A REVIEW ON INDOLO[2,3-a]QUINOLIZIDINE: THE SYNTHETIC APPROACHES TO THE DEVELOPMENT OF BIOACTIVE INDOLO[2,3-a]QUINOLIZIDINE SCAFFOLDS

Shivangi Sharma,1 Yukti Monga,2 Ashu Gupta,2 and Shivendra Singh1*

1Department of Applied Chemistry, Amity School of Engineering & Technology, Amity University Madhya Pradesh, Maharajpura Dang, Gwalior-474 005, India. 2Shyamlal college, Department of Chemistry, University of Delhi, Delhi-110032, India.

Corresponding author: shivendrasngh0@gmail.com

Abstract – Tetracyclic indolo[2,3-a]quinolizidine motifs are an important class of molecules in research and development due to their wide spectrum of biological activities, which include anti-allergic, antibacterial, antiviral, and other bioactive qualities. To develop the indolo[2,3-a]quinolizidine system, innovative synthetic methods have thus attracted tremendous attention during the past decades. This article describes the synthetic approaches developed to target the most important alkaloids of this family, with an emphasis on the possible use of these alkaloids or their analogues to treat a variety of illnesses, ranging from cancer to neurological disorders. In this review article, we have described several crucial synthetic methodologies leading to the indolo[2,3-a]quinolizidine scaffolds. Further, the biological activities and the structure-activity relationships (SAR) of such derivatives towards various disease gives a better understanding of the significance of this moiety in medicinal chemistry.

CONTENTS
1. Introduction
2. Indoloquinolizidine and its derivatives having potential biological activities
3. Synthetic aspects of indoloquinolizidine and its analogues
4. Conclusion
1. INTRODUCTION

The well-known alkaloids dihydrocorynantheine 1 and corynantheine 2, have tetracyclic indolo[2,3-a]quinolizidine motif and show a wide spectrum of bioactivities, that’s why they are of significant interest to both the pharmaceutical business and the academic community. The biological actions of this subclass of indole alkaloids, which include many properties have been connected to a range of biological processes.\(^1\text{-}^4\) Individually, the indole and quinoline are one of the most crucial heterocyclic compounds because they have several useful bioactivities.\(^5\text{-}^8\) Over the past few decades, numerous novel synthetic techniques have been discovered to produce the indolo[2,3-a]quinolizidine system, which is present in many alkaloids derived from monoterpenoid molecules. It has been found that the stereochemistry of the corynantheine alkaloids is very important for the manifestation of bioactivity, and therefore discovery of a novel enantioselective methods to developed indolo[2,3-a]quinolizidine alkaloids. Corynantheine alkaloids,\(^9\) including dihydrocorynantheine 1,\(^10\) corynantheine 2,\(^9\) dihydrocorynantheol 3,\(^11\) hirsutine 4,\(^12,13\) hirsuteine 5,\(^12,13\) and geissoschizine methyl ether 6,\(^14\) have been the subject of numerous research studies (Figure 1). In this review, we concentrate on the pharmacological as well as the therapeutic potential of indolo[2,3-a]quinolizidines as well as the most recent advances is asymmetric synthesis approaches to extract the essential structural elements of these indole alkaloids.\(^15,16\)

![Figure 1. Structure of corynantheine alkaloids](image)

Cryptolepine 7 is a naturally existing compound whose manufacture was recorded before it was separated from plants. Before it was initially synthesized in 1906 by Fichter and colleagues, first time it was isolated from Cryptolepis triangularis N.E.Br. by Clinquart in 1929. In addition to cryptolepine, these documented indoloquinolines from this plant also include neocryptolepine (cryptotackieine, 8), isocryptolepine
(cryptosanguinolentine 9), and many other isomeric indoloquinolines in Figure 2.17-21

![Figure 2. Different isomeric indoloquinolines](image)

2. INDOLOQUINOLIZIDINE AND ITS DERIVATIVES HAVING POTENTIAL BIOLOGICAL ACTIVITIES

Desbromoarborescidine A, commonly known as indolo[2,3-a]quinolizine alkaloid, was discovered from \textit{D. mangiferum} in 1966. The literature shows that the desbromoarborescidine A and their natural analogues (Figure 3) possess interesting cardiovascular properties, determining their efficiency to block alpha-1 and alpha-2 adrenoceptors. When compared to the other alkaloids, desbromoarborescidine A demonstrated a significant adrenoceptor blocking action. Arborescidine A, a brominated indole alkaloid derived from the marine tunicate \textit{P. arborescens}, was described in 1993.16,22a

