Supporting Information

Catalytic Enantioselective Construction of trans-Fused 2,3,3a,4,5,9b-Hexahydro-1H-Pyrrolo[3,2-c]quinoline Derivatives by Intramolecular [3+2] Cycloaddition

Keigo Sato,1 Tetsuya Tsujihara,1* Sho Inagaki,1 Tsunayoshi Takehara,2 Takeyuki Suzuki,2 and Tomikazu Kawano1*

1School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan; 2SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki 567-0047, Japan; E-mail: ttsujiha@iwate-med.ac.jp; tkawano@iwate-med.ac.jp

Contents

1. General methods and materials S2

2. Experimental procedures
 Preparation of bromide from the adduct of Morita-Baylis Hillman reaction S3
 Preparation of aldehydes 1 S3–S8
 Cu-catalyzed asymmetric intramolecular [3+2] cycloaddition of 2 S9–S15
 Transformations of 3b S16–S17

3. Figure S1 and Table S1. X-ray crystallographic data for 3a S18

4. References S19

5. Copy of HPLC charts S20–S35

6. Copy of 1H and 13C NMR spectra
 6.1 bromide and aldehydes 1 S36–S45
 6.2 [3+2] cycloadducts 3 S46–S57
 6.3 transformations of 3b S58–S59
1. General methods and materials

General. Infrared (IR) spectra were recorded on a JASCO FT/IR-4100 FT-IR spectrometer. 1H and 13C NMR spectra were recorded on a JEOL JNM-ECZ500R (500 MHz for 1H and 126 MHz for 13C) spectrometer. Chemical shifts (δ) are reported in ppm referenced to tetramethylsilane as internal standard (CDCl$_3$: δ = 0 ppm for 1H) and residual solvent signal (CDCl$_3$: δ = 77.0 ppm for 13C{[1H]}). J-values are given in Hz. The high-resolution mass spectra (HRMS) were obtained with a Shimadzu LCMS-IT-TOF mass spectrometer. Optical rotations were measured on a HORIBA polarimeter SEPA-300. HPLC analyses were performed on JASCO HPLC system (JASCO PU-2086Plus preparative HPLC pump and UV-2075Plus UV/Vis detector). All melting points were determined on a BÜCHI melting apparatus B540 and are uncorrected. All manipulations were carried out with standard Schlenk technique under an argon atmosphere. Reactions were monitored by TLC (silica gel 60 F$_{254}$, 0.25 mm) analysis. Flash column chromatography was performed on flash silica gel 60N (spherical neutral, particle size 40–50 μm).

Materials. Anhydrous CH$_2$Cl$_2$, THF, Et$_2$O, 1,4-dioxane, toluene, MeOH, and MeCN were purchased and used without any purification. Aldehydes (E)-1a–1f and 1i were prepared according to the procedure described in the literature. The following known compounds were prepared according to the procedure described in the literature.

- Benzyl 2-[hydroxy(phenyl)methyl]prop-2-enoate
- N-(2-Formylphenyl)-4-methylbenzenesulfonamide
- N-(5-Chloro-2-formylphenyl)-4-methylbenzenesulfonamide
- Methyl (2Z)-2-(bromomethyl)-3-phenylprop-2-enoate
- N-(4-Chloro-2-formylphenyl)-4-methylbenzenesulfonamide
- N-(6-Formyl-1,3-benzodioxol-5-yl)-4-methylbenzenesulfonamide
- N-(2-Formyl-5-methoxyphenyl)-4-methylbenzenesulfonamide
- N-(2-Formylphenyl)-2-nitrobenzenesulfonamide
- N-(2-Formylphenyl)-2,4,6-trimethylbenzenesulfonamide
- N-(2-Formylphenyl)-1-naphthalenesulfonamide

Racemic cycloadducts 3 were prepared according to the general procedure B in the presence of Cu complex prepared from Cu(MeCN)$_4$OTf and 1,3-bis(diphenylphosphino)propane (dppp) instead of Cu(MeCN)$_4$OTf and (S)-H8-binap L4. All other chemicals were purchased from commercial suppliers and used as received.
2. Experimental procedures

Preparation of benzyl (2Z)-2-(bromomethyl)-3-phenylprop-2-enoate.

Using the modified procedure in the literature, benzyl (2Z)-2-(bromomethyl)-3-phenylprop-2-enoate was prepared. To a solution of benzyl 2-[hydroxy(phenyl)methyl]prop-2-enoate \(^1\) (1.59 g, 5.93 mmol) and PPh\(_3\) (1.94 g, 7.17 mmol) in CH\(_2\)Cl\(_2\) (15.0 mL) was added CBr\(_4\) (2.33 g, 6.96 mmol) at 0 °C. The mixture was stirred at rt for 20 min. The reaction mixture was filtered through a short plug of silica gel, which was rinsed with \(n\)-hexane and EtOAc (4:1) to give benzyl (2Z)-2-(bromomethyl)-3-phenylprop-2-enoate (835.5 mg, 2.52 mmol, 42%) as pale yellow amorphous solid.

IR (KBr): 1707, 1621, 1258, 1217, 1161, 771, 758, 698 cm\(^{-1}\).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 4.42 (s, 2 H), 5.32 (s, 2 H), 7.33–7.36 (m, 1 H), 7.38–7.42 (m, 3 H), 7.44–7.47 (m, 4 H), 7.56–7.58 (m, 2 H), 7.86 (s, 1 H).

\(^13\)C\({^1\text{H}}\) NMR (126 MHz, CDCl\(_3\)): \(\delta\) 26.8, 67.2, 128.2, 128.3, 128.60, 128.64, 128.9, 129.6, 134.2, 135.7, 143.3, 166.0. (One carbon overlapped to others).

HRMS (ESI-TOF): \(m/z\) [M + Na]\(^+\) calcd for C\(_{17}\)H\(_{15}\)BrNaO\(_2\), 353.0148; found, 353.0153.

General procedure A for the preparation of aldehyde 1.

Using the modified procedure in the literature, aldehydes 1 were prepared. To a mixture of sulfonamide (1.0 eq) and K\(_2\)CO\(_3\) (1.3–1.6 eq) in MeCN was added a solution of 2-(bromomethyl)acrylate derivative (1.2–1.4 eq) in MeCN. The reaction mixture was stirred at rt. The reaction was quenched by the addition of water. The mixture was extracted with CH\(_2\)Cl\(_2\). The organic layer was washed with brine, dried over anhydrous Na\(_2\)SO\(_4\), and concentrated in \textit{vacuo}. The residue was purified by column chromatography on silica gel (\(n\)-hexane : EtOAc = 2 : 1) to give 1.
Methyl 2-\{\[N-(2-formylphenyl)-N-(4-methylbenzene-1-sulfonyl)amino\]methyl\}prop-2-enoate (1g).

According to the general procedure A, N-(2-formylphenyl)-4-methylbenzenesulfonamide\(^4\) (275.3 mg, 1.00 mmol), methyl 2-(bromomethyl)acrylate (258.4 mg, 1.40 mmol), K\(_2\)CO\(_3\) (223.4 mg, 1.60 mmol), and MeCN (2.0 mL) were used. After a reaction time of 12 h, 1g was obtained in 95% yield (352.8 mg, 0.945 mmol) as white solid.

Mp: 92.6–93.3 °C.

IR (KBr): 1721, 1685, 1637, 1597, 1353, 1216, 1164, 822 cm\(^{-1}\).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 2.45 (s, 3 H), 3.66 (s, 3 H), 4.21 (br s, 1 H), 4.75 (br s, 1 H), 5.81 (d, \(J = 0.9\) Hz, 1 H), 6.28 (d, \(J = 0.9\) Hz, 1 H), 6.74–6.76 (m, 1 H), 7.28–7.30 (m, 2 H), 7.42–7.48 (m, 4 H), 7.97–7.99 (m, 1 H), 1.029 (d, \(J = 0.6\) Hz, 1 H).

\(^{13}\)C\\(\{^1\)H\}\) NMR (126 MHz, CDCl\(_3\)): \(\delta\) 21.6, 51.8, 52.1, 127.8, 128.1, 128.5, 128.6, 129.7, 130.2, 133.8, 134.0, 134.9, 135.7, 141.6, 144.4, 165.9, 189.9.

