SUPPORTING INFORMATION FOR:

ABC → ABCE/D BASED APPROACHES TO THE PENTACYCLIC RING SYSTEM OF THE VINCA ALKALOIDS USING INTRAMOLECULAR HETERO-[2+2]CYCLOADDITION AND GOLD(I)-CATALYSED 6-ENO-DIG CYCLISATION PROTOCOLS

Lorenzo V. White, Martin G. Banwell,* and Anthony C. Willis
Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200 (Australia)
E-mail: Martin.Banwell@anu.edu.au

Table of Contents:

ORTEPs Arising from the Single-Crystal X-ray Analyses of
Compound 10, the Oxalate Salt of Compound 14, and Compound 22

1H and 13C NMR Spectra for Compounds 9–17 and 20–24
Figure S1. Structure of compound 10 (CCDC990090) with labelling of selected atoms. Anisotropic displacement ellipsoids display 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S2. Structure of the cation of the oxalate salt of compound 14 (CCDC990091) with labelling of selected atoms. Anisotropic displacement ellipsoids display 30% probability levels. Hydrogen atoms are drawn as circles with small radii.
Figure S3. Structure of compound 22 (CCDC990092) with labelling of selected atoms. Anisotropic displacement ellipsoids display 30% probability levels. Hydrogen atoms are drawn as circles with small radii.
400 MHz 1H NMR Spectrum of Compound 9 (Recorded in CDCl$_3$)
100 MHz 13C NMR Spectrum of Compound 9 (Recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 10 (Recorded in CDCl$_3$)
100 MHz 13C NMR Spectrum of Compound 10 (Recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 11 (Recorded in CDCl$_3$)
100 MHz 13C NMR Spectrum of Compound 11 (Recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 12 (Recorded in CDCl$_3$)
100 MHz ^{13}C NMR Spectrum of Compound 12 (Recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 13 (Recorded in CDCl$_3$)
100 MHz 13C NMR Spectrum of Compound 13 (Recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 14 (Recorded in CDCl$_3$)
100 MHz 13C NMR Spectrum of Compound 14 (Recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 15 (Recorded in CDCl$_3$)
100 MHz 13C NMR Spectrum of Compound 15 (Recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 16 (Recorded in CDCl$_3$)
100 MHz 13C NMR Spectrum of Compound 16 (Recorded in CDCl$_3$)
100 MHz 13C NMR Spectrum of Compound 17 (Recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 20 (Recorded in CDCl$_3$)
100 MHz 13C NMR Spectrum of Compound 20 (Recorded in CDCl₃)
400 MHz 1H NMR Spectrum of Compound 21 and Tautomeric Enamine (Recorded in CDCl$_3$)
100 MHz 13C NMR Spectrum of Compound 21 and Tautomeric Enamine (Recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 22 (Recorded in CDCl$_3$)
100 MHz 13C NMR Spectrum of Compound 22 (Recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 23 (Recorded in CDCl$_3$)
100 MHz 13C NMR Spectrum of Compound 23 (Recorded in CDCl₃)
Expansion of Key Region of the 13C NMR Spectrum of Compound 23
400 MHz 1H NMR Spectrum of Compound 24 (Recorded in CDCl$_3$)
100 MHz 13C NMR Spectrum of Compound 24 (Recorded in CDCl$_3$)