BIOMIMETIC SYNTHESIS OF ANTRODIA MALEIMIDES AND MALEIC ANHYDRIDES‡

John Boukouvalas* and Vincent Albert

Département de Chimie, Pavillon Alexandre-Vachon, 1045 Avenue de la Médecine, Université Laval, Quebec City, Quebec G1V 0A6, Canada
*E-mail: john.boukouvalas@chm.ulaval.ca

‡Dedicated to Professor Victor Snieckus on the occasion of his 77th birthday and in recognition of his significant contributions to heterocyclic chemistry

Abstract – A simple and efficient biomimetic synthesis of Antrodia maleimides and maleic anhydrides, including the HCV protease inhibitor antrodin A, is described. The key step is a Perkin-type condensation performed under exceptionally mild conditions.

The development of practical methods for constructing 3,4-disubstituted maleic anhydrides and maleimides continues to attract a great deal of attention due to the important biological properties of many such compounds. In 2004, Hattori and co-workers reported the isolation of a small family of closely related natural products, exemplified by antrodins A-C (1-3), from the treasured Taiwanese medicinal fungus Antrodia camphorata (a.k.a. Antrodia cinnamomea). Subsequently, in 2008 and 2013, additional members of the antrodin family were reported (e.g. 4-7, Figure 1). Despite their simple structures, the antrodins display a range of highly sought biological activities. Anhydride 1 is a non-cytotoxic, potent and selective inhibitor of hepatitis C virus (HCV) protease (IC₅₀ = 0.9 µg/mL). In contrast, maleimide 2 is devoid of HCV-protease inhibitory activity but suppresses the growth of estrogen-independent, highly metastatic MDA-MB-231 breast cancer cells in nude mice at a dose as low as 3 mg/kg (x3/week, i.p.). Furthermore, newer members of this family, including 5-7, have been shown to inhibit the production of pro-inflammatory mediators such as IL-6 and NO. So far, antrodins 1-3 have been synthesized by four groups including our own. The shortest available route requires a total of six steps to assemble anhydride 1 from which the maleimides 2-3 are derived.
On the other hand, γ-hydroxybutenolide 6 has only been prepared once through oxyfunctionalization of the corresponding butenolide. Our quest for a shorter route to 1-7 led us to consider the biosynthesis of these compounds, thought to arise via Perkin-type condensation of α-ketoisocaproic acid (KIC) with 8 (Scheme 1). Interestingly, the only mention of 8 in the literature pertains to its isolation from a fungus, which somewhat increases the likelihood of being a biosynthetic precursor of 1. We now report that this biomimetic pathway is not only realizable but provides a remarkably short and efficient synthesis of 1-3 and their congeners.

Gram-quantities of the requisite homovalencic acid 8 were easily obtained from commercial phenol 9 by prenylation and subsequent ester hydrolysis (Scheme 2). In a seminal study of the Perkin condensation, Fields and co-workers have shown that this process works well for preparing 3,4-diarylmaleic anhydrides but rather poorly when one of the aryl groups is replaced by an alkyl. Furthermore, a literature survey revealed that all documented applications of the Fields method pertain to the synthesis of diaryl-substituted maleic anhydrides. Unsurprisingly, initial attempts at condensing 8 with commercial α-ketoisocaproic acid (or its potassium salt) using the Fields conditions (Ac₂O, 140 °C) led only to traces of 1 (<10%). To our delight, however, a systematic investigation of various reaction parameters enabled an optimal procedure to be found, which consists in the use of triethylamine and acetic anhydride (5 equiv.

Figure 1. Representative members of the antrodin family

Scheme 1. Proposed biosynthesis of 1 and 6
each) and the free α-keto acid in THF at room temperature. Under these mild conditions, antrodin A (1) was obtained in a respectable yield of 79% after flash chromatography. Since the conversion of 1 to antrodins B-C (2-3) has been reported, our route also delivers the latter in step-economical fashion. The usefulness of this chemistry is further demonstrated by the first synthesis of the anti-inflammatory norprenyl antrodin 5 and an exceptionally short formal synthesis of antrodin 4 (Scheme 2). Thus, commercial p-methoxyphenylacetic acid (10) was transformed in a single step (72%) to anhydride 11, which had previously been prepared by a 7-step route from citraconic anhydride (15.4% overall). Conversion of 11 to maleimide 12 followed by demethylation afforded antrodin 5 (mp 202-205 °C, lit. 4a 199-201 °C) whose NMR data were in good agreement with those reported for the natural product.