HRMS (ESI-TOF): \(m/z\) [M + Na\(^+\)] calcd for C\(_{19}\)H\(_{19}\)NNaO\(_5\)S, 396.0876; found, 396.0891.

Benzyl (2\(E\))-\{\[N-(2-formylphenyl)-N-(4-methylbenzene-1-sulfonyl)amino\]methyl\}-3-phenylprop-2-enoate (1h)

According to the general procedure A, N-(2-formylphenyl)-4-methylbenzenesulfonamide\(^4\) (126.5 mg, 0.46 mmol), benzyl (2\(Z\))-2-(bromomethyl)-3-phenylprop-2-enoate (182.4 mg, 0.55 mmol), K\(_2\)CO\(_3\) (84.9 mg, 0.61 mmol), and MeCN (1.0 mL) were used. After a reaction time of 14 h, 1h was obtained in 97% yield (235.0 mg, 0.447 mmol) as white amorphous solid.

IR (KBr): 1694, 1632, 1596, 1354, 1245, 1165, 818, 768, 718, 697 cm\(^{-1}\).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 2.42 (s, 3 H), 4.57 (d, \(J = 13.5\) Hz, 1 H), 5.08–5.14 (m, 3 H), 6.42 (d, \(J = 8.0\) Hz, 1 H), 7.13–7.17 (m, 1 H), 7.18 (br d, \(J = 8.3\) Hz, 2 H), 7.25–7.36 (m, 10 H), 7.40–7.42 (m, 3 H), 7.75 (s, 1 H), 7.84 (dd, \(J = 7.7, 1.6\) Hz, 1 H), 9.79 (s, 1 H).

\(^{13}\)C\\(\{^1\)H\}\) NMR (126 MHz, CDCl\(_3\)): \(\delta\) 21.5, 46.2, 66.9, 126.0, 127.3, 127.8, 128.13, 128.14, 128.19, 128.20, 128.4, 128.6, 129.4, 129.5, 129.7, 132.6, 133.2, 133.8, 135.5, 136.0, 141.1, 144.2, 144.4, 166.7, 189.7.

HRMS (ESI-TOF): \(m/z\) [M + Na\(^+\)] calcd for C\(_{31}\)H\(_{27}\)NNaO\(_5\)S, 548.1502; found; 548.1517.
Methyl (2E)-[{N-(5-chloro-2-formylphenyl)-N-(4-methylbenzene-1-sulfonyl)amino}methyl]-3-phenylprop-2-enoate (1j)

According to the general procedure A, N-(5-chloro-2-formylphenyl)-4-methylbenzenesulfonylamide\(^5\) (142.5 mg, 0.46 mmol), methyl (2Z)-2-(bromomethyl)-3-phenylprop-2-enoate\(^6\) (140.8 mg, 0.55 mmol), K\(_2\)CO\(_3\) (84.5 mg, 0.61 mmol), and MeCN (1.0 mL) were used. After a reaction time of 24 h, 1j was obtained in 64% yield (142.7 mg, 0.295 mmol) as white solid.

Mp: 145.1–145.4 °C.

IR (KBr): 1709, 1692, 1641, 1587, 1358, 1259, 1167, 821, 755, 727, 702 cm\(^{-1}\).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 2.44 (s, 3 H), 3.71 (s, 3 H), 4.44 (d, \(J = 13.6\) Hz, 1 H), 5.01 (d, \(J = 13.6\) Hz, 1 H), 6.36 (d, \(J = 1.9\) Hz, 1 H), 7.23–7.34 (m, 7 H), 7.42–7.43 (m, 3 H), 7.76 (s, 1 H), 7.84 (d, \(J = 8.4\) Hz, 1 H), 9.81 (d, \(J = 0.8\) Hz, 1 H).

\(^{13}\)C\(^{\{1\}H}\) NMR (126 MHz, CDCl\(_3\)): \(\delta\) 21.6, 46.3, 52.4, 126.0, 127.9, 128.2, 128.7, 128.8, 129.1, 129.4, 129.59, 129.65, 132.4, 133.8, 134.6, 139.3, 142.5, 144.70, 144.72, 167.3, 188.7.

HRMS (ESI-TOF): \(m/z\) [M + Na]\(^+\) calcd for C\(_{25}\)H\(_{23}\)ClNNaO\(_5\)S, 506.0799; found, 506.0818.

Methyl (2E)-2-[(N-(4-chloro-2-formylphenyl)-N-(4-methylbenzene-1-sulfonyl)amino)methyl]-3-phenylprop-2-enoate (1k)

According to the general procedure A, N-(4-chloro-2-formylphenyl)-4-methylbenzenesulfonylamide\(^5\) (142.7 mg, 0.46 mmol), methyl (2Z)-2-(bromomethyl)-3-phenylprop-2-enoate\(^6\) (140.2 mg, 0.55 mmol), K\(_2\)CO\(_3\) (83.5 mg, 0.60 mmol), and MeCN (1.0 mL) were used. After a reaction time of 32 h, 1k was obtained in 97% yield (215.4 mg, 0.445 mmol) as white amorphous solid.

IR (KBr): 1703, 1692, 1638, 1487, 1354, 1254, 1166, 845, 819, 755, 725, 703 cm\(^{-1}\).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 2.43 (s, 3 H), 3.70 (s, 3 H), 4.50 (d, \(J = 13.7\) Hz, 1 H), 5.06 (d, \(J = 13.7\) Hz, 1 H), 6.38 (d, \(J = 8.6\) Hz, 1 H), 7.18 (dd, \(J = 8.6, 2.6\) Hz, 1 H), 7.23 (br d, \(J = 8.2\) Hz, 2 H), 7.27–7.29 (m, 2 H), 7.31–7.33 (m, 2 H), 7.41–7.43 (m, 3 H), 7.74 (s, 1 H), 7.84 (d, \(J = 2.6\) Hz, 1 H), 9.69 (d, \(J = 0.8\) Hz, 1 H).

\(^{13}\)C\(^{\{1\}H}\) NMR (126 MHz, CDCl\(_3\)): \(\delta\) 21.6, 46.2, 52.4, 125.8, 127.9, 128.3, 128.7, 128.9, 129.6, 129.66, 129.68, 132.6, 133.1, 133.8, 134.7, 137.2, 139.6, 144.55, 144.61, 167.4, 188.4.

HRMS (ESI-TOF): \(m/z\) [M + Na]\(^+\) calcd for C\(_{25}\)H\(_{23}\)ClNNaO\(_5\)S, 506.0799; found, 506.0801.
Methyl (2E)-2-\{[N-(6-formyl-1,3-benzodioxol-5-yl)-N-(4-methylbenzene-1-sulfonyl)amino]methyl\}prop-2-enoate (1l)

According to the general procedure A, N-(6-formyl-1,3-benzodioxol-5-yl)-4-methylbenzenesulfonamide\(^7\) (147.0 mg, 0.46 mmol), methyl (2Z)-2-(bromomethyl)-3-phenylprop-2-enoate\(^6\) (140.8 mg, 0.55 mmol), K\(_2\)CO\(_3\) (83.7 mg, 0.60 mmol), and MeCN (1.0 mL) were used. After a reaction time of 18 h, 1l was obtained quantitatively (226.4 mg, 0.459 mmol) as white solid.

Mp: 130.1–130.4 °C.

IR (KBr): 1720, 1685, 1612, 1480, 1353, 1249, 1167, 1039, 818, 752, 712 cm\(^{-1}\).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 2.43 (s, 3 H), 3.70 (s, 3 H), 4.47 (d, \(J = 13.4\) Hz, 1 H), 5.00 (d, \(J = 13.4\) Hz, 1 H), 5.88 (s, 1 H), 5.99 (dd, \(J = 7.7, 1.3\) Hz, 2 H), 7.24–7.26 (m, 5 H), 7.38–7.40 (m, 5 H), 7.75 (s, 1 H), 9.65 (s, 1 H).

\(^{13}\)C \{\(^1\)H\} NMR (126 MHz, CDCl\(_3\)): \(\delta\) 21.6, 46.4, 52.3, 102.4, 106.2, 108.0, 126.1, 128.3, 128.6, 129.3, 129.4, 131.6, 133.4, 134.0, 137.3, 144.4, 144.7, 147.9, 151.7, 167.3, 188.4.

