STRATEGIES FOR BREVISAMIDE SYNTHESIS, BASED ON THE METHOD FOR CONSTRUCTING THE TETRAHYDROPYRANYL CORE

Takeo Sakai and Yuji Mori*

Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan; E-mail: mori@meijo-u.ac.jp

Abstract – Brevisamide is a monocyclic ether alkaloid produced by the red tide dinoflagellate Karenia brevis. Brevisamide has attracted the attention of organic chemists because it is the smallest molecule that can be used to understand the biosynthetic 6-endo epoxide cyclization of polycyclic ethers. Within nine years of its discovery, several diverse approaches to synthesizing this monocyclic ether amide have been explored, culminating in the publication of eight total and seven formal total syntheses. In the first part of this review, we discuss strategies for the introduction of the key elements—the (2E,4E)-3,4-dimethyl-2,4-heptadienal side chain, acetamide side chain, C9 axial methyl group, and tetrahydropyran (THP) core. In the following sections, each of the total and formal syntheses is overviewed, based on the method for constructing the THP core.

CONTENTS

1. Introduction
2. Synthetic overview of brevisamide
 2-1. Installation of the (2E,4E)-3,4-dimethyl-2,4-heptadienal side chain
 2-1-1. Suzuki-Miyaura coupling
 2-1-2. Stille coupling and Negishi coupling
 2-1-3. Horner-Wadsworth-Emmons reaction
 2-2. Installation of the acetamide side chain
 2-3. Installation of the axial methyl group
 2-4. Tetrahydropyran (THP) core synthesis

This paper is dedicated to Professor Masakatsu Shibasaki on the occasion of his 70th birthday.
3. Brevisamide synthesis using an asymmetric reaction for C9 axial methyl installation
 3-1. Lactonization (Tachibana’s total syntheses)
 3-2. SmI$_2$-induced ketyl radical cyclization (Lindsley’s total synthesis)
 3-3. Addition of alcohol to olefin (Sabitha’s and Kumaraswamy’s formal syntheses)
 3-4. Allylation of oxonium ion (Mohapatra’s formal syntheses)
 3-5. Epoxide ring-opening reactions (Smith’s and Yadav’s formal syntheses)
 3-6. Annulation reaction for the THP core (Ghosh’s and Panek’s total syntheses)
 3-7. S$_{N}$2 cyclization at the C8-O bond (Yadav’s total syntheses)

4. Brevisamide synthesis using diastereoselective C9 methyl introduction
 4-1. Achmatowicz rearrangement for the THP core (Zakarian’s total synthesis)
 4-2. THP core from tri-O-acetyl-D-glucal (Sridhar’s formal synthesis)
 4-3. Ring-closing metathesis at C9-C10 bond (Kang’s formal synthesis)
 4-4. Oxiranyl anion strategy (Mori’s total synthesis)

5. Tabular summary of total synthesis of brevisamide

6. Conclusion

1. INTRODUCTION

Red tide is an algal bloom that causes serious damage to the fishing industry through massive fish kill and food poisoning.1 Karenia brevis is a notorious red tide dinoflagellate that produces potent neuro- and ichthyotoxic polycyclic ethers such as brevetoxin A and B (Figure 1).2 Recently, K. brevis was found to produce the penta- to heptacyclic ethers brevenal,3 brevisin,4 and tamulamides,5 all of which have an antagonistic effect against brevetoxins by blocking the brevetoxin binding site of voltage-gated Na channels of nerve cells.6,7 Brevisamide (1) is a monocyclic ether alkaloid isolated from K. brevis, as reported by Wright and co-workers in 2008;8 it has a hybrid structure comprising the A ring of brevenal and brevisin, with an axial methyl group and a 3,4-dimethylhepta-2,4-dienal side chain, and the A ring of tamulamides, possessing an acetamide side chain. It has been revealed using a synthetic sample that brevisamide possesses weak cytotoxic activity against P388 mouse leukemia cells (ED$_{50} > 30$ µg/mL).9a Wright proposed that brevisamide was biosynthesized by the epoxidation of olefinic alcohol 2 to epoxy alcohol 3, followed by the 6-endo cyclization reaction—a well-known proposed mechanism for natural polycyclic ethers (Scheme 1).10 Brevisamide has understandably attracted much attention, as it is the smallest known biological molecule produced by the 6-endo cyclization reaction. Recently, the proposed biosynthetic precursor, epoxide 3, was synthesized by Satake et al., and the 6-endo cyclization was attempted under the non-enzymatic conditions referenced to in Jamison’s reports,11 where polycyclic ethers were synthesized via a 6-endo cyclization reaction under aqueous conditions without any catalysts.
or enzymes. However, brevisamide was not successfully obtained under these conditions; instead, isobrevisamide, the 5-exo cyclization product of 3, was formed exclusively (Scheme 2).12 Therefore, it was speculated that brevisamide was biosynthesized through an enzyme-catalyzed 6-endo cyclization reaction.13

Scheme 1. Proposed biosynthetic pathway of brevisamide (1) (ref. 8)

Scheme 2. Attempted biomimetic cyclization reaction for brevisamide (ref. 12b)

Since its discovery, organic chemists all over the world are investigating its synthesis; so far, eight total and seven formal total syntheses have been reported by 13 different research groups: Tachibana,9 Lindsley,14 Ghosh,15 Panek,16 Smith III,17 Sabitha,18 Zakarian,19 Yadav,20 Kumaraswamy,21 Sridhar,22
Kang,23 Mohapatra,24 and Mori,25 Fadeyi and Lindsley summarized eight syntheses reported until 2012, and focused mainly on the six total syntheses.26 In the first part of our review, we summarize the key points of these brevisamide syntheses. We then discuss in depth each of the total and formal syntheses.

2. SYNTHETIC OVERVIEW OF BREVISAMIDE

A generally applicable retrosynthetic analysis for brevisamide (1) is shown in Figure 2. Installation of the 3,4-dimethylhepta-2,4-dienal side chain and acetamide group is usually performed at the final stage of the synthesis, because these functional groups can be influenced by several different reactions. The stereoselective construction of four stereogenic centers at C8, C9, C11, and C12 on the tetrahydropyran (THP) core, including the axial methyl group at C9, is usually executed at an earlier synthetic stage. In this section, we discuss how these key steps have been achieved in each synthetic study.

