SYNTHESIS AND OPTICAL PROPERTIES OF ZINCKE SALTS HAVING CHIRAL ANIONS

Isao Yamaguchi,* Mikihiko Minamitani, and Sachiko Jonai

Department of Material Science, Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan; E-mail: iyamaguchi@riko.shimane-u.ac.jp

Abstract — Zincke salts having chiral anions were obtained by the anion exchange reaction of Zincke salts having a chloride anion with \(R\text{-}(-) \) or \(S\text{-}(+) \)-binaphthylphospholic acid sodium salts (\(R\text{-BINAP-PO}_4\text{Na} \) and \(S\text{-BINAP-PO}_4\text{Na} \)). The anion exchange behavior was investigated by photoluminescence measurements. The circular dichroism (CD) spectra of the Zincke salts having \(R\text{-BINAP-PO}_4^- \) or \(S\text{-BINAP-PO}_4^- \) showed relatively strong negative and positive Cotton effects, respectively.

INTRODUCTION

Zincke salts, a highly electrophilic species formed by reaction between a pyridine derivative and 1-chloro-2,4-dinitrobenzene, are versatile compounds that can afford various \(N \)-substituted pyridinium salts as a result of reaction with amines. Pyridinium salts are an important class of compounds that are used as initiators of cationic polymerization,\(^1\) cationic surfactants,\(^2\) non-linear optical materials,\(^3\) and phase transfer catalysts.\(^4\) Pyridinium salts containing a chiral \(N \)-alkyl group\(^5\) have been synthesized through the Zincke reaction and are widely used as starting materials in asymmetric synthesis. However, the synthetic method previously reported for pyridinium salts having a chiral \(N \)-alkyl group requires expensive chiral amines. Furthermore, the number of chiral amines is limited. In contrast, many achiral amines exist, and most of them are less expensive than chiral amines. Thus, the reaction of Zincke salts having chiral anions with achiral amines can afford various chiral pyridinium salts at lower cost. We recently reported the synthesis of \(\pi \)-conjugated oligomers and polymers consisting of \(5\text{-piperazinium-penta-2,4-dienylideneammonium chloride units as a result of the ring-opening reaction of the pyridinium ring of the Zincke salts with piperazines.}^6\) Additionally, the anion exchange reaction between chloride anion in the polymers and \(R\text{-}(-) \) or \(S\text{-}(+) \)-binaphthylphospholic acid anions yielded helical \(\pi \)-conjugated polymers.\(^2\) These results suggest that Zincke salts having chiral anions will be useful starting materials for the synthesis of helical \(\pi \)-conjugated polymers. To the best of our knowledge,
however, there has been no report on Zincke salts having chiral anions. An investigation of the structures and optical properties of Zincke salts containing chiral anions will afford fundamental information for the development of new functional chiral materials.

Herein, we report the synthesis and optical properties of Zincke salts produced via anion exchange reactions between \(N\)-(2,4-dinitrophenyl)-4-arylpyridinium (aryl = H: 1, phenyl: 2, and 4-pyridyl: 3) or \(N\)-(2,4-dinitrophenyl)isoquinolinium (4) chlorides and \(R\)-(−), \(S\)-(−), or \(±\)-binaphthylphospholic acid sodium salts (\(R\)-BINAP-PO\(_4\)Na, \(S\)-BINAP-PO\(_4\)Na, and BINAP-PO\(_4\)Na).

RESULTS AND DISCUSSION

The reaction of 1, 2, 3, or 4 with \(R\)-BINAP-PO\(_4\)Na or \(S\)-BINAP-PO\(_4\)Na in EtOH caused anion exchange between \(Cl^-\) and \(R\)- or \(S\)-BINAP-PO\(_4^-\) to yield Zincke salts containing chiral anions \(1R\), \(1S\), \(2R\), \(2S\), \(3R\), \(3S\), \(4R\), and \(4S\) in 71%, 90%, 99%, 96%, 82%, 99%, 85%, and 80% yields, respectively (Scheme 1). The reaction of 1, 2, and 3 with BINAP-PO\(_4\)Na yielded \(1rac\), \(2rac\), and \(3rac\) containing a racemic binaphthylphosphoric acid anion in 87%, 75%, and 74% yields, respectively (Scheme 1). The results of these reactions are summarized in Table 1. The anion-exchanged Zincke salts were soluble in acetone, EtOH, dimethyl sulfoxide (DMSO), and water, although the original Zincke salts (1-4) were insoluble in acetone and chloroform. The solubility in acetone of the anion exchanged products facilitated their purification.