HRMS (ESI-TOF): \(m/z\) [M + Na]\(^+\) calcd for C\(_{26}\)H\(_{23}\)NNaO\(_7\)S, 516.1087; found, 516.1094.

Methyl (2E)-2-\{[N-(2-formyl-4-methoxyphenyl)-N-(4-methylbenzene-1-sulfonyl)amino]methyl\}-3-phenylprop-2-enoate (1m)

According to the general procedure A, N-(2-formyl-5-methoxyphenyl)-4-methylbenzenesulfonamide\(^8\) (113.0 mg, 0.37 mmol), methyl (2Z)-2-(bromomethyl)-3-phenylprop-2-enoate\(^6\) (113.3 mg, 0.44 mmol), K\(_2\)CO\(_3\) (67.1 mg, 0.48 mmol), and MeCN (0.80 mL) were used. After a reaction time of 23 h, 1m was obtained quantitatively (176.5 mg, 0.368 mmol) as white solid.

Mp: 149.8–150.1 °C.

IR (KBr): 1718, 1681, 1622, 1599, 1352, 1250, 1165, 820, 768, 696 cm\(^{-1}\).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 2.43 (s, 3 H), 3.48 (s, 3 H), 3.68 (s, 3 H), 4.53 (d, \(J = 13.4\) Hz, 1 H), 5.04 (dd, \(J = 13.4, 0.9\) Hz, 1 H), 5.89 (d, \(J = 2.4\) Hz, 1 H), 6.83 (ddd, \(J = 8.7, 2.4, 0.8\) Hz, 1 H), 7.23–7.27 (m, 4 H), 7.37–7.39 (m, 5 H), 7.71 (s, 1 H), 7.83 (d, \(J = 8.7\) Hz, 1 H), 9.71 (s, 1 H).

\(^{13}\)C \{\(^1\)H\} NMR (126 MHz, CDCl\(_3\)): \(\delta\) 21.6, 46.3, 52.3, 55.2, 112.3, 114.9, 126.0, 128.4, 128.6, 129.4, 129.48, 129.51, 129.59, 129.61, 133.2, 133.9, 143.0, 144.3, 144.5, 163.4, 167.5, 188.7.

HRMS (ESI-TOF): \(m/z\) [M + Na]\(^+\) calcd for C\(_{26}\)H\(_{25}\)NNaO\(_6\)S, 502.1295; found, 502.1311.
Methyl (2E)-2-[[N-(2-formylphenyl)-N-(2-nitrobenzene-1-sulfonyl)amino]methyl]-3-phenyl prop-2-enoate (1n)

According to the general procedure A, N-(2-formylphenyl)-2-nitrobenzenesulfonamide⁹ (140.5 mg, 0.46 mmol), methyl (2Z)-2-(bromomethyl)-3-phenylprop-2-enoate⁶ (136.7 mg, 0.54 mmol), K₂CO₃ (87.8 mg, 0.63 mmol), and MeCN–CH₂Cl₂ (2:1, 1.5 mL) were used. After a reaction time of 26 h, 1n was obtained in 53% yield (118.3 mg, 0.246 mmol) as pale yellow solid.

Mp: 149.6–150.0 °C.

IR (KBr): 1717, 1689, 1621, 1594, 1545, 1373, 1361, 1272, 1170, 772, 747, 691 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 3.77 (s, 3 H), 5.05 (d, J = 13.9 Hz, 1 H), 5.18 (dd, J = 13.9, 0.6 Hz, 1 H), 6.71 (d, J = 7.9 Hz, 1 H), 7.03–7.05 (m, 2 H), 7.20–7.24 (m, 1 H), 7.26–7.31 (m, 4 H), 7.35–7.41 (m, 2 H), 7.60–7.66 (m, 2 H), 7.76 (s, 1 H), 7.83 (dd, J = 7.7, 1.6 Hz, 1 H), 9.83 (s, 1 H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 47.7, 52.3, 124.0, 126.1, 128.47, 128.53, 128.9, 129.1, 129.2, 130.5, 130.8, 131.1, 132.1, 133.7, 133.9, 134.1, 135.8, 138.8, 145.7, 148.2, 167.2, 189.2.

Methyl (2E)-2-[[N-(2-formylphenyl)-N-(2,4,6-trimethylbenzene-1-sulfonyl)amino]methyl]-3-phenylprop-2-enoate (1o)

According to the general procedure A, N-(2-formylphenyl)-2,4,6-trimethylbenzenesulfonamide¹⁰ (140.0 mg, 0.46 mmol), methyl (2Z)-2-(bromomethyl)-3-phenylprop-2-enoate⁶ (146.2 mg, 0.57 mmol), K₂CO₃ (103.2 mg, 0.74 mmol), and MeCN–CH₂Cl₂ (1:1, 2.0 mL) were used. After a reaction time of 24 h, 1o was obtained in 95% yield (207.9 mg, 0.435 mmol) as white amorphous solid.

IR (KBr): 1697, 1628, 1597, 1342, 1256, 1209, 772, 724, 702 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 2.20 (s, 6 H), 2.25 (s, 3 H), 3.68 (s, 3 H), 4.88 (d, J = 12.9 Hz, 1 H), 5.24 (d, J = 12.9 Hz, 1 H), 6.83 (s, 2 H), 6.85 (dd, J = 8.0, 1.0 Hz, 1 H), 7.13–7.15 (m, 2 H), 7.24 (dt, J = 7.7, 1.8 Hz, 1 H), 7.30–7.35 (m, 4 H), 7.67 (s, 1 H), 7.72 (dd, J = 7.7, 1.6 Hz, 1 H), 9.59 (s, 1 H).

¹³C {¹H} NMR (126 MHz, CDCl₃): δ 20.9, 23.1, 45.7, 52.2, 126.4, 127.6, 128.6, 128.7, 129.2, 129.3, 130.8, 130.9, 132.1, 133.7, 133.9, 136.0, 140.3, 140.4, 143.2, 145.0, 167.4, 189.4.

Methyl (2E)-2-(N-(2-formylphenyl)-N-(naphthalene-1-sulfonyl)amino)methyl-3-phenylprop-2-enoate (1p)

According to the general procedure A, N-(2-formylphenyl)-1-naphthalenesulfonamide\(^1\) (138.7 mg, 0.45 mmol), methyl (2Z)-2-(bromomethyl)-3-phenylprop-2-enoate\(^6\) (135.5 mg, 0.53 mmol), K\(_2\)CO\(_3\) (88.4 mg, 0.63 mmol), and MeCN–CH\(_2\)Cl\(_2\) (3.3:1, 1.3 mL) were used. After a reaction time of 24 h, 1p was obtained in 91% yield (199.1 mg, 0.410 mmol) as white solid.

Mp: 116.7–117.2 °C.

IR (KBr): 1695, 1622, 1595, 1352, 1254, 1162, 768, 729, 709 cm\(^{-1}\).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 3.59 (s, 3 H), 4.62 (d, \(J = 13.5\) Hz, 1 H), 5.14 (dd, \(J = 13.5, 0.9\) Hz, 1 H), 6.36 (dd, \(J = 8.1, 0.9\) Hz, 1 H), 7.02 (ddd, \(J = 8.0, 7.3, 1.7\) Hz, 1 H), 7.18–7.20 (m, 2 H), 7.27–7.41 (m, 6 H), 7.49–7.52 (m, 1 H), 7.71 (s, 1 H), 7.84–7.89 (m, 3 H), 8.05 (br d, \(J = 8.2\) Hz, 1 H), 8.16–8.17 (m, 1 H), 9.87 (d, \(J = 0.6\) Hz, 1 H).

\(^{13}\)C\{\(^1\)H\} NMR (126 MHz, CDCl\(_3\)): \(\delta\) 46.6, 52.2, 124.0, 125.1, 126.4, 126.9, 127.88, 127.92, 128.4, 128.61, 128.65, 129.0, 129.1, 129.3, 129.4, 131.4, 132.0, 133.3, 133.9, 134.1, 134.9, 136.0, 140.8, 144.5, 167.3, 189.8.

HRMS (ESI-TOF): \(m/z\) [M + Na]\(^+\) calcd for C\(_{28}\)H\(_{23}\)NNaO\(_5\)S, 508.1189; found, 508.1179.

