60%.
2-[(3-phenylcarbamoyl-1-phenyl-1
H-4-pyrazolyl)carbonyl]-3-methyl-5,6-diphenylimidazo[2,1-b]-thiazole (7j): Yield 77%; mp 222 oC; IR (KBr) v cm-1: 3246 (NH), 1693, 1652 (2C=O); 1H NMR (DMSO-d6) δ: 2.16 (s, 3H, CH3), 7.16-7.72 (m, 20H, ArH’s), 8.52 (s, 1H, pyrazole-H5), 10.84 (br., s, 1H, NH, D2O-exchangeable); MS m/z (%): 580 (M++1, 1), 579 (M+, 1), 384 (97), 305 (12), 178 (100), 77 (13). Anal. Calcd for C35H25N5O2S (579.17): C, 72.52; H, 4.35; N, 12.08. Found: C, 72.48; H, 4.21; N, 12.00%.
2-[(3-phenylcarbamoyl-1-(4-tolyl)-1
H-4-pyrazolyl)carbonyl]-3-methyl-5,6-diphenylimidazo[2,1-b]-thiazole (7k): Yield 72%; mp 228 oC; IR (KBr) v cm-1: 3252 (NH), 1688, 1649 (2 C=O); 1H NMR (DMSO-d6) δ: 2.16 (s, 3H, CH3), 2.38 (s, 3H, ArCH3), 7.15-7.93 (m, 19H, ArH’s), 8.72 (s, 1H, pyrazole-H5), 11.50 (br., s, 1H, NH, D2O-exchangeable); MS m/z (%): 593 (M+, 5), 456 (100), 428 (17), 244 (43), 77 (87). Anal. Calcd for C36H27N5O2S (593.19): C, 72.83; H, 4.58; N, 11.80%. Found: C, 72.67; H, 4.55; N, 11.36%.
2-[(3-phenylcarbamoyl-1-(4-chlorophenyl)-1H-4-pyrazolyl)carbonyl]-3-methyl-5,6-diphenylimidazo-[2,1-b]thiazole (7l): Yield 83%; mp 236 oC; IR (KBr) v cm-1: 3256 (NH), 1689, 1651 (2C=O); 1H NMR (DMSO-d6) δ: 2.18 (s, 3H, CH3), 7.25-7.90 (m, 19H, ArH’s), 8.72 (s, 1H, pyrazole-H5), 11.21 (br., s, 1H, NH, D2O-exchangeable); MS m/z (%): 613 (M+, 8), 568 (M+, 19), 476 (88), 272 (22) 180 (5), 141 (25), 77 (100). Anal. Calcd for C35H24ClN5O2S (613.13): C, 68.45; H, 3.94; N, 11.40. Found: C, 68.39; H, 3.87; N, 11.36%.
2-[(1,3-Diphenyl-1
H-4-pyrazolyl)carbonyl]-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole (7m): Yield 69%; mp 224 oC; IR (KBr) v cm-1: 1678 (C=O); 1H NMR (DMSO-d6) δ: 2.18 (s, 3H, CH3), 7.18-7.73 (m, 20H, ArH’s), 8.68 (s, 1H, pyrazole-H5); MS m/z (%): 538 (M++2, 86), 537 (M++1, 71), 536 (M+, 71), 498 (57), 398 (71), 76 (100). Anal. Calcd for C34H24N4OS (536.17): C, 76.10; H, 4.51; N, 10.44. Found: C, 76.12; H, 4.31; N, 10.23%.

Reaction of pyrazoles 7a,d,g with hydrazine hydrate
Hydrazine hydrate (80%, 2 mL) was added to a solution of the appropriate compound 7a,d,g (5 mmol) in EtOH (10 mL). The reaction mixture was heated under reflux for 1 h, concentrated in vacuum, and diluted with water. The precipitate obtained was filtered off, washed with ice-cold water, dried and crystallized from EtOH. The synthesized pyrazolo[3,4-d]pyridazines 10a-c together with their physical and spectral data are listed below.