Table 1. Synthesis results and UV-vis data

<table>
<thead>
<tr>
<th></th>
<th>yield (%)</th>
<th>absorption/ nm</th>
<th>CD peak position/ nm ((\theta \times 10^4) degree•cm(^2)•dmol(^{-1}))b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1R</td>
<td>71</td>
<td>216 (5.03), 226 (4.95), 260 (4.32)</td>
<td>227 (-29), 215 (14)</td>
</tr>
<tr>
<td>1S</td>
<td>90</td>
<td>216 (4.96), 226 (4.81), 260 (4.04)</td>
<td>227 (19), 215 (-25)</td>
</tr>
<tr>
<td>1rac</td>
<td>87</td>
<td>215 (4.91), 225 (4.81), 260 (4.61)</td>
<td>227 (20), 214 (-23)</td>
</tr>
<tr>
<td>2R</td>
<td>99</td>
<td>216 (5.08), 225 (4.98), 311 (4.65)</td>
<td>227 (-30), 214 (11)</td>
</tr>
<tr>
<td>2S</td>
<td>96</td>
<td>215 (4.96), 225 (4.82), 311 (4.05)</td>
<td>227 (20), 214 (-23)</td>
</tr>
<tr>
<td>2rac</td>
<td>75</td>
<td>215 (5.00), 225 (4.92), 311 (4.45)</td>
<td>227 (-23), 215 (11)</td>
</tr>
<tr>
<td>3R</td>
<td>82</td>
<td>216 (5.27), 225 (5.21), 274 (4.79)</td>
<td>227 (-33), 214 (11)</td>
</tr>
<tr>
<td>3S</td>
<td>99</td>
<td>216 (4.99), 225 (4.82), 272 (4.44)</td>
<td>226 (16), 215 (-26)</td>
</tr>
<tr>
<td>3rac</td>
<td>74</td>
<td>215 (5.01), 224 (4.92), 273 (4.49)</td>
<td>227 (-30), 215 (12)</td>
</tr>
<tr>
<td>4R</td>
<td>85</td>
<td>215 (5.01), 224 (4.92), 300 (4.59)</td>
<td>309 (4.40), 317 (4.39), 324 (4.51)</td>
</tr>
<tr>
<td>4S</td>
<td>80</td>
<td>215 (5.00), 224 (4.90), 300 (4.55)</td>
<td>309 (4.48), 317 (4.42), 323 (4.49)</td>
</tr>
</tbody>
</table>

\(^a\) In methanol. log\(\varepsilon\) value is shown in parenthesis (\(\varepsilon = \) molar absorption coefficient). \(^b\) Molar ellipticity value (\(\theta\)) is shown in the parenthesis.
Scheme 1. Synthesis of Zincke salts containing chiral phosphate anions

The NMR and elemental analysis data supported the anion-exchanged structures of 1R-4S. The 1H NMR peak integral between the protons of the pyridinium or isoquinolinium rings and the binaphthyl group suggested that the anion exchange reaction proceeded to completion. The 1H NMR chemical shifts of protons corresponding to R- and S-BINAP-PO$_4$ in 1R-4S were almost the same as those of R- and S-BINAP-PO$_4$Na. However, the 31P NMR spectra of 1R and 1S showed peaks corresponding to phosphate anions at different chemical shifts ($\delta = 5.02$ for 1R and 5.39 for 1S) from that of R- and
S-BINAP-PO$_4$Na ($\delta = 5.87$ for R-BINAP-PO$_4$Na and S-BINAP-PO$_4$Na). The reason for the difference between the chemical shifts corresponding to the P atoms in 1R and 1S is unclear. However, the content of water molecules in 1R and 1S may affect the 31P NMR chemical shifts. Elemental analysis and following IR data supported the hydrated structures of the Zincke salts.

The IR spectra of the obtained Zincke salts exhibited strong absorption corresponding to the stretching vibrations of P=O and P-O bonds around 1260 cm$^{-1}$ and 1100 cm$^{-1}$, respectively, and the asymmetrical and symmetrical stretching vibrations of the NO$_2$ group at 1543 cm$^{-1}$ and 1342 cm$^{-1}$, respectively. The obtained Zincke salts were hygroscopic. Absorption corresponding to hydrated water molecules was observed around 3420 cm$^{-1}$.