To a round bottom flask charged with aldehyde 1 (0.10 mmol), glycine methyl ester hydrochloride (25.6 mg, 0.20 mmol), and anhydrous MgSO₄ (50.7 mg, 0.40 mmol) under the Ar atmosphere, dry CH₂Cl₂ (0.50 mL, 0.20 M) and DIPEA (35.1 µL, 0.20 mmol) were added. The reaction mixture was stirred at 30 °C for 4 h. The reaction mixture was filtered and washed with water. The aqueous layer was extracted with diethyl ether. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo to give crude imine 2. To a Schlenk flask charged with Cu(MeCN)₄OTf (3.8 mg, 0.010 mmol), (S)-H8-BINAP L₄ (7.6 mg, 0.012 mol), and activated MS4A (80.0 mg) under the Ar atmosphere, dry 1,4-dioxane–toluene (4:1, 0.50 mL) were added. The reaction mixture was stirred at 30 °C for 30 min and cooled to 0 °C. To this mixture, the solution of crude imine 2a in dry 1,4-dioxane–toluene (4:1, 1.5 mL) was added. After addition of triethylamine (28.0 µL, 0.20 mmol), the entire mixture was stirred at 0 °C for 24 h. The reaction mixture was filtered through a short plug of silica gel, which was rinsed with n-hexane and EtOAc (1:1). The filtrate was evaporated in vacuo and the residue was purified by column chromatography on silica gel (n-hexane : EtOAc = 3:1 to 1:1) to afford 3.

Dimethyl (2S,3S,3aR,9bS)-3-(4-chlorophenyl)-5-(4-methylbenzene-1-sulfonyl)-2,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-2,3a-dicarboxylate (3a)

83% yield (46.3 mg, 0.083 mmol). Pale yellow amorphous solid.
[α]D²² +75.5 (c 1.00, CHCl₃, 88% ee).
IR (KBr): 3310, 2953, 1740, 1599, 1492, 1354, 1218, 1167, 829, 814, 759 cm⁻¹.
¹H NMR (500 MHz, CDCl₃): δ 2.44 (s, 3 H), 2.83 (d, J = 11.9 Hz, 1 H), 3.25–3.27 (m, 4 H), 3.36–3.41 (m, 1 H), 3.73 (s, 3 H), 3.83 (d, J = 4.8 Hz, 1 H), 3.91 (d, J = 11.9 Hz, 1 H), 4.20 (dd, J = 8.9 Hz, 4.8 Hz, 1 H), 6.91 (br d, J = 8.3 Hz, 2 H), 7.12 (br d, J = 8.3 Hz, 2 H), 7.18 (br d, J = 8.3 Hz, 2 H), 7.216–7.225 (m, 2 H), 7.31–7.35 (m, 3 H), 7.74 (br d, J = 8.0 Hz, 1 H).
¹³C {¹H} NMR (126 MHz, CDCl₃): δ 21.6, 50.2, 52.2, 52.6, 56.4, 60.1, 64.6, 69.7, 122.3, 125.8, 126.2, 126.8, 128.1, 129.5, 129.6, 129.9, 130.3, 134.0, 134.90, 134.92, 136.7, 143.9, 171.9, 173.1.

The enantiomeric excess was determined by HPLC analysis to be 88% ee, tₘ = 26.6 min (minor), tₘ = 42.9 min (major) (Chiralpak AS-H, n-hexane/i-PrOH = 2/1, flow rate = 0.5 mL/min, λ = 254 nm).
Dimethyl (2S,3S,3aR,9bS)-5-(4-methylbenzene-1-sulfonyl)-3-phenyl-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-2,3a-dicarboxylate (3b)

87% yield (45.2 mg, 0.087 mmol). White amorphous solid.

\[
[\alpha]_D^{22} + 67.9 \text{ (c 1.00, CHCl}_3, 89\% \text{ ee).}
\]

IR (KBr): 3310, 2952, 1744, 1716, 1599, 1488, 1354, 1235, 1218, 1169, 812, 760, 724, 704 cm\(^{-1}\).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 2.43 (s, 3 H), 2.88 (d, \(J = 12.0\) Hz, 1 H), 3.21–3.31 (m, 4 H), 3.41 (br s, 1 H), 3.73 (s, 3 H), 3.85 (d, \(J = 4.9\) Hz, 1 H), 3.90 (d, \(J = 12.0\) Hz, 1 H), 4.28 (br s, 1 H), 6.97–6.98 (m, 2 H), 7.08 (br d, \(J = 8.3\) Hz, 2 H), 7.16 (br d, \(J = 8.3\) Hz, 2 H), 7.19–7.22 (m, 2 H), 7.29–7.33 (m, 1 H), 7.40–7.41 (m, 3 H), 7.74 (br d, \(J = 8.1\) Hz, 1 H).

\(^13\)C\{\(^1\)H\} NMR (126 MHz, CDCl\(_3\)): \(\delta\) 21.6, 50.4, 52.1, 52.5, 57.1, 60.3, 64.6, 69.5, 122.3, 125.7, 126.3, 126.8, 128.0, 128.2, 128.6, 129.3, 129.6, 130.7, 134.86, 134.89, 138.2, 143.8, 172.2, 173.3.

HRMS (ESI-TOF): \(m/z \ [M + Na]^+ \) calcd for C\(_{28}\)H\(_{28}\)N\(_2\)NaO\(_6\)S, 543.1560; found, 543.1572.

The enantiomeric excess was determined by HPLC analysis to be 89% ee, \(t_R = 19.9\) min (minor), \(t_R = 30.1\) min (major) (Chiralpak AS-H, \(n\)-hexane/\(i\)-PrOH = 2/1, flow rate = 0.5 mL/min, \(\lambda = 254\) nm).

Dimethyl (2S,3S,3aR,9bS)-3-(4-methoxyphenyl)-5-(4-methylbenzene-1-sulfonyl)-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-2,3a-dicarboxylate (3c)

25% yield (13.5 mg, 0.025 mmol). White amorphous solid.

\[
[\alpha]_D^{22} + 89.8 \text{ (c 0.250, CHCl}_3, 88\% \text{ ee).}
\]

IR (KBr): 3316, 2953, 1741, 1514, 1354, 1252, 1218, 1168, 832, 812, 761 cm\(^{-1}\).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 2.43 (s, 3 H), 2.93 (d, \(J = 12.0\) Hz, 1 H), 3.24 (br s, 1 H), 3.26 (s, 3 H), 3.38 (br s, 1 H), 3.72 (s, 3 H), 3.80 (d, \(J = 5.0\) Hz, 1 H), 3.89 (s, 3 H), 3.90 (d, \(J = 12.0\) Hz, 1 H), 4.21 (br s, 1 H), 6.88–6.92 (m, 4 H), 7.13 (br d, \(J = 8.3\) Hz, 2 H), 7.17 (br d, \(J = 8.3\) Hz, 2 H), 7.20–7.22 (m, 2 H), 7.29–7.32 (m, 1 H), 7.74 (br d, \(J = 8.0\) Hz, 1 H).

\(^13\)C\{\(^1\)H\} NMR (126 MHz, CDCl\(_3\)): \(\delta\) 21.6, 50.5, 52.1, 52.5, 55.3, 56.5, 60.4, 64.6, 69.7, 114.6, 122.3, 125.7, 126.2, 126.8, 127.9, 129.5, 129.6, 130.0, 130.8, 134.9, 143.8, 159.2, 172.2, 173.4. (One carbon overlapped to others)

HRMS (ESI-TOF): \(m/z \ [M + Na]^+ \) calcd for C\(_{29}\)H\(_{30}\)N\(_2\)NaO\(_7\)S, 573.1666; found, 573.1668.

The enantiomeric excess was determined by HPLC analysis to be 88% ee, \(t_R = 22.2\) min (minor), \(t_R = 41.3\) min (major) (Chiralpak AS-H, \(n\)-hexane/\(i\)-PrOH = 1/1, flow rate = 0.5 mL/min, \(\lambda = 254\) nm).
Dimethyl (2S,3S,3aR,9bS)-3-(3-chlorophenyl)-5-(4-methylbenzene-1-sulfonyl)-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-2,3a-dicarboxylate (3d)

90% yield (50.1 mg, 0.090 mmol). Pale yellow amorphous solid.