Desbromoarborescidine A 10 & 11 and arborescidine A 12 were tested \textit{in vitro} for their potential to decrease cell growth against several tumor cell lines (leukaemia). Desbromoarborescidine A was only modestly active (IC\textsubscript{50} greater than 50 μM) in all tumour cell lines tested, whereas arborescidine A showed a leukemia specific IC\textsubscript{50} value of 34.5 μM. Chang group revealed the studies on the effects of dihydrocorynantheine 1 (Figure 1) on arterial pressure.22b,23,24

![Figure 3. Framework present in indolo[2,3-a]quinolizine alkaloids](image)

Dihydrocorynantheine 1, an alkaloid isolated from the dried branches & leaves of \textit{Uncaria callophylla}, has been demonstrated in studies to dramatically lower arterial pressure in both anaesthetized but also awake normotensive rats. Masumiya \textit{et al.} later reported that dihydrocorynantheine 1 had negative chronotropic and antiarrhythmic effect because it directly altered cardiac muscle potential action by blocking a variety of ion channels. In 2000, dihydrocorynantheine 1, corynantheine 2, and corynantheidine 13 were isolated
from bark of *Corynanthe pachyceras* K. Schum. (Rubiaceae). These alkaloids were evaluated against Leishmania major promastigotes along with two synthetic corynantheidine racemic derivatives 14 & 15 (Figure 4). Each substance displayed IC\(_{50}\) values for Leishmania ranging from 0.7 to 2.8 μM. Three alkaloids were tested for their ability to be cytotoxic as well as anti-malarial, but these tests came back negative.

Figure 4. Some analogues of corynantheidine

Dihydrocorynantheol 3\(^{25}\) (Figure 5), an alkaloid discovered from *Esenbeckia leiocarpa*, was initially described as having anti-inflammatory activities by Fröde's group in the year 2011. Dihydrocorynantheol (DHC) has been found to have a critical role in the anti-inflammatory activity of this herb by inhibiting I-B ubiquitination and subsequent degradation. As a result, both the NF-κB cascade and the generation of many pro-inflammatory mediators, such as IL-1β and TNF-α, are inhibited. A variety of esters dihydrocorynantheol derivatives such as DHC-acetyl 16, DHC-\(p\)-methylbenzoyl 17, DHC-benzoyl 18, DHC-\(p\)-methoxybenzoyl 19, and DHC-\(p\)-chlorobenzoyl 20 (Figure 5), have anti-inflammatory properties. Dihydrocorynantheol's activity was seen it decreases when the hydroxyl group acts as a protection, that provides the hydroxyl group's role in the chemical structure of this alkaloid's anti-inflammatory effect is crucial.

The main chemical components of *Uncaria* sp. include hirsutine 4, hirsuteine 5, and geissoschizine methyl ether 6 (Figure 6).\(^{25-27}\) Hirsutine 4 was shown to have antihypertensive & antiarrhythmic activities via modifying the action potential in cardiac muscle as well as intracellular Ca\(^{2+}\) levels in the rat thoracic aorta (traditional Chinese herb medicine).\(^{28}\) Additionally, hirsutine 4 was demonstrated to be successful in shielding rat cardiomyocytes from hypoxia-induced cell death.\(^{29}\) Additionally, the effects of *Uncariae Ramulus* et Uncus extracts hirsutine 4,\(^{30,31}\) hirsutein 5, and geissoschizine methyl ether 6 (Figure 6)\(^{32,33}\) on
vascular responses were assessed.34,35 In the norepinephrine-induced vasocontractive response, geissoschizine methyl ether 6 proved that it is more effective ($EC_{50} = 0.744 \text{ μM}$) than hirsutine 4. Additionally, it was established that geissoschizine methyl ether 6 had two different modes of action: endothelium dependence with nitric oxide & endothelium independence with voltage dependent Ca^{2+} channel blockage. As a result, geissoschizine methyl ether 636,37 may be a candidate for medications that dilate blood vessels or lower blood pressure. With the help of \textit{Uncaria villosa}'s leaves authors extracted the compound villocarine A 21 in 2011 (Rubiaceae).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{analogues.png}
\caption{Analogues of dihydrocorynantheol}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{possible_inhibitor.png}
\caption{Possible acetylcholinesterase inhibitor}
\end{figure}
A potential acetylcholinesterase inhibitor that was mentioned in 2012 was geissoschizine methyl ether 6. In this study were also examined the effects of hirsutine 4, hirsuteine 5, as well as vallesiachotamine 22 (Figure 6), which were taken from the hooks of *Uncaria rhynchophylla*. According to the findings, geissoschizine methyl ether 6 conc. of 3.7-0.3 μg mL⁻¹ inhibited acetylcholinesterase activity by 50%. vallesiachotamine 22, hirsutine 4, hirsuteine 5 had negligible inhibitory effects on acetylcholinesterase. Turbinatine, an indole alkaloid of the corynanthean type with structural similarities to geissoschizine methyl ether 6 (Figure 6), also inhibited acetylcholinesterase with an IC₅₀ value of 0.99 μg mL⁻¹.