Figure 2. Retrosynthetic analysis for brevisamide applied in most total syntheses

2-1. Installation of the (2E,4E)-3,4-dimethyl-2,4-heptadienal side chain

The 3,4-dimethylhepta-2,4-dienal side chain is the common substituent in brevisamide, brevenal, and brevisin. The approach for the incorporation of 3,4-dimethylhepta-2,4-dienal group 8 can be classified into three types: 1) Suzuki-Miyaura coupling27 between alkylborane 6a and vinyl halide 9; 2) Stille28 or Negishi29 coupling between vinyl iodide 6b and vinylstannane 10 or vinylzinc 11; and 3) Horner-Wadsworth-Emmons reaction between aldehyde 6c and phosphonate 12 (Scheme 3). In most reports on total synthesis of brevisamide, brevenal, and brevisin, key precursors 6a-c are prepared from the corresponding alcohols 4a-c. Hydroxymethyl group 4a is oxidized to the aldehyde followed by Wittig olefination to 5a, which is converted to 6a by the hydroboration reaction with 9-BBN-H. Alkylborane 6a can also be prepared from hydroxyethyl group 4b through dehydration to olefin 5a, followed by hydroboration to 6a, or by iodination to iodide 5b followed by transformation to 6a using the lithiation-boration protocol. Alternatively, hydroxyethyl group 4b is subjected to the triflation-alknylation reaction to give alkyne 5c, which is converted into vinyl iodide 6b by the hydrozirconation-iodination or silyl cuprate addition-iodination sequences. Hydroxypropyl group 4c undergoes oxidation to aldehyde 6c by Parikh-Doering oxidation, Swern oxidation, or Dess-Martin oxidation. In the first reported synthesis of brevenal by Sasaki et al., aldehyde 6c is converted to alkyne 5c using the Bestmann reagent in the Stille coupling strategy.30 After Kadota reported the
Horner-Wadsworth-Emmons (HWE) route using \(6c\) and phosphonate \(12\) \((R' = \text{Me})\) for the total synthesis of brevenal,\(^{21}\) this HWE strategy became standard for the side-chain construction from the substituted propanol \(4c\).

![Scheme 3](https://example.com/scheme3.png)
Scheme 3. General route to 3,4-dimethylhepta-2,4-dienal side chain (\(R\) is the THP core of brevisamide or the polycyclic ether skeletons of brevenal and brevisin)

2-1-1. Suzuki-Miyaura coupling

Three separate syntheses have been reported for vinyl halides \(9\) (Scheme 4). Tachibana and Satake prepared conjugated aldehyde \(14\) from \(\text{cis}-2\)-butene-1,4-diol \((13)\) through TBS protection, ozonolysis, and the Wittig reaction according to Leahy’s report.\(^{32}\) The modified Corey-Fuchs bromoalkyne synthesis,\(^{33}\) followed by debromination with \(n\)-BuLi, afforded conjugated enyne \(15\). Vinyl iodide \(9a\) was obtained by Negishi’s methylalumination-iodination\(^{34}\) of enyne \(15.\)\(^{9a}\) Ghosh synthesized enyne \(15\) from \(\text{trans}\)-crotol alcohol \(16\) via bromination,\(^{35}\) elimination, and Sonogashira coupling according to Roush’s report.\(^{15,36}\) Tachibana and Satake synthesized vinyl bromides \(9c\) and \(9d\) from the two-step bromination of methyl methacrylate \((18)\) to \((E)\)-3-bromomethacrylic acid \((19)\). After five steps,\(^{37,38}\) ethyl ester \(20\) was reduced to alcohol \(9e\), which was protected with a TBDPS group to provide \(9d\) quantitatively. It should be noted that the synthesis of \(20\) from \(18\) was carried out without purification until the separation of the desired \(E\)-isomer from the \(Z\)-isomer generated by the HWE reaction.\(^{9b}\)
The Suzuki-Miyaura cross coupling reaction of vinyl halide 9 is summarized in Scheme 5. Tachibana reported the hydroboration of amide olefin 21 with 9-BBN, and the generated alkylborane 22 was subjected to the Suzuki-Miyaura cross coupling with vinyl iodide 9a.2a Ghosh also reported a similar coupling reaction using the TBS-protected vinyl iodide 9b.15 However, these coupling reactions resulted in the dienal side chain using Suzuki-Miyaura coupling.

Scheme 5. Incorporation of the dienal side chain using Suzuki-Miyaura coupling
in low yields (40%) and poor reproducibility. In Tachibana’s second total synthesis, the yield of the coupling reaction was improved to 64% by using vinyl bromide 9d and alkylborane 25, which was prepared in situ through the lithium-iodine exchange reaction of amide-free iodide 24.9b The presence of the acetamide moiety adversely affects the yield of the coupling reaction; alkyl iodide 27a involving an acetamide group gave coupling product 29a in low yield, while the reaction with amide-free iodide 27b provided a much better yield.12 The Suzuki-Miyaura coupling with vinyl bromide 9c was employed in the final stage of Tachibana’s total synthesis of brevisin (Scheme 6).39 Alkyl iodide 30 was subjected to the borylation-coupling sequence to give product 31. After global deprotection of the TES groups, selective oxidation of the allylic alcohol afforded brevisin in good overall yield.

Scheme 6. Suzuki-Miyaura coupling using 9c in the brevisin total synthesis

2-1-2. Stille coupling and Negishi coupling
Stille coupling with vinylstannane 1040 was employed in the first total synthesis of brevenal reported by Sasaki et al.3b,30 They initially investigated the coupling conditions using vinylstannane 32 and vinyl iodide 33 as model compounds for the dienal side chain (Table 1). Under the conventional conditions using PdCl₂(MeCN)₂ in DMF, only a trace amount of coupling product was obtained due to the sterically hindered substrates (entry 1). The reaction improved when soft ligands such as tri(2-furyl)phosphine and triphenylarsine were employed for the acceleration of the transmetallation step,41 and when a copper(I) salt was added for the generation of a more reactive organocopper specimen in the catalytic cycle (entries 2 and 3). Elevating the reaction temperatures decreased the \((E,E):(E,Z)\) ratio of the coupling product (entries 4 and 5). Use of copper(I) thiophene-2-carboxylate instead of copper(I) iodide provided coupling product 34 in a better yield with exclusive \((E,E)\)-selectivity for both the non-protected and O-protected vinylstannanes 10 and 32 (entries 6 and 8).
Table 1. Investigation of reaction conditions for the Stille coupling using vinylstannanes