IR (KBr): 3312, 2953, 1741, 1597, 1484, 1355, 1249, 1218, 1168, 811, 761 cm\(^{-1}\).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 2.42 (s, 3 H), 2.91 (d, \(J = 12.0\) Hz, 1 H), 3.18 (br s, 1 H), 3.27 (s, 3 H), 3.39 (br s, 1 H), 3.73 (s, 3 H), 3.83 (d, \(J = 4.9\) Hz, 1 H), 3.93 (d, \(J = 12.0\) Hz, 1 H), 4.23 (d, \(J = 3.7\) Hz, 1 H), 6.92 (br d, \(J = 7.4\) Hz, 1 H), 7.03 (br s, 1 H), 7.10 (br d, \(J = 8.3\) Hz, 2 H), 7.19–7.23 (m, 4 H), 7.30–7.41 (m, 3 H), 7.76 (br d, \(J = 8.1\) Hz, 1 H).

\(^13\)C{\(^1\)H} NMR (126 MHz, CDCl\(_3\)): \(\delta\) 21.6, 50.4, 52.2, 52.6, 56.7, 60.1, 64.7, 69.3, 122.3, 125.8, 126.3, 126.6, 127.4, 128.1, 128.2, 128.5, 129.7, 130.58, 130.62, 134.6, 134.8, 135.2, 140.2, 143.9, 171.8, 173.0.

HRMS (ESI-TOF): \(m/z [M + Na]^+\) calcd for \(C_{28}H_{27}^{35}ClN_2NaO_6S\), 577.1171; found, 577.1186.

The enantiomeric excess was determined by HPLC analysis to be 88% ee, \(t_R = 21.0\) min (minor), \(t_R = 33.4\) min (major) (Chiralpak AS-H, \(n\)-hexane/i-PrOH = 2/1, flow rate = 0.5 mL/min, \(\lambda = 254\) nm).

Dimethyl (2S,3S,3aR,9bS)-3-(2-chlorophenyl)-5-(4-methylbenzene-1-sulfonyl)-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-2,3a-dicarboxylate (3e)

93% yield (51.6 mg, 0.093 mmol). White amorphous solid.

IR (KBr): 3313, 2593, 1745, 1730, 1598, 1484, 1355, 1241, 1217, 1167, 812, 752 cm\(^{-1}\).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 2.41 (s, 3 H), 2.79 (d, \(J = 12.0\) Hz, 1 H), 3.11–3.13 (m, 1 H), 3.27 (s, 3 H), 3.42 (br s, 1 H), 3.74 (s, 3 H), 4.08 (d, \(J = 12.0\) Hz, 1 H), 4.30 (br s, 1 H), 4.46 (d, \(J = 5.2\) Hz, 1 H), 6.96 (br d, \(J = 7.6\) Hz, 1 H), 7.03 (br d, \(J = 8.2\) Hz, 2 H), 7.12 (br d, \(J = 8.2\) Hz, 2 H), 7.20–7.23 (m, 2 H), 7.30–7.33 (m, 2 H), 7.35–7.38 (m, 1 H), 7.53 (br d, \(J = 7.9\) Hz, 1 H), 7.72 (br d, \(J = 8.0\) Hz, 1 H).

\(^13\)C{\(^1\)H} NMR (126 MHz, CDCl\(_3\)): \(\delta\) 21.6, 49.5, 52.2, 52.6, 52.9, 60.0, 64.5, 67.9, 122.1, 125.8, 126.3, 126.7, 127.4, 128.0, 128.2, 129.1, 129.6, 130.3, 130.6, 134.91, 134.95, 135.3, 135.7, 143.7, 171.9, 173.1.

HRMS (ESI-TOF): \(m/z [M + Na]^+\) calcd for \(C_{28}H_{27}^{35}ClN_2NaO_6S\), 577.1171; found, 577.1187.

The enantiomeric excess was determined by HPLC analysis to be 87% ee, \(t_R = 16.9\) min (minor), \(t_R = 21.6\) min (major) (Chiralpak AS-H, \(n\)-hexane/i-PrOH = 2/1, flow rate = 0.5 mL/min, \(\lambda = 254\) nm).
Benzyl methyl (2S,3S,3aR,9bS)-5-(4-methylbenzene-1-sulfonyl)-3-phenyl-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-2,3a-dicarboxylate (3h)

\[
\text{IR (KBr): 3313, 2953, 1742, 1600, 1491, 1355, 1246, 1210, 1167, 756, 701 cm}^{-1}.\]

\[
^1H \text{ NMR (500 MHz, CDCl}_3\): } \delta 2.41 (s, 3 H), 2.88 (d, } J = 12.0 \text{ Hz, 1 H}), 3.24–3.26 (m, 1 H), 3.40 (br s, 1 H), 3.40 (br s, 1 H), 3.65 (s, 3 H), 3.84 (d, } J = 5.0 \text{ Hz, 1 H}), 3.94 (d, } J = 12.0 \text{ Hz, 1 H}), 4.28 (br s, 1 H), 4.63 (d, } J = 12.0 \text{ Hz, 1 H}), 4.81 (d, } J = 12.0 \text{ Hz, 1 H}), 6.96–6.97 (m, 2 H), 7.02–7.07 (m, 4 H), 7.09–7.14 (m, 4 H), 7.18–7.21 (m, 1 H), 7.27–7.30 (m, 3 H), 7.38–7.40 (m, 3 H), 7.62 (br d, } J = 8.0 \text{ Hz, 1 H}).
\]

\[
^{13}C\{^1H\} \text{ NMR (126 MHz, CDCl}_3\): } \delta 21.6, 50.5, 52.4, 57.2, 60.3, 64.5, 67.1, 69.4, 122.2, 125.7, 126.3, 126.8, 127.9, 128.2, 128.4, 128.47, 128.55, 128.6, 129.3, 129.5, 130.6, 134.6, 134.7, 134.8, 138.1, 143.7, 172.0, 172.6.
\]

HRMS (ESI-TOF): \[m/z [M + Na]^+ \text{ calcd for C}_{34}H_{32}N_2NaO_6S, 619.1873; \text{ found, 619.1876.}\]

The enantiomeric excess was determined by HPLC analysis to be 90% ee, } t_R = 23.4 \text{ min (minor), } t_R = 36.4 \text{ min (major) (Chiralpak AS-H, n-hexane/i-PrOH = 2/1, flow rate = 0.5 mL/min, } \lambda = 254 \text{ nm).}

Dimethyl (2S,3S,3aR,9bS)-7-chloro-5-(4-methylbenzenesulfonyl)-3-phenyl-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-2,3a-dicarboxylate (3j)

\[
\text{IR (KBr): 3303, 2953, 1740, 1601, 1488, 1357, 1217, 1168, 818, 760, 706 cm}^{-1}.\]

\[
^1H \text{ NMR (500 MHz, CDCl}_3\): } \delta 2.43 (s, 3 H), 2.85 (d, } J = 12.0 \text{ Hz, 1 H}), 3.24 (br s, 1 H), 3.30–3.43 (m, 4 H), 3.73 (s, 3 H), 3.86 (d, } J = 4.8 \text{ Hz, 1 H}), 3.90 (d, } J = 12.0 \text{ Hz, 1 H}), 4.28 (br s, 1 H), 6.97–6.99 (m, 2 H), 7.12 (br d, } J = 8.4 \text{ Hz, 2 H}), 7.15–7.20 (m, 4 H), 7.39–7.41 (m, 3 H), 7.79 (d, } J = 1.9 \text{ Hz, 1 H}).
\]

\[
^{13}C\{^1H\} \text{ NMR (126 MHz, CDCl}_3\): } \delta 21.6, 50.6, 52.3, 52.6, 57.1, 59.9, 64.1, 69.3, 123.3, 125.7, 125.9, 126.8, 128.2, 128.5, 129.0, 129.4, 129.7, 133.4, 134.7, 136.0, 137.9, 144.1, 172.0, 173.0.
\]

HRMS (ESI-TOF): \[m/z [M + Na]^+ \text{ calcd for C}_{28}H_{27}ClN_2NaO_6S, 577.1171; \text{ found, 577.1172.}\]

The enantiomeric excess was determined by HPLC analysis to be 85% ee, } t_R = 17.9 \text{ min (minor), } t_R = 25.2 \text{ min (major) (Chiralpak AS-H, n-hexane/i-PrOH = 2/1, flow rate = 0.5 mL/min, } \lambda = 254 \text{ nm).}
Dimethyl (2S,3S,3aR,9bS)-8-chloro-5-(4-methylbenzene-1-sulfonyl)-3-phenyl-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-2,3a-dicarboxylate (3k)

77% yield (42.6 mg, 0.077 mmol). White amorphous solid.