A monoterpene indole alkaloid called Z-vallesiachotamine 23 (Figure 7), which was derived from the *Rhaza stricta* plant, was found to have anti-tumor activities on a carcinoma cell line in 1981. In contrast to Z- and E-vallesiachotamine 23 and 24 vallesiachotamine lactone 25 showed no obvious toxicity on HEK293 as well as the rat astrocyte primary cells. E-vallesiachotamine 24 also significantly increased cytotoxicity & necrosis at a concentration of 50 μM.39-43

![Figure 7. Vallesiachotamines and their analogue](image)

In 2005, Matsumoto *et al.* investigated the effects of mitragynine 26 (Figure 8), from the Thai medicinal herb *Mitragyna speciosa*. The results demonstrated that mitragynine 26 inhibited the guinea-pig vas deferens’ constriction because of electrical transmural stimulation. Takayama *et al.* described the synthesis of mitragynine derivative was examined on opioid receptors to undertake a SAR (structure-activity relationship) investigation. Several molecules have been identified that have intriguing potential against opioid receptors. The structure of mitragynine 26 and its derivatives such as, 7-hydroxyspeciociliatine 27, 7-hydroxymitragynine 28, 9-hydroxycorynantheidine 29 as well as indoloquinolizidines 30-31 are well documented.44-50 The presence of a hydroxyl group at 7-position really caused the decrease in activity.15 In addition, compounds associated with mitragynine also exhibit interesting opioid activities; in particular, pseudoindoxyl and 7-hydroxymitragynine 28 were found to have powerful antinociceptive activity.
3. SYNTHETIC ASPECTS OF INDOLOQUINOLIZIDINE AND ITS ANALOGUES

The aim of this section of the review is to present the most recent advancements in the various techniques used to synthesize enantioselective as well as the racemic indolo[2,3-α]quinolizidine alkaloids. The use of chiral pool resources, asymmetric metal catalysis, and non-catalytic cascade/tandem sequences or organocatalytic techniques to make up the indolo[2,3-α]quinolizidine based components. These organic molecules provide good synthetic targets since it can be difficult to produce the fused-ring system of the indolo[2,3-α]quinolizidine alkaloids while maintaining control over the quinolizidine core's relative and absolute stereochemistry. Cascade reactions have recently been employed in the synthesis of indoloquinolizidine alkaloids. While being extremely demanding, these reactions provide well-established advantages in resource management, waste production, time, and atom economies. Regarding the relative arrangement of the quinolizidine stereocenters, the bulk of the established synthetic techniques are target-specific and only permit the selective production of one epimer of the alkaloid.

When phenyl vinyl sulfoxide was combined with the ester 34, which was produced via LiHMDS treatment at -78 °C, the desired conjugate adducts 35 was produced in a reasonable amount of yield as a combination of just two diastereomers (Scheme 1a). It was unsure at this point that which stereogenic centre affected the diastereoselectivity because compound 36 can have four different diastereomers due to the presence of two potential stereogenic centres (C-20 and the sulphur atom). As a result, after converting sulfoxide 36 into the known natural product(s) and contrasting their spectroscopic data, the author decided to investigate their stereochemistry. To do this, the indole N-Boc group in compound 36 was removed with formic acid at 40 °C, and the methyl ester was reduced with LiAlH₄ to produce alcohol 37 as a mixture of two
diastereomers with a similar diastereomeric ratio as compound 37. Surprisingly, the product was produced as a single entity after the final heat removal of the sulfoxide group in alcohol 37. Since the resulting homoallylic alcohol's spectroscopic results matched those of (±)-20-epi-antirhine 38, it was determined that ester 36 had the α-H configuration at C-20. By contrasting the spectroscopic results for the hydrogenation product of the resultant homoallylic alcohol 38 with those of the previously described (±)-20-epi-18,19-dihydroantirhine 39. It should be observed that the enolate alkylation process can regulate the diastereoselectivity, and the chirality of the sulphur atom in ester 36 is responsible for the diastereomeric connection. Additionally, the enolate is approached by the electrophile from the Si face, mostly resulting in the formation of the α-H isomer.