<table>
<thead>
<tr>
<th>entry</th>
<th>vinylstannane</th>
<th>reagents and conditions</th>
<th>% yield</th>
<th>((E,E):(E,Z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32</td>
<td>(\text{PdCl}_2(\text{MeCN})_2), DMF, rt to 45 °C</td>
<td>trace</td>
<td>not determined</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>(\text{Pd}_2(\text{dba})_3), (2-furyl)_3P, (\text{CuI}), DMSO/THF, rt</td>
<td>57</td>
<td>ca. 3.5:1</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>(\text{Pd}_2(\text{dba})_3), Ph_3As, (\text{CuI}), DMSO/THF, rt</td>
<td>54</td>
<td>ca. 5:1</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>(\text{Pd}_2(\text{dba})_3), (2-furyl)_3P, (\text{CuI}), DMSO/THF, 60 °C</td>
<td>48</td>
<td>1:1</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>(\text{Pd}_2(\text{dba})_3), Ph_3As, (\text{CuTC}), DMSO/THF, 60 °C</td>
<td>66</td>
<td>1:1</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>(\text{Pd}_2(\text{dba})_3), Ph_3As, (\text{CuTC}), DMSO/THF, rt</td>
<td>84</td>
<td>ca. 10:1</td>
</tr>
<tr>
<td>7(^a)</td>
<td>32</td>
<td>(\text{Pd}_2(\text{dba})_3), Ph_3As, (\text{CuI}), DMSO/THF, rt</td>
<td>40</td>
<td>1:0</td>
</tr>
<tr>
<td>8(^a)</td>
<td>32</td>
<td>(\text{Pd}_2(\text{dba})_3), Ph_3As, (\text{CuTC}), DMSO/THF, rt</td>
<td>69</td>
<td>1:0</td>
</tr>
</tbody>
</table>

\(^a\) Isolated as an inseparable mixture of 34b and \(1,6\)-bis(\text{ tert}-butyldiphenylsilyloxy)-3,4-dimethylhexa-2,4-diene (homocoupling product of 32). Yield was estimated based on \(^1\)H NMR of the mixture.

The best conditions in Table 1, entry 6, were employed for incorporating the 3,4-dimethylhepta-2,4-dienal side chain into brevenal (Scheme 7).\(^{3b,30}\)

Scheme 7. Stille coupling in the total synthesis of brevenal

Zakarian succeeded in the Stille coupling reaction of 37 and 10 without the protection of the hydroxy and acetamide groups by using CuBr·SMe\(_2\) instead of CuTC and obtained product 23 in good yield (Scheme 8).\(^{19}\)

Scheme 8. Stille coupling for construction of the dienal side chain of brevisamide
A similar cross-coupling reaction was achieved by the Negishi coupling reaction (Scheme 9). Panek prepared vinyl zinc species 11 from vinyl iodide 38 through a lithiation-zincation protocol. Negishi coupling reaction with vinyl iodide 39 afforded product 40 in good overall yield after the removal of the TBS group of 26.

Scheme 9. Negishi coupling for construction of the dienal side chain of brevisamide

2-1-3. Horner-Wadsworth-Emmons reaction

The third method for the synthesis of the 3,4-dimethylhepta-2,4-dienal side chain is the HWE reaction using phosphonate 12, which was synthesized from 3-hydroxy-2-butanone (41) in three steps: the Wittig reaction, bromination, and Arbuzov reaction (Scheme 10).

Scheme 10. Syntheses of phosphonates 12

Scheme 11. HWE reaction for construction of the dienal side chain of brevenal (ref. 31)
Kadota used this HWE reaction for the pentacyclic aldehyde obtained by Parikh-Doering oxidation of alcohol 43 at the final stage of the total synthesis of brevenal. A further three-step reaction sequence completed the total synthesis (Scheme 11). Lindsley reported the total synthesis of brevisamide using the HWE reaction with ethyl ester 12b and aldehyde 45 (Scheme 12) in which the presence of the acetamide group did not affect the reaction, and dienoate 46 was obtained in good yield. Thus, the HWE strategy is often adopted in the later total syntheses of brevisamide and brevenal for the construction of the dienal side chain because of easy access to phosphonate 12 (83–93%, 3-step overall) and tolerability for an acetamide group.

Scheme 12. HWE reaction for construction of the dienal side chain of brevisamide (ref. 14)

2-2. Installation of the acetamide side chain

In most reports, the acetamide side chain was installed at a later stage of the synthesis by acetylation of the corresponding primary amine, which was typically introduced either by the Curtius rearrangement of a carboxylic acid using DPPA or the reduction of a nitro or azido group (Scheme 13).

Scheme 13. Acetamide side chain installation
Recently, Mori and coworkers investigated the N-alkylation reaction of acetamide nucleophiles for the direct installation of the acetamide moiety using the model alkyl triflate 47 with KHMDS/18-crown-6 in THF (Table 2). Direct nucleophilic substitution by acetamide (48a) did not provide the N-alkylation product because of low solubility of the anion of 48a in THF (entry 1). N-Methoxycacetamide (48b) and diacetamide (48c) afforded both the desired N-alkylated products 49b and 49c, respectively, along with O-alkylated products 50b, 50c, and 51 (entries 2 and 3). When N-Boc- and N-Cbz-acetamides 48d and 48e were employed, desired N-alkylated products 49d and 49e were obtained in good yield (entries 4 and 5). A stoichiometric amount of 18-crown-6 was necessary to attain good conversion (entry 6).

In the actual synthetic route, N-alkylation using N-Cbz-acetamide 48e with alkyl triflate 53, prepared by the one-pot reaction for triflation-TBS protection of diol 52, provided the desired product 55 in good overall yield after removal of the benzyl and Cbz groups of 54 by hydrogenation (Scheme 14). This direct introduction of the acetamide group is apparently convenient and useful in organic synthesis.

Table 2. N-Alkylation of acetamide nucleophiles

<table>
<thead>
<tr>
<th>entry</th>
<th>PG</th>
<th>18-crown-6 (equiv)</th>
<th>time (h)</th>
<th>N-alkylated product (%)</th>
<th>O-alkylated product (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H 48a</td>
<td>2.0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>OMe 48b</td>
<td>2.0</td>
<td>1</td>
<td>49 (49b)</td>
<td>29 (50b)</td>
</tr>
<tr>
<td>3</td>
<td>Ac 48c</td>
<td>2.0</td>
<td>1</td>
<td>70 (49c)</td>
<td>24 (50c: 6 + 51: 18)</td>
</tr>
<tr>
<td>4</td>
<td>Boc 48d</td>
<td>2.0</td>
<td>0.5</td>
<td>90 (49d)</td>
<td>a</td>
</tr>
<tr>
<td>5</td>
<td>Cbz 48e</td>
<td>2.0</td>
<td>1.5</td>
<td>89 (49e)</td>
<td>7 (50e)</td>
</tr>
<tr>
<td>6</td>
<td>Cbz 48e</td>
<td>0.2</td>
<td>22</td>
<td>23 (49e)</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>Cbz 48e</td>
<td>–</td>
<td>16</td>
<td>8 (49e)</td>
<td>–</td>
</tr>
</tbody>
</table>

a) A small amount of product was detected by TLC but not isolated.