3-Methyl-2-(7-methyl-2-phenyl-2H-pyrazolo[3,4-d]pyridazin-4-yl)-5,6-diphenylimidazo[2,1-b]-thiazole (8a): Yield 72%; mp 268 oC; 1H NMR (DMSO-d6) δ: 2.19 (s, 3H, CH3), 2.29 (s, 3H, CH3), 7.20-7.37 (m, 15H, ArH’s), 8.64 (s, 1H, pyrazole-H5); MS m/z (%): 498 (M+, 100), 284 (57), 77 (74). Anal. Calcd for C30H22N6S (498.16): C, 72.27; H, 4.45; N, 16.86. Found: C, 72.20; H, 4.43; N, 16.79%.
2-(2,7-Diphenyl-2H-pyrazolo[3,4-d]pyridazin-4-yl)-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole (8b): Yield 70%; mp 242 oC; 1HNMR (DMSO-d6) δ: 2.19 (s, 3H, CH3), 7.20-7.37 (m, 20H, ArH’s), 8.60 (s, 1H, pyrazole-H5); 13C NMR (DMSO-d6): δ 12.16 (CH3), 113.46, 118.87, 120.34, 120.87, 121.67, 122.65, 123.01, 123.32, 123.49, 124.14, 124.43, 124.75, 125.24, 125.88, 127.38, 127.76, 128.77, 128.52, 129.87, 130.23, 131.56, 134.58, 139.24, 143.16, 148.36, 152.24 (Ar-C); MS m/z (%): 560 (M+, 100), 398 (37), 295 (14), 180 (11), 77 (95). Anal. Calcd for C35H24N6S (560.18): C, 74.98; H, 4.31; N, 14.99. Found: C, 74.85; H, 4.27; N, 14.85%.
4-(3-Methyl-5,6-diphenylimidazo[2,1-
b]thiazol-2-yl)-2-phenyl-2H-pyrazolo[3,4-d]pyridazin-7(6H)-one (8c): Yield 76%; mp 221 oC; IR (KBr) v cm-1: 3350 (OH); 1H NMR (DMSO-d6) δ: 2.19 (s, 3H, CH3), 2.98 (br., s, 1H, OH, D2O-exchangeable), 7.17-7.39 (m, 15H, ArH’s), 8.64 (s, 1H, pyrazole H-5), 11.00 (br., s, 1H, NH, D2O-exchangeable); MS m/z (%): 500 (M+, 100), 398 (37), 295 (14), 180 (14), 77 (84). Anal. Calcd for C29H20N6OS (500.14): C, 69.58; H, 4.03; N, 16.79 . Found: C, 69.55; H, 3.97; N, 16.65%.

Reactions of enaminone 3 with hydrazines
To a solution of the enaminone 3 (0.387 g, 1 mmol) in EtOH (10 mL) was added hydrazine hydrate (1 mL) or phenylhydrazine (1 mL) and the mixture was heated under reflux for 2 h. The reaction mixture was acidified by HCl / ice mixture and the formed product was filtered and crystallized from EtOH to give the respective pyrazoles 9a and 9b.
3-Methyl-5,6-diphenyl-2-(1H-pyrazol-3-yl)imidazo[2,1-b]thiazole (9a): Yield 90%, mp 250 °C; IR (KBr) υ: 3226 (NH) cm1; 1H NMR (DMSO-d6) δ: 2.03 (s, 3H, CH3), 6.53 (d, 1H, J = 7.5 Hz, pyrazole- H4), 7.14–7.61 (m, 10H, Ar-H), 7.85 (d, 1H, J = 7.5 Hz, pyrazole-H5), 13.12 (D2O-exchangeable) (s, 1H, NH) ppm; 13C NMR (DMSO-d6): δ 12.32 (CH3), 114.35, 120.57, 121.03, 122.34, 123.75, 124.86, 126.75, 127.45, 127.76, 128.81, 129.16, 129.38, 130.54, 135.31, 138.73, 145.33 (Ar-C); MS m/z (%): 357 (M++1, 27), 356 (M+, 100), 227 (14), 152 (52), 103 (29). Anal. Calcd for C21H16N4S (356.11): C, 70.76; H, 4.52; N, 15.72. Found: C, 70.67; H, 4.41; N, 15.62%.