The synthesis of (±)-antirhine 44 and (±)-18,19-dihydroantirhine 45, which calls for the installation of the vinyl (or ethyl) group at C-20 in ester 34, was continued after getting the 20-epimers 38 and 39. Different alkylation partners and reaction settings were investigated in light of this. All attempts, however, to reverse
the stereochemical result of the alkylation reaction were ineffective. The majority of these reactions produced the 20-α-H structure as the main byproduct because the electrophiles entered via the Si face of the enolate. At this point, rather than attempting to reverse the strong Si face selectivity seen in the C-20 alkylation reactions, we decided to take advantage of it. We reasoned that the addition of a hydroxymethyl group at C-20 and the transformation of the ester group into the vinyl group would result in the formation of (±)-antirhine 44 and (±)-18,19-dihydroantirhine 45 (Scheme 1b).

To synthesize mitragynine, the optically active 4-methoxytryptophan ethyl ester 47 was first treated with Crabtree’s catalyst to afford 48 under dichloromethane solvent. The nitrogen of intermediate 48 was further protected with Boc using Boc-anhydride and DMAP, which is then treated with methyl formate and LDA
to afford intermediate 50 i.e. α,β-unsaturated ester using the Pictet-Spengler reaction. In the last crucial step, the opioid-agonistic indole alkaloid mitragynine 26 was completely synthesized in quantitative yield (Scheme 2).52

\begin{center}
\includegraphics[width=\textwidth]{Scheme_2}
\end{center}

\textbf{Scheme 2. Synthesis of mitragynine 26}

The hydroxymethyl substituent is derived from tryptophanol required special preservation of the allylic hydroxy group, but diol’s insolubility prevented its modification. As a result, the lactam 51 was converted to 52 in 68\% overall yield using the Bischler-Napieralski cyclization and LiAlH\(_4\) reduction process described above. Once the allylic hydroxyl group was selectively protected with the bulky tert-butyldiphenylsilyl group, the removal of the hydroxymethyl substituent of 53 was performed in four steps: oxidation to aldehyde 54 using tetrapropylammonium perruthenate in the presence of N-methylmorpholine N-oxide as the co-oxidant (TPAP/NMO), subsequent dehydration of the corresponding oxime 55 with Burgess reagent, and reductive decyanation of the resulting α-amino nitrile. Finally, the target pentacyclic
alcohol 57 was obtained by deprotecting the indole nitrogen of pentacycle 56 with TFA in the presence of PhSH as a carbocation scavenger, followed by desilylation of the alcohol function (Scheme 3).

Scheme 3. Synthesis of the putative structure of nitraraine 57

(+)-Yohimbine 65 was synthesized in its entirety over the course of several processes. The absolute configuration was established using a highly enantioselective thiourea-catalyzed acyl-Pictet-Spengler reaction, and the remaining stereocenters were set concurrently using a substrate-controlled intramolecular Diels-Alder reaction (Scheme 4). The method represents a concise and stereoselective synthesis of (+)-yohimbine 65 via a reductive amination to install the diene side chain, and an exceptionally diastereoselective IMDA reaction. The most crucial finding of this approach is its efficient enantioenriched synthesis in 11 steps with 14% overall yield via asymmetric catalysis.

Using (S)-68 as a catalyst, benzoic acid as an additive, and toluene as a solvent, the organocatalytic
conjugate addition of β-ketoester 66 and cinnamic aldehyde 67 was carried out at 10 °C. After 100% conversion of β-ketoester 66 was confirmed by TLC, the reaction liquid was diluted with toluene before tryptamine and a stoichiometric amount of benzoic acid were added. The mixture was heated at 50 °C for 24 hours. With high enantioselectivity and yield, the desired indoloquinolizidine 71 was isolated as a single diastereomer (Scheme 5).\(^{55}\)

\[
\begin{align*}
\text{Scheme 4. Synthesis of (+)-yohimbine 65}
\end{align*}
\]
Fujii has a number of studies on fused quinolizidine ring systems, including the entire synthesis of dihydrocorynantheine 1 in 1991. The "lactim ether route" needs the coupling of 3-(chloroacetyl)indole 74 with lactim ether 73, which is generated from (+)-cinchonine 72 by the conventional degradation procedure. Following treatment of the resultant keto derivative 75 with POCl₃, the matching oxazolium chloride was obtained, which was subsequently reduced by catalytic hydrogenation to provide lactam 76. Bischler-Napieralski cyclization followed by catalytic hydrogenation resulted in a 91% total yield for the conversion into the tetracyclic ester 77. In quantitative yield, the final LiAlH₄-reduction of 77 produced dihydrocorynantheol 3 (Scheme 6). 56-58