Scheme 14. Acetamide side chain installation by nucleophilic substitution of 48e
2-3. Installation of the axial methyl group

Stereoselective introduction of the C9 axial methyl group is a key feature of the synthesis of brevisamide. The most popular strategy is the asymmetric addition or asymmetric cycloaddition reaction to C8 aldehydes. Sasaki, Tachibana, and Smith employed the Evans aldol reaction,⁴⁶ which afforded syn-adducts with high diastereoselectivity. In the case of the Evans aldol, D-phenylalanine-derived chiral oxazolidinone ⁵⁶ was required to obtain the natural (8S,9R)-configuration (Scheme 15). Thus, Sabitha, Yadav, and Mohapatra chose the Crimmins titanium aldol reaction using L-phenylalanine-derived thiazolididthione ⁵⁹, which gave a non-Evans syn aldol product through a trident-chelate model.⁴⁷

![Scheme 15. C9 axial methyl introduction using asymmetric reaction](image-url)
Brown asymmetric crotylation with commercially available cis-crotyl-diisopinocampheylborane was used by Tachibana, Lindsley, and Reiner. Panek simultaneously constructed the C9 axial methyl and the THP ring by the [4+2]-annulation reaction using (Z)-anti-crotylsilane. The Jacobsen oxa-Diels-Alder reaction catalyzed by asymmetric chromium catalyst was applied in Ghosh’s total synthesis. Alternatively, syn-3-hydroxy-2-methylalkanamide was prepared by the dynamic kinetic resolution-asymmetric transfer hydrogenation (DKR–ATH) reaction using Noyori’s catalyst by Kumaraswamy. In the second synthesis of Yadav, the C9 methyl group of was introduced by regioselective methyl cuprate addition to epoxide prepared by the Sharpless epoxidation of.

There are four reports in which the axial methyl group was introduced on six-membered oxa-cycles (Scheme 16). Axial attack of dimethylcuprate to enone was demonstrated by Zakarian to afford the axial adduct with 8:1 diastereoselectivity. Kang reported that hydrogenation of an endo-cyclic tri-substituted olefin gave the axial methyl product preferentially. Although exo-cyclic olefin was predominantly reduced from the equatorial face to give the axial methyl product with moderate selectivity (3:1), the hydroxy-directed reduction of the exo-cyclic olefin using Crabtree’s catalyst was found to afford the axial-methyl product with good selectivity of.

Scheme 16. C9 axial methyl introduction using diastereoselective reaction

2-4. Tetrahydropyran (THP) core synthesis

A variety of methods for constructing the THP core of brevisamide have been explored (Figure 3). Some are classified by C12-O bond formation, which involves lactonization, epoxide ring-opening, oxa-Michael cyclization, iodoetherification, and oxonium ion allylation. Alternatively, the Williamson ether synthesis is used for C8-O bond formation. SmI2-mediated cyclization is applied to form the C11-C12 bond. All of these cyclization and annulation strategies, including the oxa-Diels-Alder approach and crotysilane-based [4+2] annulation strategy, involve the installation of
the C9 methyl group using asymmetric reactions, as shown in Scheme 15. The THP core can be further constructed by an Achmatowicz rearrangement, an oxiranyl anion strategy, ring-closing metathesis, and from 3-deoxy-D-glucal, followed by the installation of the axial methyl group, as shown in Scheme 16. In the following section, we discuss individual studies in more detail according to the type of THP synthesis.

3. BREVISAMIDE SYNTHESIS USING AN ASYMMETRIC REACTION FOR C9 AXIAL METHYL INSTALLATION

3-1. Lactonization (Tachibana’s total syntheses)

Tachibana’s first total synthesis involved conversion of cis-2-butene-1,4-diol (13) to chiral alcohol through TBS protection, ozonolysis, and Brown asymmetric crotylation (Scheme 17). The terminal olefin was cleaved by ozonolysis to aldehyde, which was subjected to a Wittig reaction to give hydroxy conjugate ester. Hydrogenation, followed by the PPTS-catalyzed lactonization, led to valerolactone. Transformation to the vinyl triflate and subsequent Stille coupling with tributylvinylstannane gave diene. Diol was stereoselectively obtained by double hydroboration with thexylborane from the less-hindered α-face of the diene. After protection of the secondary alcohol with a TBS group, the primary alcohol was oxidized to carboxylic acid by treatment with TEMPO, NaClO, and TBAC. A Curtius rearrangement, followed by acetylation of the resulting primary amine, furnished acetamide, in which all of the stereogenic centers of the THP core were confirmed by comparing with natural brevisamide. Deprotection of the TBDPS group, oxidation, and Wittig reaction afforded olefin. Finally, the 3,4-dimethyl-2,4-dienal side chain was furnished through a sequence of hydroboration of, Suzuki-Miyaura coupling with, desilylation, and allylic oxidation. In this first synthesis of brevisamide, Tachibana intended to install the amide side chain before Suzuki-Miyaura coupling in order to compare the stereochemistry of with that of brevisamide. However, as mentioned in Section 2-1-1, the presence
of the acetamide group caused an unexpected low yield of the Suzuki-Miyaura coupling. Thus, a more effective second route was investigated.

In the second-generation synthesis, Tachibana used the Evans aldol reaction of oxazolidinone 6 and 3-(benzyloxy)propanal (66) for the construction of the C8-C9 chiral centers (Scheme 18). The imide group was transformed to Winreb’s amide moiety, and subsequent reduction with LiAlH4 afforded aldehyde 96. The HWE reaction using Ando’s phosphonate advanced the olefination and spontaneous lactonization to enoate 97, which was hydrogenated to valerolactone 98. This transformation saved one step compared to the previous route (Scheme 17, 86-89). After vinyl triflate formation, palladium-catalyzed carbonylation in the presence of methanol provided unsaturated methyl ester 99. Reduction of methyl ester 99 followed by hydroboration from the less-hindered face furnished diol 100, which was protected with TBS groups to 101. The benzyl group was then removed using LiDBB. The resulting hydroxy group was transformed to iodide 24, which was subjected to lithiation, borylation, and...
Suzuki-Miyaura coupling with the dienyl bromide 9d to give coupling product 26 in better yield (64%) than the previous synthesis. After selective removal of the TBS group of the primary alcohol with CSA, the resulting alcohol was iodinated to 102. The acetamide side chain was furnished through azidation, reduction, and acetylation, and subsequent treatment with TBAF provided diol 23. Finally, selective oxidation of the allylic alcohol with TEMPO afforded brevisamide (1).