[α]D22 +0.49 (c 1.00, CHCl3, 92% ee).

IR (KBr): 3308, 2953, 1741, 1479, 1356, 1218, 1168, 813, 755, 724, 706 cm⁻¹.

1H NMR (500 MHz, CDCl3): δ 2.44 (s, 3 H), 2.83 (d, J = 12.0 Hz, 1 H), 3.21 (br s, 1 H), 3.30–3.39 (m, 4 H), 3.73 (s, 3 H), 3.86 (d, J = 4.8 Hz, 1 H), 3.89 (d, J = 12.0 Hz, 1 H), 4.27 (d, J = 4.1 Hz, 1 H), 6.96–6.98 (m, 2 H), 7.08 (br d, J = 8.1 Hz, 2 H), 7.18 (br d, J = 8.1 Hz, 2 H), 7.21 (d, J = 2.5 Hz, 1 H), 7.28 (dd, J = 8.7, 2.5 Hz, 1 H), 7.39–7.41 (m, 3 H), 7.69 (d, J = 8.7 Hz, 1 H).

13C{1H} NMR (126 MHz, CDCl3): δ 21.6, 50.4, 52.3, 52.6, 57.0, 60.0, 64.1, 69.2, 122.7, 126.8, 127.3, 128.0, 128.2, 128.5, 129.4, 129.7, 131.4, 132.4, 133.4, 134.6, 137.9, 144.0, 172.0, 173.0.

The enantiomeric excess was determined by HPLC analysis to be 92% ee, tR = 19.9 min (minor), tR = 34.2 min (major) (Chiralpak AS-H, n-hexane/i-PrOH = 2/1, flow rate = 0.5 mL/min, λ = 254 nm).

Dimethyl (2S,3S,3aR,10bS)-5-(4-methylbenzene-1-sulfonyl)-3-phenyl-2,3,3a,4,5,10b-hexahydro-1H-[1,3]dioxolo[4,5-g]pyrrolo[3,2-c]quinoline-2,3a-dicarboxylate (3l)

19% yield (10.9 mg, 0.019 mmol). Pale yellow amorphous solid.

[α]D22 –48.9 (c 0.100, CHCl3, 93% ee).

IR (KBr): 3317, 2953, 1742, 1721, 1598, 1503, 1354, 1283, 1230, 1167, 1038, 930, 818, 706 cm⁻¹.

1H NMR (500 MHz, CDCl3): δ 2.44 (s, 3 H), 2.83 (d, J = 12.1 Hz, 1 H), 3.04–3.06 (m, 1 H), 3.33 (br s, 1 H), 3.38 (s, 3 H), 3.72 (s, 3 H), 3.80 (d, J = 5.0 Hz, 1 H), 3.85 (d, J = 12.1 Hz, 1 H), 4.22 (br s, 1 H), 6.00 (d, J = 17.1 Hz, 1 H), 6.00 (d, J = 17.1 Hz, 1 H), 6.71 (d, J = 0.9 Hz, 1 H), 6.93–6.95 (m, 2 H), 7.11 (br d, J = 8.1 Hz, 2 H), 7.19 (br d, J = 8.1 Hz, 2 H), 7.28 (s, 1 H), 7.39–7.40 (m, 3 H).

13C{1H} NMR (126 MHz, CDCl3): δ 21.7, 50.2, 52.3, 52.5, 57.1, 60.7, 64.5, 69.3, 101.5, 102.6, 108.7, 124.9, 127.0, 128.2, 128.5, 128.6, 129.3, 129.6, 134.5, 138.1, 143.8, 145.7, 146.9, 172.0, 173.3.

The enantiomeric excess was determined by HPLC analysis to be 93% ee, tR = 24.9 min (minor), tR = 46.4 min (major) (Chiralpak AS-H, n-hexane/i-PrOH = 1/1, flow rate = 0.5 mL/min, λ = 254 nm).
Dimethyl (2S,3S,3aR,9bS)-5-(2-nitrobenzene-1-sulfonyl)-3-phenyl-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-2,3a-dicarboxylate (3n)

53% yield (29.3 mg, 0.053 mmol). Yellow amorphous solid.

$[\alpha]_D^{22} + 48.0$ (c 0.500, CHCl$_3$, 80% ee).

IR (KBr): 3313, 2953, 1739, 1589, 1545, 1367, 1216, 1171, 750, 704 cm$^{-1}$.

1H NMR (500 MHz, CDCl$_3$): δ 3.12 (d, $J = 11.4$ Hz, 1 H), 3.31 (s, 3 H), 3.53 (br s, 1 H), 3.75 (s, 3 H), 3.93 (d, $J = 5.1$ Hz, 1 H), 3.96 (d, $J = 11.4$ Hz, 1 H), 4.04 (br s, 1 H), 4.46 (d, $J = 4.9$ Hz, 1 H), 7.12–7.14 (m, 2 H), 7.19–7.25 (m, 2 H), 7.31–7.35 (m, 4 H), 7.48–7.49 (m, 1 H), 7.53–7.60 (m, 2 H), 7.65–7.70 (m, 2 H).

13C{1H} NMR (126 MHz, CDCl$_3$): δ 50.8, 52.2, 52.5, 57.3, 60.0, 65.0, 69.5, 122.5, 123.9, 124.5, 125.5, 127.9, 128.1, 128.5, 129.4, 129.8, 130.9, 131.7, 132.0, 133.7, 134.6, 137.9, 148.0, 172.2, 173.3.

HRMS (ESI-TOF): m/z [M + Na]$^+$ calcd for C$_{27}$H$_{25}$N$_3$NaO$_8$S, 574.1255; found, 574.1260.

The enantiomeric excess was determined by HPLC analysis to be 80% ee, $t_R = 25.0$ min (minor), $t_R = 40.4$ min (major) (Chiralpak AD-H, n-hexane/i-PrOH = 1/2, flow rate = 0.5 mL/min, $\lambda = 254$ nm).

Dimethyl (2S,3S,3aR,9bS)-5-(2,4,6-trimethylbenzene-1-sulfonyl)-3-phenyl-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-2,3a-dicarboxylate (3o)

75% yield (41.1 mg, 0.075 mmol). White amorphous solid.

$[\alpha]_D^{22} + 132.3$ (c 1.00, CHCl$_3$, 81% ee).

IR (KBr): 3308, 2952, 1742, 1604, 1487, 1347, 1246, 1217, 1162, 758, 727, 704 cm$^{-1}$.

1H NMR (500 MHz, CDCl$_3$): δ 2.09 (s, 6 H), 2.33 (s, 3 H), 2.67 (d, $J = 11.1$ Hz, 1 H), 3.27 (s, 3 H), 3.50 (br s, 1 H), 3.73 (s, 3 H), 3.80 (d, $J = 11.1$ Hz, 1 H), 3.82 (br s, 1 H), 3.88 (d, $J = 5.1$ Hz, 1 H), 4.37 (br s, 1 H), 6.82 (s, 2 H), 6.94 (br d, $J = 7.2$ Hz, 2 H), 7.16 (dt, $J = 7.5$, 1.0 Hz, 1 H), 7.22–7.32 (m, 5 H), 7.51 (dd, $J = 8.0$, 0.9 Hz, 1 H).

13C{1H} NMR (126 MHz, CDCl$_3$): δ 20.9, 22.8, 48.5, 52.1, 52.5, 57.2, 60.2, 65.2, 69.5, 122.2, 124.8, 124.9, 127.70, 127.71, 128.1, 129.2, 129.7, 132.2, 133.0, 136.3, 138.2, 139.9, 142.2, 172.2, 173.4.

HRMS (ESI-TOF): m/z [M + Na]$^+$ calcd for C$_{30}$H$_{32}$N$_2$NaO$_6$S, 571.1873; found, 571.1881.