It was possible to obtain highly substituted indolo[2,3-α]quinolizidines and benzo[α]quinolizidines by an organocatalyzed one-pot Michael addition-Pictete-Spengler sequence of β-ketoamides and α,β-unsaturated aldehydes with moderate to good yields and good to exceptional enantioselectivities. The Michael addition-Pictet-Spengler sequence of compound 78 with aromatic α,β-unsaturated aldehydes 79 afforded the corresponding indoloquinolizidine 81 which had a stable enol structure (Scheme 7). 59
Allin reported the asymmetric synthesis of both enantiomers of the indole alkaloid deplancheine in 2005, using tryptophanol-derived lactams 84 and 86 as key intermediates, which are easily accessible from (S)-tryptophanol (S-82) and (R)-tryptophanol (R-82) via a cyclocondensation process with the aldehyde-ester.
Pictet-Spengler cyclization of a mixture of bicyclic lactams with HCl in ethanol resulted in the development of the indolo[2,3-α]quinolizidine system, yielding 86 as a single molecule. The hydroxymethyl chain was cleaved by oxidation to a carboxylic acid derivative via the appropriate aldehyde, followed by acyl selenide formation and subsequent tin-mediated deacylation. The ethylidene moiety was developed in three steps: production of the lithium enolate from 87 and a subsequent aldol reaction with acetaldehyde, activation of the hydroxyl group by mesylation, and finally DBN-induced elimination to yield the target 88. According to Martin and colleagues, deprotection of the indole nitrogen atom using TBAF, followed by reduction of the lactam carbonyl group, yielded both enantiomers of (+)-deplancheine 89 and (-)-deplancheine 89 (Scheme 8 and 9).

Bosch's research group later thoroughly investigated the stereochemical outcome of Pictet-Spengler cyclizations of tryptophanol-derived lactams, describing the stereocontrolled generation of C-12 epimeric indolo[2,3-α]quinolizidine derivatives using the appropriated reaction conditions (Scheme 10).

Scheme 8. Asymmetric synthesis of (+)-deplancheine 89
Scheme 9. Access to (-)-deplancheine 89

toluene, reflux, Dean-Stark
1) IBX, DMSO
2) TEA, DMAP, (Boc)$_2$O
3) NaClO$_2$
4) (PhSe)$_2$, PBu$_3$
5) AIBN, n-Bu$_3$SnH
6) TBAF
7) MeOBF$_4$, 2,6-di-t-Bu-Py
8) NaBH$_4$
9) LDA, MeCHO
10) TEA, MsCl
11) DBN

73% yield

(-)-deplancheine

Scheme 10. Cyclizations from (S)-tryptophanol-derived oxazolopiperidone lactams

1) HCl, EtOH
2) IBX then (Boc)$_2$O
3) NaClO$_2$
4) (PhSe)$_2$, n-Bu$_3$P
5) AIBN, Bu$_3$SnH then Bu$_4$NF

80% yield

61% yield

70% yield
The widely available N-containing pronucleophile α-oxo-γ-butyrolactam 95 could be used, and the novel butyrolactam-fused indoloquinolizidine could be synthesized by an organocatalyzed three-component coupling process using 94, α,β-unsaturated aldehyde 67, and tryptamine. According to the iminium ion activation method, a secondary amine catalyzed Michael addition of 94 to 67 would start the reaction chain that would result in the chiral hemiacetal A 96. Under acidic circumstances, activated hemiacetal A 96 interacts with tryptamine to form iminium ion B 97, which then undergoes a diastereoselective Pictet-Spengler reaction to provide the expected butyrolactam-fused indoloquinolizidine 98 (Scheme 11).^68

![Scheme 11. One-pot synthesis of indoloquinolizidine scaffold](image)