Scheme 18. Tachibana’s total synthesis (second generation)

3-2. SmI$_2$-induced ketyl radical cyclization (Lindsley’s total synthesis)

Lindsley reported the second total synthesis of brevisamide14 using the SmI$_2$-induced ketyl radical cyclization63 for the construction of the THP ring (Scheme 19). 4-Benzylxy-1-butanol (103) was oxidized to aldehyde 60, which was subjected to the Brown asymmetric crotylation reaction to homoallylic alcohol 104. The hydroboration reaction of the terminal olefin provided the primary alcohol, which was then protected with a TBS group. The secondary alcohol 105 was subjected to conjugate addition with ethyl propiolate to give alkoxy acrylate 106. Removal of the TBS group followed by Swern oxidation afforded aldehyde 107. The SmI$_2$-mediated ketyl radical cyclization reaction furnished the
C11-C12 bond with the desired stereochemistry. The obtained hydroxy ester 108 was protected with a TBS group, and the ethyl ester was hydrolyzed to the corresponding carboxylic acid 109, which then underwent a Curtius rearrangement to primary amine 110. After acetylation, debenzylation, and Swern oxidation, the resulting aldehyde 45 underwent the HWE reaction with phosphonate 12b to provide dienoate 46. Completion of the synthesis was achieved through three additional steps: DIBAL reduction, TBS deprotection, and allylic oxidation with MnO₂.

Scheme 19. Lindsley’s total synthesis

3-3. Addition of alcohol to olefin (Sabitha’s and Kumaraswamy’s formal syntheses)

There are two reports wherein the THP core is accessed by intramolecular addition of an alcohol to an olefin: Sabitha used the oxa-Michael reaction and Kumaraswamy used the iodoetherification reaction. Sabitha’s synthesis commenced with the Crimmins aldol reaction, and aldol product 61 was reduced with DIBAL-H after TBS protection to aldehyde 111 (Scheme 20). Wittig reaction followed by DIBAL-H reduction provided allylic alcohol 113, which was isomerized by Pd(OH)₂/C to aldehyde 114. A one-pot synthesis involving a proline-catalyzed enantioselective α-alkoxyamination, a HWE addition, and cleavage of the N-O bond afforded γ-hydroxy enoate 117. Treatment with TBAF advanced the
spontaneous desilylation and cyclization reaction66 to the desired, thermodynamically stable THP core 108—the intermediate of Lindsley’s synthesis.

Kumaraswamy employed the DKR–ATH reaction for the preparation of hydroxy amide 74, which was subjected to TBS protection followed by reduction to aldehyde 118 (Scheme 21).21 Wittig olefination and conjugate reduction with LiBH\textsubscript{4} provided alcohol 120, and Dess-Martin oxidation gave aldehyde 121. MacMillan’s asymmetric α-chlorination generated α-chloroaldehyde 123, and the subsequent \textit{in situ} reduction-epoxidation sequence afforded chiral epoxide 124.67 Treatment with a sulfonium ylide followed by desilylation with TBAF provided diol 125.68 The key iodoetherification reaction of allylic alcohol 125 unfortunately led to the exclusive formation of iodide 127,69 which had the undesired C12 stereochemistry because of the cyclization conformation of 126, in which the C9 methyl group was oriented in the equatorial position, and the C8 benzyloxymethyl and C11 hydroxy groups were axial. This result contrasted with Sabitha’s oxa-Michael reaction, which provided the thermodynamically stable isomer 108. Fortunately, inversion of the C12 stereocenter was accomplished by TBS protection, elimination, and hydroboration to give alcohol 129, which was converted to the enantiomer of Tachibana’s intermediate \textit{ent}-94 by a three-step process.
Scheme 21. Kumarsawamy’s formal synthesis

3-4. Allylation of oxonium ion (Mohapatra’s formal syntheses)

Recently, Mohapatra reported another formal total synthesis of brevisamide using the iodine-catalyzed allylation reaction of an oxonium ion (Scheme 22).24 A Crimmins aldol adduct 131 was transformed to enoate 133 according to Sabitha’s report. After three steps, the unsaturated aldehyde 134 was subjected to cyclization with excess allyltrimethylsilane in the presence of a catalytic amount of iodine. The trimethylsilyl iodide (TMSI) generated in situ promoted the isomerization of the enoate and formation of oxonium 135; subsequent attack by allyltrimethylsilane gave trans-2,6-disubstituted-3,4-dihydropyran 136 exclusively, which had a C13 stereocenter epimeric to that of brevisamide.20 After oxidative cleavage of the terminal vinyl group to the carboxylic acid by Lemieux-Johnson oxidation, followed by Pinnick oxidation, the oxygen functional group at C12 was furnished by the iodolactonization reaction. The resulting iodide 138 was reduced to lactone 139 under radical conditions, and the subsequent hydrolysis of the lactone gave a hydroxy carboxylic acid, which was converted to the TBS-protected methyl ester 141. The C13 stereogenic center was epimerized under basic conditions, and methyl ester 142 was then hydrolyzed to carboxylic acid 143. Curtius rearrangement of the acid, followed by acetylation, afforded amide 144. The PMB group was deprotected by DDQ, and the resulting alcohol was oxidized to aldehyde.
Finally, the HWE reaction using 12b provided intermediate 46. Although the C12 stereogenic center was efficiently introduced by iodolactonization in this synthesis, the necessity of the removal of iodine at C11 and epimerization at the C13 stereogenic center made this synthesis a longer route.

Scheme 22. Mohapatra’s formal synthesis

3-5. Epoxide ring-opening reactions (Smith’s and Yadav’s formal syntheses)

Smith employed the 6-exo-epoxide ring-opening reaction of a hydroxy epoxide in his formal synthesis (Scheme 23). The acrolein-derived aldol adduct 145 was subjected to TIPS protection, and LiBH₄ reduction gave alcohol 146. Alcohol 146 was transformed to cyanide 147 through the Appel iodination and subsequent SN₂ substitution with NaCN. Reduction of the cyanide group to the aldehyde followed by a Wittig reaction afforded enoate 148 in good yield. The Sharpless asymmetric dihydroxylation of 148
using AD-mix-α22 provided dihydroxy ester 149 with the terminal olefin remaining intact. The ester was reduced with LiBH\textsubscript{4} to triol 150, wherein the primary alcohol was selectively sulfonated with 2,4,6-trisopropylbenzenesulfonyl imidazole (TPS-imid). The resulting sulfonate underwent cyclization mediated by NaH to yield an epoxide,21 and the remaining hydroxy group was protected with a PMB group to 151. After removal of the TIPS group, epoxy alcohol 152 was exposed to the acid-catalyzed 6-exo-cyclization reaction to yield 153. The potential brevisamide intermediate 155 was obtained after introducing an acetamide through azidation-reduction-acetylation. Synthesis of Tachibana’s intermediate 21 through a four-step sequence from 154 completed this formal synthesis of brevisamide.