The optical properties of the obtained Zincke salts are summarized in Table 1. Their UV-vis spectra showed absorption corresponding to the R- or S-BINAP-PO$_4$ groups at 216 or 225 nm, respectively. These wavelengths are almost the same as those of R- or S-BINAP-PO$_4$Na. In addition to these peaks, the salts containing Ar = H, Ph, or Py substituents showed absorption peaks corresponding to the pyridinium component at 260, 311, and 274 nm, respectively. Figure 1 shows the UV-vis spectra of 1R, 2R, and 3R in MeOH. The appearance of absorption features corresponding to the pyridinium components of 2R, 2S, 2rac, 3R, 3S, and 3rac at longer wavelengths than those of 1R, 1S, and 1rac is due to the presence of phenyl and pyridyl substituents in 2R, 2S, 2rac, 3R, 3S, and 3rac. The fact that the wavelengths at which absorption corresponding to the pyridinium component of 2R, 2S, and 2rac was observed were longer than those of 3R, 3S, and 3rac is apparently due to intramolecular charge transfer between the phenyl and pyridinium rings in 2R, 2S, and 2rac.

Figure 1. UV-vis spectra of 1R, 2R, and 3R in MeOH. $c = 1.0 \times 10^{-4}$ M (1R and 3R) and 0.5×10^{-4} M (2R).

R- and S-BINAP-PO$_4$Na were photoluminescent in solution, whereas the anion-exchanged Zincke salts showed no photoluminescence (PL) in solution. To compare the quenching effect of 1 on BINAP-PO$_4$Na
and BINAP-PO₄H, PL measurements of the methanol solutions of BINAP-PO₄Na or BINAP-PO₄H were conducted at a series of I/methanol concentrations. As shown in Figure 1, the PL intensities of BINAP-PO₄Na/methanol solutions decreased with increasing I content. In contrast, the PL intensities of the BINAP-PO₄H/methanol solutions were almost unchanged regardless of the amount of I used. These results suggest that the quenching effect of I on BINAP-PO₄Na is pronounced when BINAP-PO₄Na was replaced with Cl⁻ from I. A quantitative measurement of the PL quenching can be achieved by determining the Stern-Volmer constant, K_{SV}:

$$\frac{I_0}{I} = 1 + K_{SV}[\text{quencher}],$$

where I_0 is the intensity of the PL in the absence of the quencher and I is the intensity of the PL in the presence of the quencher. The equation reveals that I_0/I increases in direct proportion to the concentration of the quenching moiety, and the constant K_{SV} defines the efficiency of quenching. Stern-Volmer plots for PL quenching by I for BINAP-PO₄Na are insetted in Figure 2. The K_{SV} value of BINAP-PO₄Na was 8.8×10^4 M⁻¹. The result that the K_{SV} value for the I/BINAP-PO₄Na quenching system is considerably greater than that for pyridinium chloride/anthracene quenching system ($K_{SV} = 42$ M⁻¹) corresponds to the fact that the static interaction between N-(2,4-dinitrophenyl)-4-pyridinium cation and BINAP-PO₄⁻ facilitates the formation of the quencher/fluorophore adduct. The K_{SV} values for the 2/BINAP-PO₄Na and 3/BINAP-PO₄Na quenching system was 6.2×10^4 M⁻¹ and 3.5×10^4 M⁻¹, respectively.

![Figure 2](image-url)

Figure 2. Changes of PL spectra of methanol solutions of BINAP-PO₄Na (1.0 $\times 10^{-5}$ M) in the presence of a series of concentrations of the I/methanol solution. The excitation wavelengths for I/BINAP-PO₄Na, 2/BINAP-PO₄Na, and 3/BINAP-PO₄Na system were 240 nm, 239 nm, and 240 nm, respectively. The inset is a Stern-Volmer plot.
The CD spectra of R-BINAP-PO₄Na and S-BINAP-PO₄Na showed complicated signals in the range of 170-200 nm in methanol. In contrast, the CD spectra of methanol solutions of 1R, 2R, 3R, and 4R as well as 1S, 2S, 3S, and 4S showed relatively strong negative and positive Cotton effects in the range of 205-240 nm, respectively, with a zero-crossing centered at approximately 220 nm, as shown in Figure 3. This wavelength is largely consistent with the λmax positions of R-BINAP-PO₄Na and S-BINAP-PO₄Na. The difference in the CD signals between R- and S-BINAP-PO₄Na and the anion-exchanged Zincke salts is attributed to the difference in the cationic species in these compounds. The peak positions of CD signals of the obtained Zincke salts are summarized in Table 1. In contrast, 1rac, 2rac, and 3rac showed no CD signal.