According to the conventional method a formyl group is introduced in the 99. Since, the attempt of O-methylation gives the enol system by the using of common reagent. The formyl group in 100 was first converted in the dimethyl acetal which was treated with t-BuOK to give methyl enol ether 101 in 64% yield. In the last step, the reduction of methyl enol ether 101 to give (-)-mitragynine 26 (Scheme 12).^69
Using (R)-tryptophan 102 as a chiral reagent, enantiospecific total synthesis of (-)-corynantheidine 13, (-)-corynantheidol 108, (-)-geissoschizol 106, and (+)-geissoschizine 107 was achieved via the common critical intermediate 103. An intramolecular Heck coupling of α,β-unsaturated ester 103 and subsequent NaBH₄-reduction in the presence of a catalytic quantity of NiCl₂•6H₂O was done to build the 104 ring system, which is found in corynantheidol and corynantheine. Further, stereoselective Michael reaction of 103 employing Ni[COD]₂•Et₃N and Et₃SiH generated 105 in an efficient manner, which was further used to generate the molecular framework of geissoschizol and geissoschizine (Scheme 13).⁷⁰
Hua reported one of the important examples of enantioselective synthesis of indoloquinolizidine alkaloids utilizing a tandem process in 1991, employing the asymmetric 1,4-addition/ring-closure technique. Harmal sulfinyl ketimine 111 was synthesized from harmalan 109 and (-)-menthyl p-toluenesulfinate 110, and then employed in stereoselective conjugate addition with methyl acrylate, followed by in situ cyclization to generate lactam 112 in 77% yield. The resultant lactam 112 was then subjected to NaCNBH₃-reduction of the double bond to give the mixture of 113 and 114 in 90% yield. In contrast to previous results by this author, the reduction in this case was not stereoselective, resulting in a 1.9:1 mixture of diastereomers. Desulfuration of 113 with Raney Ni and subsequent LiAlH₄ reduction of the amide moiety produced 108 and 13 in 95% and 90% yield, respectively.

Scheme 13. Synthesis of (-)-corynantheidine 13, (-)-corynantheidol 108, (-)-geissoschizol 106, and (+)-geissoschizine 107
octahydroindolo[2,3-α]quinolizidine 115. (Scheme 14). Tietze revealed the enantioselective synthesis of corynanthe indole alkaloids (+)-hirsutine 4 and (+)-dihydrocorynantheine 1 by a domino Knoevenagel-hetero-Diels-Alder reaction, employing enantiomerically pure tetrahydrocarboline carbaldehydes. Further, on a large scale, aldehydes 120 (N\textsubscript{ind}-Boc) and 119 (N\textsubscript{ind}-H) were synthesized by separating the diastereomeric amides 117 using Dess-Martin assembly, which were synthesized from rac-116 and camphanic acid (Scheme 15).

Scheme 14. Asymmetric synthesis of octahydroindolo[2,3-α]quinolizidine
In an ultrasonic bath, the presence of ethylenediamine diacetate (EDDA), the aldehyde 122 was condensed with Meldrum's acid 123 as well as 4-methoxybenzyl butenyl ether 124 to yield the diastereomeric cycloadducts 125a with a slightly lower asymmetric induction of 4.8:1. The cycloadduct mixture was transformed into tert-butoxycarbonyl derivatives 125b, which were then hydrogenated with methanol/K$_2$CO$_3$. From 125b, chromatographic separation yielded the enantiomerically pure diastereomer 126b in 62% total yield. The enantiomerically pure indole alkaloids (+)-hirsutine 4 and (+)-dihydrocorynantheine 1 were obtained via cleavage of the tert-butoxycarbonyl group in 126a and 126b, followed by condensation with methyl formate & treatment with diazomethane (Scheme 16).
A tandem retro-Aldol-Pictet-Spengler reaction and C-3 epimerization of amide 127 with methanesulfonic acid in boiling dioxane resulted 52% yield of yohimbine type derivative 128a and 23% yield of pseudoyohimbane 128b. The recovered 128b was treated to the aforementioned acidic conditions, yielding 59% 128a and 29% unreacted 128b. The ketal moiety was deprotected for the transition of the E-ring moiety to the seco form present in the dihydrocorynantheol 3 alkaloid, and the resultant ketone was reacted with pyrrolidine to form an enamine, which was promptly treated with trimethylene dithiotosylate to generate 129. The dithioketone was further cleaved by using KOH in tert-butyl alcohol under boiling conditions.