The THP core was constructed by a 6-endo epoxide-opening reaction in Yadav’s first synthesis (Scheme 24).20a Aldol adduct 61 was subjected to TBS protection, reduction, and bromination to give bromide 156. Nucleophilic substitution of the bromide with THP-protected propargyl alcohol to alkyne 157 was followed by the removal of the THP group with dithiol and Red-Al reduction to afford allyl alcohol 158.21 The Sharpless asymmetric epoxidation reaction furnished epoxide 159, where the alcohol group was transformed to the trans-styryl group in 160 in preparation for the regioselective 6-endo cyclization reaction.25 After TBS removal, 6-endo cyclization of vinyl epoxide 161 was mediated by sodium hydride in DMSO. After protection of the secondary alcohol with TBS, the styryl group was cleaved by ozonolysis, followed by reduction with NaBH\textsubscript{4}, to afford alcohol 164. The alcohol was then transformed to acetamide 165, which was the intermediate of Lindsley’s total synthesis. The bio-mimetic 6-endo
cyclization approach is interesting; however, this synthesis required four additional steps for the introduction and removal of the styryl group that was necessary for 6-endo cyclization.

Scheme 24. Yadav’s first synthesis

3-6. Annulation reaction for the THP core (Ghosh’s and Panek’s total syntheses)

Two total syntheses of brevisamide based on the annulation strategy have been reported so far. Ghosh’s total synthesis\(^\text{15}\) commenced with the addition of ethylmagnesium bromide to conjugate aldehyde \(166, 76\) Swern oxidation, and enal silylation (Scheme 25). The resulting diene \(68\) was subjected to an asymmetric oxa-Diels-Alder reaction with aldehyde \(69\), catalyzed by the Jacobsen chromium catalyst \(70, 50\) to produce the cyclic TES enol ether \(71\). Oxidation with \(m\)-CPBA to \(\alpha\)-hydroxy ketone \(167, 77\) was followed by removal of the ketone moiety by the Wolff-Kishner reduction to afford \(168, 78\). The secondary alcohol was protected with a TBS group, and the benzyl group was removed by hydrogenation. The resulting primary alcohol \(169\) was transformed to acetamide \(170\) via azidation, hydrogenation, and acetylation. Finally, vinyl derivative \(21\) obtained from \(170\) by elimination using Grieco’s method\(^\text{79}\) was subjected to hydroboration with 9-BBN, followed by Suzuki-Miyaura coupling with iodide \(9b\). The TEMPO oxidation then completed the total synthesis of brevisamide (1).
Scheme 25. Ghosh's total synthesis

1. EtMgBr, THF
2. Swern, 84% for 2 steps
3. TESOTf, Et$_3$N, -78 °C, 84%

1. T$_2$NH$_2$
2. NaNbH$_4$CN
3. NaOAc, EtOH, 75% for 3 steps

1. TESOTf, Et$_3$N, 0 °C
2. H$_2$, Pd/C, 82% for 2 steps
3. PPTS, EtOH, 77% for 2 steps

1. PPh$_3$, DIAD
2. H$_2$, Pd/C
3. NaHCO$_3$

Scheme 26. Panek’s total synthesis

1. LiAlH$_4$, Et$_2$O, 0 °C
2. TBSCl, imidazole, DMF, rt, 84% for 2 steps

1. Li$_2$O, 2,6-lutidine
2. Me$_3$SiCl, THF, -78 °C to rt
3. Me$_3$SiCl, THF, -78 °C to rt

1. iBuLi, ZnCl$_2$, THF
2. CSA, MeOH, CH$_2$Cl$_2$
3. Me$_3$SiCl, THF, -78 °C to rt

1. DIAD, PPh$_3$, DPPA, THF, 80%
2. PPh$_3$, NH$_2$OH, dioxane/MeOH, rt
3. Ac$_2$O, DMAP, Et$_3$N, CH$_2$Cl$_2$, rt, 83% (2 steps)

brevisamide (1)
Panek achieved the total synthesis of brevisamide through an oxonium-ene cyclization reaction (Scheme 26).16 Crotylsilane 65 and 3-(benzyloxy)propanal 66 were treated with TMSOTf to afford 67 via \textit{in situ}-generated oxonium salt 171.49 After isomerization of the double bond with DBU to the conjugate system, the methoxycarbonyl group of 172 was reduced to the hydroxymethyl group, and the resulting alcohol was protected with TBS to give 173. Hydroboration from the axial face afforded alcohol 174, and subsequent TBS protection followed by debenzylation gave alcohol 175. Triflation with trifluoromethanesulfonic anhydride and substitution with 1-propynyllithium provided acetylene 176. Hydrozirconation using the Schwarz reagent followed by iodination gave vinyl iodide 39,77,80 which was subjected to Negishi coupling with vinylzinc derived from iodide 38 to give 40.43 After assembling the acetamide side chain to 177, the TBDPS and TBS groups were removed with TBAF, and the resulting allylic alcohol was oxidized with MnO\textsubscript{2} to complete the total synthesis of brevisamide (1).

3-7. \textit{S}_{\text{N}}2 cyclization at the C8-O bond (Yadav’s total syntheses)

Yadav’s second synthesis20b commenced with the allylation reaction of D-glyceraldehyde acetonide (178) followed by protection to benzyl ether 179 (Scheme 27).

Scheme 27. Yadav’s second synthesis
The terminal olefin was subjected to one-pot ozonolysis and Wittig olefination to afford enoate 180. The ester group was reduced with DIBAL-H, and the resulting allylic alcohol 75 underwent Sharpless asymmetric epoxidation to give epoxide 76 after benzylation. Regioselective methyl cuprate addition to the epoxide afforded alcohol 77 with the desired stereochemistry for the C9 methyl group, while the C8 hydroxy group had the unnatural S configuration. Thus, alcohol 77 was converted to mesylated diol 181 and subjected to NaH-mediated S$_2$N$_2$ cyclization, which advanced the THP core formation and inverted the C8 oxygen functional group. The remaining primary alcohol was protected with TBSOTf, and two benzyl groups were removed with Li-naphthalenide to diol 183. The selective oxidation of the primary alcohol in 183 with TEMPO/PhI(OAc)$_2$ and one-pot Wittig reaction provided enoate 184. The C=C double bond was reduced to 185 by hydrogenation and the secondary alcohol in 186 was protected with a TBS group. Installation of the acetamide side chain by the conventional method, followed by DIBAL-H reduction, afforded aldehyde 45. Synthesis of brevisamide was completed after carrying out four more steps based on Lindsley’s total synthesis.