Figure 3. CD spectra of 1R and 1S in methanol at 25 °C (c = 1.0 × 10⁻⁵ M)

EXPERIMENTAL

1, 2, 3, and 4 were prepared according to the literatures. Other reagents were purchased and used without further purification. Solvents were dried, distilled, and stored under N₂. Reactions were carried out with standard Schlenk technique under nitrogen.

IR and NMR spectra were recorded on a JASCO FT/IR-660 PLUS spectrophotometer and JEOL AL-400 and ECX-500 spectrometers, respectively. ¹³C NMR measurements were carried out with gated decoupling technique. Elemental analysis was carried out on a Yanagimoto MT-5 CHN corder. UV-vis and CD spectra were obtained with a JASCO V-560 spectrometer and a JASCO J-720WS, respectively.

Synthesis of 2R. 2 (0.53 g, 1.0 mmol) and R-BINAP-PO₄Na (0.37 g, 1.5 mmol) were dissolved in 50 mL of EtOH. After the solution was stirred for 24 h at room temperature, NaCl precipitated from the reaction solution was removed by filtration. The solvent was evaporated under vacuum and the resulting solid was
extracted with acetone (150 mL). The solvent was removed under vacuum and resulting solid was dissolved in MeOH (4 mL). The solution was poured in Et₂O (400 mL) to give a precipitate, which was collected by filtration and dried under vacuum to obtain 2R as a yellow powder (0.67 g, 99%).

Other Zincke salts were synthesized in an analogous manner.

1R: ¹H NMR (400 MHz, DMSO-d₆) δ 9.38 (d, J = 5.6 Hz, 2H), 9.12 (d, J = 2.4 Hz, 1H), 8.92-8.98 (m, 2H), 8.40-8.44 (m, 3H), 8.03 (t, J = 8.4 Hz, 4H), 7.44 (d, J = 6.8 Hz, 2H), 7.40 (d, J = 9.2 Hz, 2H), 7.30 (t, J = 8.0 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 150.0, 149.2, 149.1, 148.8, 146.1, 143.0, 138.7, 131.9, 131.93, 131.85, 130.3, 130.2, 129.7, 128.4, 128.0, 126.1, 126.0, 124.4, 122.57, 122.55, 121.67, 121.66, 121.1. ³¹P NMR (203 MHz, DMSO-d₆) δ 5.02. IR (KBr, cm⁻¹) 3420, 3116, 3072, 1614, 1543, 1343, 1242, 1100, 960, 836, 754. Anal. Calcd for C₃₁H₂₀N₅O₈P•0.25H₂O: C, 62.26; H, 3.46; N, 7.03. Found: C, 62.29; H, 3.89; N, 6.63.

2R: ¹H NMR (400 MHz, DMSO-d₆) δ 9.40 (d, J = 6.8 Hz, 2H), 9.14 (d, J = 2.4 Hz, 1H), 8.97 (dd, J = 8.8, 2.0 Hz, 1H), 8.82 (d, J = 6.4 Hz, 2H), 8.43 (d, J = 8.4 Hz, 2H), 8.25 (d, J = 7.2 Hz, 2H), 8.02 (t, J = 8.4 Hz, 2H), 7.70-7.76 (m, 3H), 7.38-7.44 (m, 4H), 7.29 (t, J = 8.0 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 157.3, 150.0, 149.9, 149.0, 145.9, 143.2, 138.5, 133.1, 133.0, 132.0, 131.9, 130.3, 130.2, 130.0, 129.7, 128.7, 128.4, 126.1, 126.0, 124.4, 124.1, 122.6, 121.7, 121.5. ³¹P NMR (203 MHz, DMSO-d₆) δ 5.76. IR (KBr, cm⁻¹) 3442, 3116, 3058, 1636, 1610, 1541, 1342, 1260, 1243, 1099, 960, 837. Anal. Calcd for C₃₇H₂₃N₅O₈P•0.3H₂O: C, 65.84; H, 3.67; N, 6.23. Found: C, 65.80; H, 3.84; N, 6.47.