3-Methyl-5,6-diphenyl-2-(1-phenyl-1
H-pyrazol-3-yl)imidazo[2,1-b]thiazole (9b): Yield 86%, mp 264 °C; 1H NMR (DMSO-d6) δ: 2.12 (s, 3H, CH3), 6.51 (d, 1H, J = 7.5 Hz, pyrazole H-4), 7.14–7.61 (m, 15H, Ar-H), 7.84 (d, 1H, J = 7.5 Hz, pyrazole-H5) ppm; MS m/z (%): 432 (M+, 100), 227 (14), 152 (36), 103 (54), 641(29). Anal. Calcd for C27H20N4S (432.14): C, 74.97; H, 4.66; N, 12.95. Found: C, 74.69; H, 4.45; N, 12.68%.
2-(3-Isoxazolyl)-3-methyl-5,6-diphenylimidazo[2,1-b]thiazole (10): Hydroxylamine hydrochloride (0.07 g, 1 mmol) was added to a mixture of enaminone (3) (0.387 g, 1 mmol) and anhydrous potassium carbonate (0.5 g) in absolute EtOH (20 mL). The mixture was heated under reflux for 5 h and poured onto water. The solid product was filtered and crystallized from EtOH to give compound 10 in 90% yield, mp: 212 °C; 1H NMR (DMSO-d6) δ: 2.14 (s, 3H, CH3), 6.68 (d, 1H, J = 5 Hz, isoxazole- H4), 7.14-7.68 (m, 10H, Ar-H), 8.45 (d, 1H, J = 5 Hz, isoxazole-H5) ppm; MS m/z (%): 357 (M++1, 27), 356 (M+, 100), 227 (14), 152 (52), 103 (29). Anal. Calcd for C21H15N3OS (357.09): C, 70.57; H, 4.23; N, 11.76. Found: C, 70.56; H, 4.14; N, 11.39%.

Reactions of enaminone 3 with heterocyclic amines
A mixture of enaminone
3 (1.96 g, 5 mmol) and 5-amino-3-phenyl-1H-pyrazole (11) or 6-amino-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (15) (5 mmol) in acetic acid (20 mL) was refluxed for 6 h. The reaction mixture was cooled and diluted with MeOH and the solid product was collected by filtration and recrystallized from dioxane to give 13 or 17, respectively.
3-Methyl-5,6-diphenyl-2-(2-phenylpyrazolo[1,5-a]pyrimidin-6-yl)imidazo[2,1-b]thiazole (13): Yield 83%, mp 312 °C; 1H NMR (DMSO-d6) δ: 1.91 (s, 3H, CH3), 7.16 (s, 1H, pyrazole-H4), 7.21-7.66 (m, 15H, Ar-H), 8.54 (s, 1H, pyrimidine-H4), 8.59 (s, 1H, pyrimidine-H6) ppm; 13C NMR (DMSO-d6): δ 12.60 (CH3), 110.36, 116.23, 120.24, 120.56, 121.48, 121.85, 123.22, 123.68, 124.35, 124.28, 125.24, 126.46, 127.29, 127.36, 128.82, 129.67, 130.23, 134.58, 139.24, 140.23, 146.24, 150.23 (Ar-C); MS m/z (%): 483 (M+, 100), 352 (6), 250 (11), 217 (33), 103 (43), 63 (21). Anal. Calcd for C30H21N5S (483.15): C, 59.72; H, 3.19; N, 18.99. Found: C, 59.63; H, 3.10; N, 18.76%.