Scheme 16. Synthesis of (+)-hirsutine 4 and (+)-dihydrocorynantheine 1.
conditions, and the resultant acid was esterified to yield methyl ester 130. The corresponding alcohol was then obtained by treating this molecule with the iodomethane in aqueous acetonitrile, followed by the reduction of the resultant aldehyde with sodium borohydride to generate 131. The resulting mesylate was also subjected to reduction using LiAlH₄ in boiling dioxane to furnish, with the concomitant reduction of the amide moiety as well as deprotection of the TBS group, completing the synthesis of the (-)-dihydrocorynantheol 3 (Scheme 17)⁷³-⁷⁵

Lactam intermediate 133 was obtained by reducing the lactone carbonyl 132 with DIBAL, followed by a reductive amination/lactam cyclization with tryptamine. The hydroxyl functionality was protected as an acetate ester, followed by Bischler-Napieralski cyclization and alkaline hydrolysis, yielding racemic mixture of geissoschizol 107. Alternatively, conjugate reduction of 132 produces only the thermodynamically preferred trans-isomer of the disubstituted lactone 134a. On the other hand, catalytic hydrogenation of the olefin 132 yields just the matching cis-lactone 134a, owing to hydrogen delivery to
The least sterically hindered face of the olefin. Corynantheidol (±)-108 and dihydrocorynantheol (±)-3 were synthesized from lactones 134a and 134b in a similar manner. Pure lactone 134b, on the other hand, resulted in a 1.3:1 mixture of isomers, which were separated by column chromatography after the synthesis of the indoloquinolizidine system (Scheme 18).76,77

The 6-bromotryptamine 137 is synthesized from 6-bromoindole 136 using the Shumaker and Davidson approach. In this method glutamic anhydride yielded the equivalent amide carboxylic acid, which was subsequently esterified. Following treatment with POCl\textsubscript{3}, the Bischler-Napieralsky cyclization was accelerated, yielding imine 139 in 86% yield. To achieve the necessary asymmetry, imine 139 was reduced under Noyori asymmetric hydrogen-transfer reaction using a premade (S,S)-TsDPEN-Ru(II) complex 140, yielding lactam 141 in 89% yield and 96% ee after \textit{in situ} cyclization. Finally, the lactam carbonyl was reduced with alane to provide (±)-arborescidine A 142. \textbf{(Scheme 19).78-81}

\begin{center}
\textbf{Scheme 18.} Synthesis of (±)-geissoschizol 107, (±)-corynantheidol 108 & (±)-dihydrocorynantheol 3
\end{center}
Franzén described a universal and good asymmetric approach for the synthesis of a wide range of optically active natural compounds from the corynantheine and ipecac alkaloids. The α,β-unsaturated aldehyde 144, which was obtained through the cross-metathesis of acroleine and 3-butenol, and the β-ketoamides 143, which were obtained through the condensation of tert-butyl acetoacetate with the corresponding 2-arylethanamine, were required for the stereoselective synthesis of the quinolizidine skeleton. In the presence of catalyst (R)-95, β-ketoamides 143 smoothly reacted with the α,β-unsaturated aldehyde to generate diastereomeric mixture of lactols and then the reaction was further quenched by adding trifluoroacetic acid (TFA) giving a 1:1 mixture of the two ring-junction isomers pre-145 and pre-146. It has been also found that when the reaction is quenched with acetyl chloride, the only observable isomer was the indolo[2,3-a]quinolizidine pre-146, whereas when benzoyl chloride was used, diastereoselectivity switched to product pre-145. It is also worth mentioning that by treatment with TFA, the kinetically favoured β-indolo[2,3-a]quinolizidine pre-145 could be epimerized to the thermodynamically favored pre-146 epimer, yielding an 85:15 ratio. Following reduction of the crude reaction mixture from the one-pot cascade, the corresponding amines 145 and 146 were obtained in high to moderate overall yields by initial alkylation with triethyloxonium tetrafluoroborate, followed by NaBH₄-reduction (Scheme 20). In addition, Zhang et al. also described the total synthesis of several natural products such as (-)-dihydrocorynantheol, (-)-hirsutinol, (-)-corynantheol, (-)-protoemetinol, (-)-dihydrocorynantheal, (-)-corynantheal, (-)-protoemetine, and (-)-(15S)-hydroxydihydrocorynantheol, and their epimers in quantitative yields. Further, it has been also well documented that the indole₈₃-₈₅ and its analogues possess...
several useful bioactivities such as antibacterial, antifungal, antimalarial, anticancer, analgesic, etc.