4. BREVISAMIDE SYNTHESIS USING DIASTEREOSELECTIVE C9 METHYL INTRODUCTION

4-1. Achmatowicz rearrangement for the THP core (Zakarian’s total synthesis)

Zakarian used the Achmatowicz rearrangement for the construction of the THP core of brevisamide (Scheme 28). Furanyl ester 187 was converted to the corresponding alkyne 189 through LiAH$_4$ reduction, Swern oxidation, and subsequent Corey-Fuchs alkyne synthesis. Formylation of the furan ring by the Vilsmeier-Haack reaction to aldehyde 190 and the asymmetric Henry reaction using Wang’s catalyst gave 192. The nitro group of the resulting adduct was reduced to the primary amine, and subsequent acetylation afforded acetamide 193. The Achmatowicz rearrangement using N-bromosuccinimide followed by reduction with Et$_3$SiH provided cyclic enone 194, corresponding to the THP core of brevisamide. Axial attack of dimethylcuprate to the conjugate enone gave the methyl adduct 196 with 8:1 diastereoselectivity. The best axial reduction was obtained using NaBH$_4$ in an aqueous THF solvent system to give 196 in 43% yield along with its epimer (43%). The reduction of the ketone under normal NaBH$_4$ reduction conditions (e.g., NaBH$_4$ in MeOH) exclusively provided the undesired epimer, having been reduced from the less-hindered equatorial face. The silyl cuprate addition to alkyne followed by iodination using NIS provided vinyl iodide 37. Stille cross-coupling with vinylstannane 10 under modified Sasaki’s conditions provided the coupling product ent-23. Finally, oxidation of the allylic alcohol with TEMPO provided (+)-brevisamide.
Scheme 28. Zakarian’s total synthesis

4-2. THP core from tri-O-acetyl-D-glucal (Sridhar’s formal synthesis)

Sridhar’s synthesis\(^\text{22}\) started from 3-deoxy-D-glucal dibenzyl ether 197 prepared from tri-O-acetyl-D-glucal\(^\text{85}\) (Scheme 29). Formylation by the Vilsmeier-Haack reaction to aldehyde 198 and reduction to
alcohol 199 were followed by treatment with ethyl vinyl ester in the presence of Hg(OAc)_2 to afford vinyl ether 200. Claisen rearrangement of 200 provided aldehyde 201 in 66:36 diastereomeric ratio. The diastereomixture was isomerized to the more stable isomer using Zn(OAc)_2 and then reduced to alcohol 82. The exo-methylene in 82 was hydrogenated using 10% Pd/C to afford product 83 with 75:25 diastereoselectivity. A further three-step protecting group manipulation was necessary to obtain Panek’s brevisamide intermediate 175.

4-3. Ring-closing metathesis at C9-C10 bond (Kang’s formal synthesis)
Kang achieved the formal total synthesis of brevisamide based on a unique retrosynthetic analysis that includes C9-C10 formation by ring-closing metathesis (Scheme 30). Enolate 203 prepared in three steps from 1,4-butandiol was subjected to DIBAL-H reduction, followed by Sharpless epoxidation to epoxy alcohol 204. The alcohol was converted to iodide, and subsequent Zn-mediated cleavage of the oxiranylmethyl iodide afforded allylic alcohol 205. The alcohol was alkylated with bromoacetic acid, and the resulting carboxylic acid 206 was transformed to oxazolidinyl imide 207 by the mix anhydride protocol. The chlorotitanium-mediated aldol reaction with acrolein provided the Evans syn-aldol adduct 208 with the desired configuration at C12, but epimeric at C11. The imide functional group was removed reductively using LiBH₄, and the diene moiety was subjected to ring-closing metathesis to afford

Scheme 30. Kang’s formal synthesis
After protection of the primary alcohol, the stereochemistry of the alcohol at C11 was inverted from β to α by oxidation and reduction to give 80. The endo-olefin was hydrogenated to alkyne 81 diastereoselectively, followed by TBS-protection of the secondary alcohol and deprotection of the primary alcohol. The resulting primary alcohol 210 was converted to Lindsley’s acetamide 165 via the azidation route.

4-4. Oxiranyl anion strategy (Mori’s total synthesis)

Mori’s total synthesis is characterized by the oxiranyl anion strategy for the THP core construction (Scheme 31). 4-(Benzylxylo)-1-butanol was subjected to a three-step transformation to epoxysulfone 211, which was treated with n-BuLi at –100 °C in the presence of alkyl triflate 212 to afford the coupling product 213. The TES group was removed by p-TsOH·H2O, and the epoxysulfone was treated with MgBr2·OEt2 to afford bromoketone 214. The cyclization with DBU provided the six-membered ketone 215 along with its C8 diastereomer epi-215, which was epimerized to 215 using DBU. Ketone 215 was

Scheme 31. Mori’s total synthesis
transformed to exo-methylene 216 by the Wittig reaction, and the di-tert-butylsilylene group was removed with TBAF. The resulting diol 84 was reduced using Crabtree’s catalyst to afford the axial methyl product 52 in a 94:6 diastereomeric ratio,57 from which the pure isomer was obtained by recrystallization. The triflation of the primary alcohol and TBS protection of the secondary alcohol were carried out in a one-pot operation to afford 53. Nucleophilic substitution of N-Cbz-acetamide 48e to N-alkylated product 54 and the subsequent removal of the benzyl and Cbz groups afforded alcohol 55. The five additional steps carried out according to Lindsley’s synthesis provided brevisamide (1).

5. TABULAR SUMMARY OF TOTAL SYNTHESIS OF BREVISAMIDE

A comprehensive tabular summary of eight total and seven formal total syntheses of brevisamide is provided in Table 3 for comparative purposes.