Scheme 2. Short synthesis of antrodins 1-5 from commercial chemicals

With easy access to anhydride 1, its reduction to antrocinnamomin D (6) was also explored (Eq. 1). The contrasting steric and electronic effects operating on either of the two carbonyl groups of 1 suggested that the task of attaining good regioselectivity would be challenging. After screening several metal hydrides,
including NaBH₄, LiAlH(t-BuO)₃, and K₈ N and L-selectride, it was found that the three selectrides gave some selectivity in favor of 6, with the best ratio (ca. 4:1) obtained using the L-version (Eq. 1). Nonetheless, the difficulties encountered in separating the two isomers from each other and the modest yields of the so obtained 6/13 mixtures (35-50%) led us to abandon this approach, especially when considering the availability of a highly efficient, regiospecific method for constructing 6 and related γ-hydroxybutenolides.¹²-¹³

In conclusion, we have described a remarkably short, biomimetic synthesis of the potent HCV protease inhibitor antrodin A (3 steps, 73% overall), which represents a significant improvement over the previous synthetic routes.⁹-¹² The approach is modular, amenable to scale-up and demonstrates the serviceability of Perkin condensation for assembling 3-alkyl-4-aryl substituted maleic anhydrides.

ACKNOWLEDGEMENTS
We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Quebec-FQRNT Centre in Green Chemistry and Catalysis (CGCC) for financial support. We also thank FQRNT for a doctoral scholarship to V.A.

REFERENCES AND NOTES

16. Data for homovalencic acid (8): white powder, mp 73-75 °C (lit. brown powder); IR (NaCl, film): ν 3030 (br), 2965, 2915, 2865, 1694, 1614, 1514, 1442, 1423, 1407, 1385, 1300, 1251, 1179, 1011, 925, 816 cm⁻¹, ¹H NMR (500 MHz, CDCl₃): δ 7.18 (d, J = 9.0 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 5.49 (t, J = 7.0 Hz, 1H), 4.48 (d, J = 7.0 Hz, 2H), 3.58 (s, 2H), 1.79 (s, 3H), 1.74 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ = 178.0, 158.3, 138.4, 130.5, 125.3, 119.8, 114.9, 64.9, 40.2, 26.0, 18.3; HRMS (ESI): m/z calcd for C₁₃H₁₇O₃ [M + H]⁺: 221.1172; found: 221.1172.
19. **Synthesis of Antrodin A (General Procedure)**: To a solution of 8 (100.7 mg, 0.457 mmol, 1.0 equiv) and α–ketoisocaproic acid (65.4 mg, 0.503 mmol, 1.1 equiv) in THF (2.5 mL), acetic anhydride (216 μL, 233.4 mg, 2.286 mmol, 5 equiv) and triethylamine (318 μL, 231.3 mg, 2.286 mmol, 5 equiv) were successively added. After 4 h at rt, the mixture was partitioned between 40 mL of ethyl acetate and 40 mL of water. The organic layer was separated and the aq. phase was extracted.
with ethyl acetate (2 x 40 mL). The combined organic phases were dried (MgSO₄) and concentrated. Purification by flash chromatography (CombiFlash, 10% EtOAc/hexanes) afforded antrodin A (1) as a fluorescent yellow oil (113.7 mg, 79 %) whose ¹H and ¹³C NMR spectra were identical to those described in the literature.¹²

20. Data for maleimide 12: fluorescent yellow solid, mp 134-136 °C; IR (NaCl, film): ν 3247 (br), 2961, 2933, 2871, 2847, 1764, 1710, 1606, 1513, 1464, 1353, 1336, 1297, 1253, 1177, 1029, 841, 825 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.51 (d, J = 9.0 Hz, 2H), 7.25 (br s, 1H), 6.98 (d, J = 9.0 Hz, 2H), 3.86 (s, 3H), 2.51 (d, J = 7.5 Hz, 2H), 2.05 (m, 1H), 0.90 (d, J = 7.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ = 171.7, 171.1, 160.8, 139.4, 138.9, 131.1, 121.4, 114.3, 55.5, 33.0, 28.3, 22.9; HRMS (ESI): m/z calcd for C₁₅H₁₈NO₃ [M + H]⁺: 260.1281; found: 260.1280.