5-(3-Methyl-5,6-diphenylimidazo[2,1-
b]thiazol-2-yl)-2-thioxo-2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-one (17): Yield 86%, mp 352 °C; IR (KBr) υ: 3268, 3234 (2 NH), 1676 (CO)cm1; 1H NMR (DMSO-d6) δ: 1.91 (s, 3H, CH3), 7.17–7.59 (m, 10H, Ar-H), 7.61 (d, 1H, J = 7 Hz, pyridineH-3), 8.30 (d, 1H, J = 7 Hz, pyridine H-2),11.92 (s, 1H, NH), 12.58 (s, 1H, NH), 13.14 (s, 1H, SH tautomer of C=S) ppm; MS m/z (%): 468 (M++1, 30), 468 (M+, 100), 352 (13), 250 (13), 217(33), 165 (37), 63 (21). Anal. Calcd for C25H17N5OS2 (467.09): C, 64.22; H, 3.66; N, 14.98. Found: C, 64.11; H, 3.42; N, 14.69%.
N-(6-(3-Methyl-5,6-diphenylimidazo[2,1-b]thiazol-2-yl)-2-oxo-2H-pyran-3-yl)benzamide (22): A solution of enaminone 3 (3.87 g, 10 mmol) and hippuric acid (19) (1.7 g, 10 mmol) in acetic anhydride (30 mL) was heated under reflux for 2 h. The reaction mixture was concentrated in vacuo. The solid product obtained upon cooling was filtered off and recrystallized from DMF to yield compound 22 in 85% yield, mp 242 °C; IR (KBr) υ = 3294 (NH), 1698, 1668 (2 C=O) cm1; 1H NMR (DMSO-d6) δ: 2.14 (s, 3H, CH3), 6.74 (d, 1H, J = 7.6 Hz, pyran-H5), 6.78 (d, 1H, J = 7.6 Hz, pyran-H4), 7.11-7.72 (m, 15H, Ar-H), 9.78 (s, 1H, NH) ppm; 13C NMR (DMSO-d6): δ 12.44 (CH3), 114.82, 120.47, 120.78, 121.47, 122.34, 123.46, 123.68, 124.45, 124.75, 124.95, 125.84, 125.97, 127.65, 127.85, 128.73, 128.97, 129.56, 131.56, 132.31, 138.34, 142.62 (Ar-C), 159.89 (C=O), 168.78 (C=O); MS, m/z (%): 504 (M++1, 13), 503 (M+, 18), 290 (18), 105 (100), 77 (66). Anal. Calcd for C30H21N3O3S (503.13): C, 71.55; H, 4.20; N, 8.34. Found: C, 71.43; H, 4.12; N, 8.12%.

References

1. A. M. Farag, K. M. Dawood, H. A. Abdel-Aziz, N. A. Hamdy, and I. M. I. Fakhr, J. Heterocycl. Chem., 2011, 48, 355. CrossRef
2.
S. M. Sayed, M. A. Khalil, M. A. Ahmed, and M. Raslan, Synth. Commun., 2002, 32, 481. CrossRef
3.
Y. Zaki, A. A. Sayed, A. M. Hussein, and A. O. Abdelhamid, Phosphorus, Sulfur Silicon Relat. Elem., 2006, 181, 825. CrossRef
4.
H. A. Abdel-Aziz, N. A. Hamdy, I. M. I. Fakhr, and A. M. Farag, J. Heterocycl. Chem., 2008, 45, 1033. CrossRef
5.
P. Lue and J. V. Greenhill, Adv. Heterocycl. Chem., 1997, 67, 207. CrossRef
6.
A. Z. A. Elassar and A. A. El-Khair, Tetrahedron, 2003, 59, 8463. CrossRef
7.
B. Stanovnik and J. Svete, Chem. Rev., 2004, 104, 2433. CrossRef
8.
S. A. Yermolayev, N. Y. Gorobets, E. V. Lukinova, O. V. Shishkin, S. V. Shishkina, and S. M. Desenko, Tetrahedron, 2008, 64, 4649. CrossRef
9.
N. Y. Gorobets, B. H. Yousefi, F. Belaj, and C. O. Kappe, Tetrahedron, 2004, 60, 8633. CrossRef
10.