The enantiomeric excess was determined by HPLC analysis to be 81% ee, $t_R = 14.6$ min (minor), $t_R = 35.0$ min (major) (Chiralpak AD-H, n-hexane/i-PrOH = 1/1, flow rate = 0.5 mL/min, $\lambda = 254$ nm).
Dimethyl (2S,3S,3aR,9bS)-5-(naphthalene-1-sulfonyl)-3-phenyl-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2-c]quinoline-2,3a-dicarboxylate (3p)

77% yield (42.7 mg, 0.077 mmol). White amorphous solid.

\[\alpha \] \(^{22} \) +70.3 (c 1.00, CHCl3, 89% ee).

IR (KBr): 3318, 2953, 1739, 1604, 1488, 1352, 1246, 1214, 1164, 806, 759, 724, 705 cm\(^{-1}\).

\(^1 \)H NMR (500 MHz, CDCl3): \(\delta \) 2.81 (d, \(J \) =11.6 Hz, 1 H), 3.20 (br s, 1 H), 3.28 (s, 3 H), 3.32 (br s, 1 H), 3.68 (s, 3 H), 3.78 (d, \(J \) = 5.2 Hz, 1 H), 3.90 (d, \(J \) =11.6 Hz, 1 H), 4.12 (d, \(J \) = 3.7 Hz, 1 H), 6.72 (br d, \(J \) = 7.2 Hz, 2 H), 7.11 (br d, \(J \) = 7.5 Hz, 1 H), 7.15–7.25 (m, 4 H), 7.28–7.31 (m, 1 H), 7.34–7.37 (m, 1 H), 7.42–7.47 (m, 2 H), 7.71 (br d, \(J \) = 8.7 Hz, 1 H), 7.77 (br d, \(J \) = 8.1 Hz, 1 H), 7.86 (br d, \(J \) = 8.2 Hz, 1 H), 7.88 (dd, \(J \) = 7.3, 1.1 Hz, 1 H), 8.05 (br d, \(J \) = 8.2 Hz, 1 H).

\(^{13} \)C\{\(^1 \)H\} NMR (126 MHz, CDCl3): \(\delta \) 49.9, 52.1, 52.4, 57.0, 60.5, 64.9, 69.5, 122.2, 124.0, 124.5, 125.5, 125.8, 127.0, 127.7, 127.8, 127.9, 128.1, 128.2, 128.6, 129.2, 130.2, 130.6, 133.6, 134.15, 134.17, 135.3, 138.0, 172.0, 173.3.

HRMS (ESI-TOF): \(m/z \) [M + Na]\(^{+}\) caled for C\(_{31}\)H\(_{28}\)N\(_{2}\)NaO\(_6\)S, 579.1560; found, 579.1567.

The enantiomeric excess was determined by HPLC analysis to be 89% ee, \(t \)\(_R\) = 26.9 min (minor), \(t \)\(_R\) = 40.4 min (major) (Chiralcel OJ-H, n-hexane/i-PrOH = 2/1, flow rate = 0.5 mL/min, \(\lambda \) = 254 nm).
Dimethyl (3S,3aR,9bS)-5-(4-methylbenzene-1-sulfonyl)-3-phenyl-3a,4,5,9b-tetrahydro-3H-pyrrolo[3,2-c]quinoline-2,3a-dicarboxylate (4).

Using the procedure in the literature,12 4 was prepared. To a solution of 3b (26.0 mg, 0.050 mmol) in toluene (0.50 mL) was added DDQ (46.8 mg, 0.20 mmol). The reaction mixture was stirred for 3 h at rt. The reaction was quenched by the addition of sat. NaHCO\textsubscript{3} aq. The organic layer was separated and the aqueous layer was extracted with CH\textsubscript{2}Cl\textsubscript{2}. The combined organic layer was washed with brine, dried over anhydrous Na\textsubscript{2}SO\textsubscript{4}, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (n-hexane : EtOAc : CH\textsubscript{2}Cl\textsubscript{2} = 3 : 1 : 1) to give 4 (24.7 mg, 0.0476 mmol, 95\%) as white amorphous solid.

[α]D22 +101.3 (c 0.500, CHCl\textsubscript{3}, 95\% ee).

IR (KBr): 2954, 1736, 1621, 1602, 1363, 1273, 1234, 1168, 814, 734, 705 cm-1.

1H NMR (500 MHz, CDCl\textsubscript{3}): δ 2.37 (s, 3 H), 2.66 (d, J = 12.8 Hz, 1 H), 3.71 (s, 3 H), 3.77 (s, 3 H), 4.46 (s, 1 H), 4.61 (d, J = 12.8 Hz, 1 H), 5.27 (d, J = 1.1 Hz, 1 H), 7.11–7.15 (m, 3 H), 7.24 (br d, J = 8.1 Hz, 2 H), 7.28–7.34 (m, 4 H), 7.46 (br d, J = 8.5 Hz, 1 H), 7.60 (br d, J = 8.4 Hz, 2 H), 8.31 (dd, J = 7.9, 1.6 Hz, 1 H).

13C {1H} NMR (126 MHz, CDCl\textsubscript{3}): δ 21.5, 51.1, 52.7, 53.1, 54.2, 62.0, 79.3, 119.1, 120.6, 123.5, 126.8, 127.75, 127.82, 128.1, 129.2, 129.9, 132.4, 137.1, 137.2, 139.1, 144.2, 168.5, 170.7, 171.3.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C\textsubscript{28}H\textsubscript{26}N\textsubscript{2}NaO\textsubscript{6}S, 541.1404; found, 541.1408.

The enantiomeric excess was determined by HPLC analysis to be 95\% ee, t\textsubscript{R} = 13.4 min (minor), t\textsubscript{R} = 17.7 min (major) (Chiralpak AS-H, λ = 254 nm, n-hexane/i-PrOH = 1/1, flow rate = 0.5 mL/min).
(3S,3aR,9bS)-2,3a-Dimethoxycarbonyl-5-(4-methylbenzene-1-sulfonyl)-3-phenyl-3a,4,5,9b-tetrahydro-3H-pyrrolo[3,2-c]quinoline 1-oxide (5).

Using the procedure in the literature,13 5 was prepared. To a solution of 3b (26.0 mg, 0.050 mmol) in CH$_2$Cl$_2$ (1.3 mL) was added m-CPBA (65%, 27.9 mg, 0.105 mmol). The reaction mixture was stirred for 14 h at rt. The reaction was quenched by the addition of sat. NaHCO$_3$ aq. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried over anhydrous Na$_2$SO$_4$, and concentrated in \textit{vacuo}. The residue was purified by column chromatography on silica gel (\textit{n}-hexane : EtOAc : CH$_2$Cl$_2$ = 6 : 1 : 5) to give 5 (24.0 mg, 0.0449 mmol, 90%) as white amorphous solid.

[\alpha]$_D^{22}$ +107.0 (c 0.500, CHCl$_3$, 95% ee).

IR (KBr): 2953, 1742, 1597, 1563, 1353, 1245, 1228, 1166, 803, 761, 732, 703 cm$^{-1}$.

1H NMR (500 MHz, CDCl$_3$): δ 2.39 (s, 3 H), 2.59 (d, $J = 12.9$ Hz, 1 H), 3.74 (s, 3 H), 3.85 (s, 3 H), 4.49–4.52 (m, 2 H), 4.93 (d, $J = 1.0$ Hz, 1 H), 7.20–7.23 (m, 3 H), 7.25–7.27 (m, 2 H), 7.29–7.39 (m, 5 H), 7.61 (br d, $J = 8.4$ Hz, 2 H), 9.46 (dd, $J = 8.1, 1.5$ Hz, 1 H).

13C{1H} NMR (126 MHz, CDCl$_3$): δ 21.5, 48.6, 50.7, 53.5, 53.6, 57.2, 81.9, 117.9, 119.4, 124.0, 126.6, 127.3, 127.5, 128.8, 129.6, 130.0, 131.3, 135.2, 135.8, 136.1, 137.9, 144.2, 167.5, 171.1.

HRMS (ESI-TOF): m/z [M + H]$^+$ calcld for C$_{28}$H$_{27}$N$_2$O$_7$S, 535.1533; found, 535.1535.

The enantiomeric excess was determined by HPLC analysis to be 95% ee, $t_R = 17.1$ min (minor), $t_R = 30.4$ min (major) (Chiralpak AS-H, $\lambda = 254$ nm, \textit{n}-hexane/\textit{i}-PrOH = 1/1, flow rate = 0.5 mL/min).
3. X-ray crystallographic data for 3a

The single crystals of compound 3a (>99% ee) suitable for X-ray diffraction study were obtained by recrystallization from hexane, Et₂O and CH₂Cl₂ at rt. The X-ray diffraction experiment of 3a was conducted with CuKα radiation at 103.15 K. Using Olex2¹⁴, the structure was solved with the SHELXT¹⁵ structure solution program using Intrinsic Phasing and refined with the SHELXL¹⁶ refinement package using Least Squares minimization.