Table 3. Summary of the syntheses of brevisamide

<table>
<thead>
<tr>
<th>online publication</th>
<th>research group</th>
<th>THP core construction</th>
<th>dienal a</th>
<th>longest sequence b</th>
<th>overall yield c</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dec. 2008</td>
<td>Tachibana</td>
<td>lactonization</td>
<td>Suzuki</td>
<td>21 steps</td>
<td>1.6%</td>
<td>9a</td>
</tr>
<tr>
<td>2 Jul. 2009</td>
<td>Lindsley</td>
<td>SmI₂ radical cyclization</td>
<td>HWE</td>
<td>18 steps</td>
<td>6.3%</td>
<td>14</td>
</tr>
<tr>
<td>3 Aug. 2009</td>
<td>Ghosh</td>
<td>oxa-Diels-Alder</td>
<td>Suzuki</td>
<td>18 steps</td>
<td>1.7%</td>
<td>15</td>
</tr>
<tr>
<td>4 Sep. 2009</td>
<td>Panek</td>
<td>crotylsilane-based [4+2]</td>
<td>Negishi</td>
<td>17 steps</td>
<td>6.4%</td>
<td>16</td>
</tr>
<tr>
<td>5 Jul. 2010</td>
<td>Tachibana</td>
<td>lactonization</td>
<td>Suzuki</td>
<td>21 steps</td>
<td>8.6%</td>
<td>9b</td>
</tr>
<tr>
<td>6 Nov. 2010</td>
<td>Smith III</td>
<td>6-exo-epoxide RO</td>
<td>—</td>
<td>14 (+3) steps</td>
<td>3.1%</td>
<td>17</td>
</tr>
<tr>
<td>7 Dec. 2010</td>
<td>Sabitha</td>
<td>Oxa-Michael</td>
<td>—</td>
<td>9 (+10) steps</td>
<td>6.5%</td>
<td>18</td>
</tr>
<tr>
<td>8 Jun. 2011</td>
<td>Zakarian</td>
<td>Achmatowicz rear.</td>
<td>Stille</td>
<td>16 steps</td>
<td>2.5%</td>
<td>19</td>
</tr>
<tr>
<td>9 Mar. 2013</td>
<td>Yadav</td>
<td>6-endo-epoxide RO</td>
<td>—</td>
<td>19 (+4) steps</td>
<td>1.35%</td>
<td>20a</td>
</tr>
<tr>
<td>10 Jul. 2013</td>
<td>Yadav</td>
<td>S₈2 cyclization</td>
<td>HWE</td>
<td>22 steps</td>
<td>5.3%</td>
<td>20b</td>
</tr>
<tr>
<td>11 Aug. 2013</td>
<td>KumaraSwamy</td>
<td>iodo etherification</td>
<td>—</td>
<td>16 (+5) steps</td>
<td>4.1%</td>
<td>21</td>
</tr>
<tr>
<td>12 Nov. 2014</td>
<td>Sridhar</td>
<td>tri-O-acetyl-D-Glucal</td>
<td>—</td>
<td>11 (+9) steps</td>
<td>1.9%</td>
<td>22</td>
</tr>
<tr>
<td>13 Jan. 2015</td>
<td>Kang</td>
<td>ring-closing metathesis</td>
<td>—</td>
<td>22 (+5) steps</td>
<td>1.9%</td>
<td>23</td>
</tr>
<tr>
<td>14 Apr. 2016</td>
<td>Mohapatra</td>
<td>oxonium ion allylation</td>
<td>HWE</td>
<td>22 (+3) steps</td>
<td>5.4%</td>
<td>24</td>
</tr>
<tr>
<td>15 Apr. 2016</td>
<td>Mori</td>
<td>oxiranyl anion strategy</td>
<td>HWE</td>
<td>18 steps</td>
<td>5.9%</td>
<td>25</td>
</tr>
</tbody>
</table>

a) Assembling method for the 3,4-dimethyl-2,4-dienal side chain. b) Longest linear sequence starting from the commercially available substrates (cis-2-butene-1,4-diol 13, 3-(benzyloxy)-1-propanol 66, 4-(benzyloxy)-1-butanol 103, ethyl 3-(2-furyl)propionate 187, and 1,4-butanediol) or the known starting materials ((Z)-crotylsilane 65, conjugated aldehyde 166, Winreb’s amide 72, acrolein aldol adduct 145, glucal derivative 197, and aldehyde 130), whose synthetic steps were not counted. For formal syntheses, the remaining steps toward brevisamide are shown in parentheses. c) Overall yield of the longest linear sequence. For formal syntheses, the yields were calculated using the yields of the cited total synthesis for the remaining steps.
6. CONCLUSION
Recent advances in synthetic methodology have allowed access to a variety of routes toward brevisamide, culminating in 15 total and formal total syntheses in the nine years since it was discovered. These syntheses involved highly diverse methods for constructing the THP core, installing the four stereogenic centers, and assembling the side chains. However, even the shortest total synthesis requires 16 steps, which is significant for such a small monocyclic molecule (i.e., Zakarian’s total synthesis). The overall yields of all 15 synthetic processes remain in single digits. Therefore, the development of more efficient synthetic methods for highly functionalized oxacyclic compounds is still an important task.

ACKNOWLEDGEMENTS
This study was partially supported by Grant-in-Aid for Scientific Research (C) (16K08182 and 16K08183) from the Japan Society for the Promotion of Science (JSPS), and the Science Research Promotion Fund from the Promotion and Mutual Aid Corporation for Private Schools of Japan.

REFERENCES

56. Diasteremic ratio of 81 is not provided in reference 23.

76. Aldehyde **166** was synthesized from *cis*-2-buten-1,4-diol (3 steps, 80% overall). J.-F. Fournier, S. Mathieu, and A. B. Charette, *J. Am. Chem. Soc.*, 2005, **127**, 13140.

Takeo Sakai was born in 1981 in Fukuoka, Japan. He received his Ph. D. degree from Kyoto University in 2008 under the supervision of Professor Kiyoshi Tomioka, and then worked with Professor Rick L. Danheiser as a postdoctoral fellow at Massachusetts Institute of Technology for two years. He joined Mori’s research group at Meijo University as an assistant professor in 2010, and promoted to associate professor in April, 2016. His research interests are synthesis of marine natural products and development new synthetic methodologies.

Yuji Mori was born in Gifu, Japan, in 1950. He received his Ph. D. degree in 1978 from Kyoto University. He was appointed as Assistant Professor of Meijo University in 1978. From 1983 to 1985, he worked with Professor Clark Still as a visiting researcher at Columbia University. He was promoted to Associate Professor in 1993 and then to Professor in 2000. He was a recipient of Pharmaceutical Society of Japan for Young Scientist (1993). His research interests are in the exploration of new synthetic strategies and total synthesis of biologically and structurally interesting marine natural products.