I. Edafiogho, S. B. Kombian, K. V. V. Ananthalakshmi, N. N. Salamma, N. D. Eddington, T. L. Wilson, M. S. Alexander, P. L. Jackson, C. D. Hanson, and K. R. Scott, J. Pharm. Sci., 2007, 96, 2509. CrossRef
11.
H. M. Gaber and M. C. Bagley, Chem. Med. Chem., 2009, 1, 30.
12.
J. G. Lombardino and E. H. Wiseman, J. Med. Chem., 1974, 17, 1182. CrossRef
13.
J. G. Lombardino, Ger. Offen., 1972, 2, 155,558.
14.
A. P. Phillips, H. L. White, and S. Rosen, Eur. Pat. Appl., EP 1982, 58,890.
15.
J. C. Lee, J. T. Laydon, P. C. McDonell, T. F. Gallagher, S. Kumar, D. Green, D. McNulty, M. Blumenthal, J. R. Heys, S. W. Landvatter, J. E. Strickler, M. M. McLaughlin, I. R. Siemens, S. M. Fisher, G. P. Livi, J. R. White, J. L. Adams, and P. R. Young, Nature, 1994, 372, 739. CrossRef
16.
E. O. Renth, K. Schromm, R. Anderskewitz, F. Birke, A. Fuegner, and H. Heuer, Pat., WO 1994, 9,421,616.
17.
D. C. Fenske, E. A. Kuo, and W. R. Tully, U. S. Pat., 1989, 4,810,828.
18.
P. Chiesi, V. Servadio, and R. Razzetti, EP Pat., 1989, 301,422.
19.
T. Nishi, T. Uno, Y. Koga, and G. N. Chu, EP Pat., 1987, 240,015.
20.
A. F. Pozherskii, A. T. Soldatenkov, and A. R. Katritzky, Heterocycles in Life and Society, Wiley, New York, p. 1997, 179.
21.
R. Liebl, R. Handte, H. Mildenberger, K. Bauer, and H. Bieringer, Ger. Offen. Pat. 1987, 3,604,042.
22.
A. Andreani, A. Leoni, A. Locatelli, R. Morigi, M. Rambaldi, M. Recanatini, and V. Garaliene, Bioorg. Med. Chem., 2000, 8, 2359. CrossRef
23.
I. A. M. Khazi, C. S. Mahajanshetti, A. K. Gadad, A. D. Tarnalli, and C. M. Sultanpur, Arzneim.-Forsch./Drug Res., 1996, 46, 949.
24.
A. K. Gadad, C. S. Mahajanshetti, S. Nimbalkar, and A. Raichurkar, Eur. J. Med. Chem., 2000, 35, 853. CrossRef
25.
A. Andreani, A. Leoni, A. Locatelli, R. Morigi, M. Rambaldi, W. A. Simon, and J. Senn-Bilfinger, Arzneim.-Forsch./Drug Res., 2000, 50, 550.
26.
W. K. Amery, C. H. Hoerig, R. I. Fenichel, and M. A. Chirigos (Eds.), Immune Modulation Agents and their Mechanism, Marcel Dekker, Newyork-Basel, 1984, pp. 383-408.
27.
S. M. Riyadh, T. A. Farghaly, and S. M. Gomha, Arch. Pharm. Res., 2010, 33, 1721. CrossRef
28.
S. M. Gomha and S. M. Riyadh, ARKIVOC, 2009, xi, 58.
29.
S. M. Gomha, Monatsh. Chem., 2009, 140, 213. CrossRef
30.
I. M. Abbas, S. M. Riyadh, M. A. Abdallah, and S. M. Gomha, J. Heterocycl. Chem., 2006, 43, 935. CrossRef
31.
A. S. Shawali and S. M. Gomha, Tetrahedron, 2002, 58, 8559. CrossRef
32.
H. A. Abdel-Aziz, N. A. Hamdy, A. M. Gamal-Eldeen, and I. M. I. Fakhr, Z. Naturforsch C, 2011, 66, 7.
33.
H. A. Abdel-Aziz, B. F. Abdel-Wahab, and F. A. Badria, Arch. Pharm., 2010, 343, 152. CrossRef
34.