![POV-Ray drawing of 3a with 50% ellipsoid probability. Hydrogen atoms except for important ones are omitted for clarity. (a) Top view and (b) front view.](image)

Figure S1. POV-Ray drawing of 3a with 50% ellipsoid probability. Hydrogen atoms except for important ones are omitted for clarity. (a) Top view and (b) front view.

Table S1. Crystallographic Parameters for Compound 3a

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₂₉H₂₇ClN₂O₆S</td>
</tr>
<tr>
<td>Formula Weight</td>
<td>555.02</td>
</tr>
<tr>
<td>Crystal System</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>a, Å</td>
<td>9.28230(10)</td>
</tr>
<tr>
<td>b, Å</td>
<td>10.48500(10)</td>
</tr>
<tr>
<td>c, Å</td>
<td>26.9650(2)</td>
</tr>
<tr>
<td>a, degree</td>
<td>90</td>
</tr>
<tr>
<td>β, degree</td>
<td>90</td>
</tr>
<tr>
<td>γ, degree</td>
<td>90</td>
</tr>
<tr>
<td>V, Å³</td>
<td>2624.37(4)</td>
</tr>
<tr>
<td>Space Group</td>
<td>P₂₁₂₁</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>dcalc, g/cm³</td>
<td>1.405</td>
</tr>
<tr>
<td>μ, mm⁻¹</td>
<td>2.426</td>
</tr>
<tr>
<td>F₀₀₀</td>
<td>1160.0</td>
</tr>
<tr>
<td>Reflection collected</td>
<td>52731</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>5453/0/346</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.049</td>
</tr>
<tr>
<td>Final R indexes [I>=2σ(I)] R₁</td>
<td>0.0299</td>
</tr>
<tr>
<td>Final R indexes [I>=2σ(I)] wR₂</td>
<td>0.0807</td>
</tr>
<tr>
<td>Final R indexes [all data] R₁</td>
<td>0.0301</td>
</tr>
<tr>
<td>Final R indexes [all data] wR₂</td>
<td>0.0809</td>
</tr>
<tr>
<td>Largest diff. peak/hole / e Å⁻³</td>
<td>0.54/–0.47</td>
</tr>
<tr>
<td>Flack parameter</td>
<td>0.000(2)</td>
</tr>
</tbody>
</table>

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication CCDC 2214513. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/.
4. References

5. Copy of HPLC charts

Cycloadduct 3a

Chiralpak AS-H, Hexane/i-PrOH = 2/1, Flow rate = 0.5 mL/min, Wave length = 254 nm
t_R: 26.6 min, 42.9 min
Cycloadduct 3a (after recrystallization)

Chiralpak AS-H, Hexane/i-PrOH = 2/1, Flow rate = 0.5 mL/min, Wave length = 254 nm
t_R: 41.6 min
Cycloadduct 3b

Chiralpak AS-H, Hexane/i-PrOH = 2/1, Flow rate = 0.5 mL/min, Wave length = 254 nm
t_R: 19.9 min, 30.1 min
Cycloadduct 3b (after recrystallization)

Chiralpak AS-H, Hexane/i-PrOH = 2/1, Flow rate = 0.5 mL/min, Wave length = 254 nm
t_R: 23.7 min, 35.6 min
Cycloadduct 3c

Chiralpak AS-H, Hexane/i-PrOH = 1/1, Flow rate = 0.5 mL/min, Wave length = 254 nm
τ_R: 22.2 min, 41.3 min
Cycloadduct 3d

Chiralpak AS-H, Hexane/i-PrOH = 2/1, Flow rate = 0.5 mL/min, Wave length = 254 nm
t_R: 21.0 min, 33.4 min
Cycloadduct 3e

Chiralpak AS-H, Hexane/i-PrOH = 2/1, Flow rate = 0.5 mL/min, Wave length = 254 nm
t_R: 16.9 min, 21.6 min
Cycloadduct 3h

Chiralpak AS-H, Hexane/i-PrOH = 2/1, Flow rate = 0.5 mL/min, Wave length = 254 nm
t_R: 23.4 min, 36.4 min
Cycloadduct 3j

Chiralpak AS-H, Hexane/i-PrOH = 2/1, Flow rate = 0.5 mL/min, Wave length = 254 nm
t_R: 17.9 min, 25.2 min
Cycloadduct 3k

Chiralpak AS-H, Hexane/i-PrOH = 2/1, Flow rate = 0.5 mL/min, Wave length = 254 nm
t_R: 19.9 min, 34.2 min
Cycloadduct 3I

Chiralpak AS-H, Hexane/i-PrOH = 1/1, Flow rate = 0.5 mL/min, Wave length = 254 nm
t_R: 24.9 min, 46.4 min
Cycloadduct 3n

Chiralpak AD-H, Hexane/i-PrOH = 1/2, Flow rate = 0.5 mL/min, Wave length = 254 nm
t_R: 25.0 min, 40.4 min
Cycloadduct 3o

Chiralpak AD-H, Hexane/i-PrOH = 1/1, Flow rate = 0.5 mL/min, Wave length = 254 nm
t_R: 14.6 min, 35.0 min
Cycloadduct 3p

Chiralcel OJ-H, Hexane/i-PrOH = 2/1, Flow rate = 0.5 mL/min, Wave length = 254 nm
tr_R: 26.9 min, 40.4 min
Cyclic iminoester 4 from dehydrogenation of 3b (95% ee)

Chiralpak AS-H, Hexane/i-PrOH = 1/1, Flow rate = 0.5 mL/min, Wave length = 254 nm

t_R: 13.4 min, 17.7 min
Nitrone 5 from cycloadduct 3b (95% ee)

Chiralpak AS-H, Hexane/i-PrOH = 1/1, Flow rate = 0.5 mL/min, Wave length = 254 nm
t_{R}: 17.1 min, 30.4 min
6. Copy of 1H and 13C NMR spectra

6.1 bromide and aldehydes 1
^{1}H NMR
(500 MHz, CDCl$_3$)

$^{13}C(^{1}H)$ NMR
(126 MHz, CDCl$_3$)
1^H NMR
(500 MHz, CDCl$_3$)

$13^C(1^H)$ NMR
(126 MHz, CDCl$_3$)
1H NMR
(500 MHz, CDCl$_3$)

13C(1H) NMR
(126 MHz, CDCl$_3$)

1H NMR
(500 MHz, CDCl$_3$)

13C(1H) NMR
(126 MHz, CDCl$_3$)
^{1}H NMR (500 MHz, CDCl$_3$)

13C(1H) NMR (126 MHz, CDCl$_3$)
^{1}H NMR
(500 MHz, CDCl$_3$)

$^{13}C(1H)$ NMR
(126 MHz, CDCl$_3$)
1H NMR
(500 MHz, CDCl$_3$)

13C1H NMR
(126 MHz, CDCl$_3$)
6.2 [3+2] cycloadducts 3

1H NMR
(500 MHz, CDCl$_3$)

13C(1H) NMR
(126 MHz, CDCl$_3$)
1H NMR

(500 MHz, CDCl$_3$)

13C(1H) NMR

(126 MHz, CDCl$_3$)
1H NMR
(500 MHz, CDCl$_3$)

13C(1H) NMR
(126 MHz, CDCl$_3$)
1H NMR
(500 MHz, CDCl$_3$)

13C(1H) NMR
(126 MHz, CDCl$_3$)
1H NMR

(500 MHz, CDCl$_3$)

$\text{13C}^{(1)}$H NMR

(126 MHz, CDCl$_3$)

$3k$
^{1}H NMR
(500 MHz, CDCl$_3$)

13C(1H) NMR
(126 MHz, CDCl$_3$)

S54
6.3 transformations of 3b

^{1}H NMR
(500 MHz, CDCl$_3$)

^{13}C ^{1}H NMR
(126 MHz, CDCl$_3$)
1H NMR
(500 MHz, CDCl$_3$)

13C NMR
(126 MHz, CDCl$_3$)