3R: ¹H NMR (400 MHz, DMSO-d₆) δ 9.55 (d, J = 6.4 Hz, 2H), 9.15 (d, J = 2.0 Hz, 1H), 9.00 (dd, J = 8.4, 2.8 Hz, 1H), 8.91-8.94 (m, 4H), 8.44 (d, J = 8.4 Hz, 2H), 8.18 (d, J = 5.2 Hz, 2H), 8.06 (t, J = 8.4 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.43 (d, J = 8.8 Hz, 2H), 7.31 (t, J = 8.0 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 155.1, 151.2, 149.9, 149.8, 149.2, 146.6, 143.1, 140.4, 138.4, 131.99, 131.92, 130.4, 130.2, 129.8, 128.4, 126.1, 126.0, 125.2, 124.5, 122.53, 122.51, 122.2, 121.66, 121.64, 121.5. ³¹P NMR (203 MHz, DMSO-d₆) δ 5.44. IR (KBr, cm⁻¹) 3447, 3114, 3066, 1637, 1610, 1543, 1342, 1260, 1242, 1100, 961, 837, 817. Anal. Calcd for C₃₆H₂₃N₅O₈P•0.6H₂O: C, 63.46; H, 3.58; N, 8.22. Found: C, 63.50; H, 3.54; N, 7.66.

4R: ¹H NMR (400 MHz, DMSO-d₆) δ 10.47 (s, 1H), 9.15 (d, J = 2.4 Hz, 1H), 9.05 (d, J = 6.8 Hz, 1H), 8.99 (dd, J = 8.6, 1.8 Hz, 1H), 8.79 (d, J = 6.8 Hz, 1H), 8.59 (d, J = 8.4 Hz, 1H), 8.48 (d, J = 8.8 Hz, 2H), 8.42 (t, J = 8.0 Hz, 1H), 8.16 (t, J = 8.0 Hz, 1H), 8.03 (d, J = 8.8 Hz, 4H), 7.44 (d, J = 7.2 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.30 (t, J = 8.0 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H). ³¹P NMR (203 MHz, DMSO-d₆) δ 5.73. IR (KBr, cm⁻¹) 3445, 3114, 3066, 1637, 1612, 1591, 1580, 1543, 1345, 1260, 1242, 1100, 961, 840, 817. Calcd for C₃₅H₂₂N₅O₇P•0.2H₂O: C, 64.96; H, 3.49; N, 6.49. Found: C, 64.90; H, 3.53; N, 6.80.

1S: ¹H NMR (400 MHz, DMSO-d₆) δ 9.38 (d, J = 5.6 Hz, 2H), 9.12 (d, J = 2.4 Hz, 1H), 8.92-8.98 (m,
2H), 8.40-8.44 (m, 3H), 8.03 (t, J = 8.8 Hz, 4H), 7.45 (d, J = 6.8 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H). 31P NMR (203 MHz, DMSO-d_6) δ 5.39. Anal. Calcd for C$_{31}$H$_{20}$N$_5$O$_8$P•0.4H$_2$O: C, 61.98; H, 3.49; N, 7.00. Found: C, 61.98; H, 3.61; N, 6.62.

2S: 1H NMR (400 MHz, DMSO-d_6) δ 9.40 (d, J = 7.2 Hz, 2H), 9.14 (d, J = 2.4 Hz, 1H), 8.98 (dd, J = 8.8, 2.4 Hz, 1H), 8.82 (d, J = 7.2 Hz, 2H), 8.43 (d, J = 8.4 Hz, 2H), 8.25 (d, J = 6.8 Hz, 2H), 8.01 (t, J = 8.8 Hz, 2H), 7.70-7.77 (m, 3H), 7.42 (t, J = 7.2 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H), 7.28 (t, J = 7.2 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H). 31P NMR (203 MHz, DMSO-d_6) δ 5.81. Anal. Calcd for C$_{35}$H$_{24}$N$_3$O$_8$P•0.3H$_2$O: C, 65.84; H, 3.67; N, 6.23. Found: C, 65.88; H, 3.81; N, 6.59.

3S: 1H NMR (400 MHz, DMSO-d_6) δ 9.55 (d, J = 6.4 Hz, 2H), 9.15 (d, J = 2.4 Hz, 1H), 8.98 (dd, J = 8.8, 2.8 Hz, 1H), 8.92-8.94 (m, 4H), 8.43 (d, J = 8.4 Hz, 2H), 8.18 (d, J = 6.4 Hz, 2H), 8.01 (t, J = 8.4 Hz, 2H), 7.42 (t, J = 7.2 Hz, 2H), 7.38 (d, J = 8.8 Hz, 2H), 7.29 (t, J = 8.0 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H). 31P NMR (203 MHz, DMSO-d_6) δ 5.65. Anal. Calcd for C$_{36}$H$_{23}$N$_4$O$_8$P•0.6H$_2$O: C, 63.46; H, 3.58; N, 8.22. Found: C, 63.42; H, 3.58; N, 8.20.