Scheme 20. Synthetic approach for pre-145 and pre-146 of indolo[2,3-α]quinolizidines

4. CONCLUSION

Indolo[2,3-α]quinolizidine serves as the main scaffold for the formation of several class of drugs and therefore many bioactive indolo[2,3-α]quinolizidines have already been synthesized, allowing the flexible addition of various functional groups to the ring system. These functional structures possess a range of bioactivities such as anticancer, antihyperglycemic, antiplatelet aggregation, antiviral and vasodilation. Studies of the relationship between structure and activity have shown the potential role of these frameworks in the drug discovery and medicinal chemistry. In this article, we have discussed many synthetic methodologies for the preparation of indolo[2,3-α]quinolizidine scaffolds under different conditions. In addition, we have also described the existing biological activities of these frameworks and the role of different substituents on such derivatives towards better understanding the significance of this moiety in drug discovery. The tetracyclic ring is involved in various biological processes, although no clear explanation of how this occurs has yet been identified. However, the data shows that these frameworks are undoubtedly a future focus area and will play a crucial role in the field of drug discovery.

Abbreviation

SAR- Structure-activity relationship
DHC- Dihydrocorynantheol
TFA- Trifluoroacetic acid
DBN- 1,5-Diazabicyclo[4.3.0]non-5-ene
TBAF- Tetra-n-butylammonium fluoride
Boc- tert-Butoxycarbonyl
DMAP- 4-(Dimethylamino)pyridine
TEA- Triethylamine
TBS- Tris-buffered saline
EDDA- Ethylenediamine diacetate
DIBAL-H- Di-isobutylaluminium hydride
THF- Tetrahydrofuran

ACKNOWLEDGEMENTS
The author is thankful to the Prof. Vivek Jaglan, Director, Amity School of Engineering and Technology, Amity University Madhya Pradesh, for his excellent support. We are also thankful to Prof. Kuldeep Singh, Head-department of Applied Chemistry, Amity School of Engineering & Technology (ASET), Gwalior, for all the necessary facilities.

REFERENCES AND NOTES
95. P. A. Pacheco and M. M. Santos, Molecules, 2022, 27, 319.
Dr. Shivendra Singh was born in India's Madhya Pradesh province's Singrauli district. He graduated with a BSc in science from Lucknow University in 2006 and an MSc in science with a concentration in industrial chemistry from Jiwaji University in Gwalior in 2010. In 2017, the chemistry department at the Indian Institute of Technology (IIT), Indore, awarded him a PhD in organic chemistry. He received a National Postdoctoral Fellowship (NPDF) from the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), India, and worked as a postdoctoral researcher at the Indian Institute of Science Education & Research (IISER), Mohali, India. At Amity School of Applied Sciences, Amity University Madhya Pradesh, Gwalior, India, he is currently employed as a senior assistant professor in the department of applied chemistry. He is particularly interested in organic synthesis, catalysis and molecular docking study.

Ms. Shivangi Sharma has qualified M.Sc. in July 2021 from School of Studies in Chemistry, Jiwaji University Gwalior (M.P). Thereafter, she is pursuing PhD in Synthetic organic chemistry and Molecular design from Amity University Madhya Pradesh. She is experienced in organic synthesis and molecular docking study using several software such as Autodock-Vina 4, Pymol, & Discovery studio visualizer. She has done “CSIR-SUMMER RESEARCH TRAINING PROGRAM” (CSIR-SRTP) JUNE-AUGUST, 2020 and her research interests include synthesis, molecular design and biological activity of heterocyclic derivatives.

Dr. Yukti Monga received her B.Sc. (2007) from the University of Delhi. She obtained first rank in her master’s (2009) from Jiwaji University. She completed a Ph.D. in chemistry from the University of Delhi in 2016. She was awarded an Inspire fellowship from DST, INDIA. She has many publications in renowned international journals and book chapters with World Scientific and Wiley. She is currently working in Shyamlal College, University of Delhi. Her research interests include green chemistry, sustainable development of nano-materials and their use in heterogeneous catalytic reactions.

Dr. Ashu Gupta completed her PhD from the Department of chemistry, University of Delhi, India in 2004 under the guidance of Prof. R. K. Sharma. Currently, she is an Associate professor and Coordinator of DBT research project in Shyamlal college, University of Delhi. She is an active member of green chemistry network centre. She has more than 20-year teaching and research experience. Her research interests focus on sustainable material development for catalysis, sensor, and other energy applications.