H. A. Abdel-Aziz, T. S. Saleh, and H. S. A. El-Zahabi, Arch. Pharm., 2010, 343, 24.
35.
H. A. Abdel-Aziz, H. S. A. El-Zahabi, and K. M. Dawood, Eur. J. Med. Chem., 2010, 45, 2427. CrossRef
36.
H. A. Abdel-Aziz and A. A. I. Mekawey, Eur. J. Med. Chem., 2009, 44, 3985.
37.
H. A. Abdel-Aziz, N. A. Hamdy, A. M. Farag, and I. M. I. Fakhr, J. Heterocycl. Chem., 2008, 45, 1033. CrossRef
38.
N. A. Hamdy, H. A. Abdel-Aziz, A. M. Farag, and I. M. I. Fakhr, Monatsh. Chem., 2007, 138, 1001. CrossRef
39.
H. A. Abdel-Aziz, N. A. Hamdy, A. M. Farag, and I. M. I. Fakhr, J. Chin. Chem. Soc., 2007, 54, 1573.
40.
Z. A. Hozien, A. Abd El-Wareth, O. Sarhan, H. A. H. El-Sherief, and A. M. Mahmoud, J. Heterocycl. Chem., 2000, 37, 943. CrossRef
41.
H. M. Al-Matar, S. M. Riyadh, and M. H. Elnagdi, J. Heterocycl. Chem., 2007, 44, 603. CrossRef
42.
K. M. Dawood, J. Heterocycl. Chem., 2005, 42, 221. CrossRef
43.
P. Bennett, J. A. Donnelly, D. C. Meaney, and P. O. Boyle, J. Chem. Soc., Perkin Trans. 1, 1972, 1554. CrossRef
44. F. Q. He, X. H. Liu, B. L. Wang, and Z. M. Li,
Heteroatom Chem., 2008, 19, 21. CrossRef
45.
F. A. Amer, M. Hammouda, A. S. El-Ahl, and B. F. Abdelwahab, J. Chin. Chem. Soc., 2007, 54, 1543.
46.
E. S. Komarova, V. A. Makarov, G. V. Alekseeva, and V. G. Granik, Russian Chem. Bull. Int. Ed., 2006, 55, 735. CrossRef
47.
A. Cantos, P. De March, M. M. Manas, A. Pla, F. S. Ferrando, and A. Vergili, Bull. Chem. Soc. Jpn., 1987, 60, 4425. CrossRef
48.
R. E. Wasylishen, J. B. Rowbotham, and T. Schaefer, Can. J. Chem., 1974, 52, 833. CrossRef
49.
J. Quiroga, A. Rengifo, B. Insuasty, R. Aboní, M. Nogueras, and A. Sánchez, Tetrahedron Lett., 2002, 43, 9061. CrossRef
50.
S. M. Riyadh, I. A. Abdelhamid, H. M. Al-Matar, and M. H. Elnagdi, Heterocycles, 2008, 75, 1849. CrossRef
51.
B. Al-Saleh, M. A. Al-Apasery, R. S. Abdel-Aziz, and M. H. Elnagdi, J. Heterocycl. Chem., 2005, 42, 563. CrossRef
52.
M. R. Shaaban, T. M. A. Eldebss, A. F. Darweesh, and A. M. Farag, J. Heterocycl. Chem., 2008, 45, 1739. CrossRef
53.
P. Schenone, L. Mosti, and G. Menozzi, J. Heterocycl. Chem., 1982, 19, 1355. CrossRef
54.
W. Dieckmann and O. Platz, Chem. Ber., 1906, 38, 2989.
55.
A. F. Hegarty, M. P. Cashman, and F. L. Scott, Chem. Commun., 1971, 13, 884.
56.
A. S. Shawali and A. O. Abdelhamid, Tetrahedron, 1971, 27, 2517. CrossRef
57.
P. Wolkoff, Can. J. Chem., 1975, 53, 1333. CrossRef

PDF (729KB) PDF with Links (751KB)