4S: 1H NMR (400 MHz, DMSO-d_6) δ 10.47 (s, 1H), 9.15 (d, J = 2.4 Hz, 1H), 9.05 (d, J = 6.8 Hz, 1H), 8.99 (dd, J = 8.6, 1.8 Hz, 1H), 8.79 (d, J = 6.8 Hz, 1H), 8.59 (d, J = 8.4 Hz, 1H), 8.48 (d, J = 8.8 Hz, 2H), 8.42 (t, J = 8.0 Hz, 1H), 8.16 (t, J = 8.0 Hz, 1H), 8.03 (d, J = 8.8 Hz, 4H), 7.44 (d, J = 7.2 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.30 (t, J = 8.0 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H). 13C NMR (100 MHz, DMSO-d_6) δ 150.0, 149.9, 149.1, 148.8, 146.1, 143.0, 138.7, 131.9, 131.8, 130.3, 130.2, 129.7, 128.4, 128.0, 126.1, 126.0, 124.4, 122.5, 121.7, 121.4. 31P NMR (203 MHz, DMSO-d_6) δ 5.49. Anal. Calcd for C$_{35}$H$_{22}$N$_4$O$_8$P•0.2H$_2$O: C, 64.96; H, 3.49; N, 6.49. Found: C, 64.88; H, 3.59; N, 6.67.

1rac: 1H NMR (400 MHz, DMSO-d_6) δ 9.38 (d, J = 6.4 Hz, 2H), 9.12 (d, J = 2.8 Hz, 1H), 8.91-8.97 (m, 2H), 8.40-8.44 (m, 3H), 8.02 (t, J = 8.4 Hz, 4H), 7.44 (d, J = 7.6 Hz, 2H), 7.39 (d, J = 8.8 Hz, 2H), 7.29 (t, J = 8.0 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H). 13C NMR (100 MHz, DMSO-d_6) δ 150.0, 149.9, 149.1, 148.8, 146.1, 143.0, 138.7, 131.9, 131.8, 130.3, 130.2, 129.7, 128.4, 128.0, 126.1, 126.0, 124.4, 122.5, 121.7, 121.4. 31P NMR (203 MHz, DMSO-d_6) δ 5.49. Anal. Calcd for C$_{31}$H$_{20}$N$_5$O$_8$P•0.2H$_2$O: C, 62.36; H, 3.44; N, 7.04. Found: C, 62.35; H, 3.92; N, 6.75.

2rac: 1H NMR (400 MHz, DMSO-d_6) δ 9.41 (d, J = 6.8 Hz, 2H), 9.14 (d, J = 2.4 Hz, 1H), 8.99 (dd, J = 8.8, 2.4 Hz, 1H), 8.83 (d, J = 5.6 Hz, 2H), 8.42 (d, J = 8.4 Hz, 2H), 8.25 (d, J = 7.2 Hz, 2H), 8.00 (t, J = 8.8 Hz, 2H), 7.70-7.76 (m, 3H), 7.42 (t, J = 8.0 Hz, 2H), 7.38 (d, J = 8.8 Hz, 2H), 7.28 (t, J = 8.0 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H). 31P NMR (203 MHz, DMSO-d_6) δ 5.87. Anal. Calcd for C$_{37}$H$_{24}$N$_3$O$_8$P•0.2H$_2$O: C, 62.36; H, 3.44; N, 7.04. Found: C, 65.96; H, 3.61; N, 6.32.

3rac: 1H NMR (400 MHz, DMSO-d_6) δ 9.54 (d, J = 6.4 Hz, 2H), 9.15 (d, J = 2.0 Hz, 1H), 8.99 (dd, J = 8.8, 2.4 Hz, 1H), 8.92-8.95 (m, 4H), 8.43 (d, J = 8.8 Hz, 2H), 8.17 (d, J = 6.4 Hz, 2H), 8.03 (t, J = 9.2 Hz, 2H), 7.45 (d, J = 6.8 Hz, 2H), 7.41 (d, J = 8.8 Hz, 2H), 7.30 (t, J = 8.0 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H). Anal. Calcd for C$_{36}$H$_{23}$N$_4$O$_8$P•0.6H$_2$O: C, 63.46; H, 3.58; N, 8.22. Found: C, 63.55; H, 3.62; N, 7.59.
ACKNOWLEDGEMENT

This work was supported by Grant-in-Aid for Scientific Research (C) from Ministry of Education, Science, Culture, and Sports Japan (No. 21550173).

REFERENCES

