GENERATION OF MONOARYL-λ³-IODANES FROM ARYLBORON COMPOUNDS THROUGH IPSO-SUBSTITUTION

Ayako Nakano,† Yukino Okabe,† Keitaro Matsuoka,† Narumi Komami,† Keito Watanabe,† Masahiro Kojima,† Tatsuhiko Yoshino,†,* and Shigeki Matsunaga†,‡,*

†Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan. ‡Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan. E-mail: tyoshino@pharm.hokudai.ac.jp, smatsuna@pharm.hokudai.ac.jp

Dedicated to Professor Yasuyuki Kita on the occasion of his 77th birthday

Abstract – Monoaryl-λ³-iodanes serve as versatile oxidants and arylating reagents in organic synthesis. In addition to the oxidation of iodoarenes, electrophilic aromatic substitution reactions using iodine tricarboxylates have been used for the synthesis of monoaryl-λ³-iodanes. Here, we report that ipso-substitution reactions of aryltrifluoroborates with iodine tris(trifluoroacetate) in DMF or DMA smoothly produced monoaryl-λ³-iodanes, which were readily converted to aryliodonium ylides. We also demonstrated that sequential C–H borylation and the ipso-substitution efficiently introduced the I(III) group under steric control.

Monoaryl-λ³-iodanes (ArIL₂) are widely used versatile reagents in organic synthesis that exhibit mild and unique reactivity. These compounds are predominantly used as oxidants for various transformations, wherein iodoarenes (ArI) are eliminated as byproducts. On the other hand, ArIL₂ have been increasingly employed as arylating reagents to enable the facile introduction of the aryl moiety into the reaction products.¹ In this context, iodonio-Claisen rearrangement reactions are unique and attractive ways to use ArIL₂ as arylating reagents,²,³ leading to the introduction of a 2-iodoaryl group into a conjugate carbon nucleophile without cleavage of the aryl-iodine bond. Furthermore, iodonium ylides that bear a spirocyclic scaffold are readily prepared from ArIL₂ and serve as precursors for ¹⁸F positron emission
tomography (PET) probes.4,5 To further expand the applications of ArIL\textsubscript{2} in such arylating reactions, the development of efficient synthetic routes of ArIL\textsubscript{2} that contain multiple functional groups is essential. Although the oxidation of aryl iodides represents a straightforward and well-documented way to synthesize ArIL\textsubscript{2} (Scheme 1a),6-13 the functional group compatibility is of great concern when the substrates contain oxidizable functional groups. To circumvent this problem, a direct introduction of the IL\textsubscript{2} fragment into aromatic rings using iodine tricarboxylates without the oxidation step has been investigated in several studies. Electrophilic aromatic substitution reactions using [I(OCOCF\textsubscript{3})\textsubscript{3}]\textsubscript{2}(OCOCF\textsubscript{3})NO (ITT) was reported by Maletina in 1974,14 followed by Kurosawa in 1987,15 and Wirth in 2018 (Scheme 1b).16 In these reactions, the IL\textsubscript{2} fragment is generally introduced at the most nucleophilic position of the substrate. To enable the synthesis of a wider range of ArIL\textsubscript{2} regardless of the electronic nature of the substrate, we have focused on ipso-substitution reactions of arylgermanes and (hetero)arylstannanes with iodine tricarboxylates I(OCOCR\textsubscript{3})\textsubscript{3} (R = H, F) (Scheme 1c).17 These ipso-substitution reactions proceed under very mild reaction conditions and exhibit good chemo- and site-selectivity to afford multi-functionalized products. Compared to arylgermanes and arylstannanes, arylboron derivatives are much more attractive aryl sources due to their low cost and toxicity, which prompted us to also investigate their ipso-substitution reactions18 with iodine tricarboxylates. Herein, we report that aryltrifluoroborates19 smoothly react with ITT to afford the corresponding ArIL\textsubscript{2} using DMF or DMA as the solvent (Scheme 1d). Even though Wirth has reported that ITT reacts with B(C\textsubscript{6}F\textsubscript{5})\textsubscript{3} to provide C\textsubscript{6}F\textsubscript{5}I(OCOCF\textsubscript{3})\textsubscript{2} and (C\textsubscript{6}F\textsubscript{5})\textsubscript{2}IOCOCF\textsubscript{3},16a the reaction scope and synthetic utility have not been elucidated.

Scheme 1. Synthesis of monoaryl-λ3-iodanes

After intensive screening of the reaction conditions, we found that aryltrifluoroborate 1a reacted with ITT in DMF at 0 °C (Table 1, entry 1). The direct treatment of the reaction mixture with an aqueous basic solution of Meldrum’s acid derivative 3 afforded iodonium ylide 2a in good yield (80% 1H NMR yield; 74% isolated yield). When boronic acid or boronic acid esters (4a–6a) were used as substrates, 2a was
obtained only in lower yields possibly due to inferior nucleophilicity (entries 2–4). MIDA ester 7a (entry 5) and triolborate 8a (entry 6) did not afford 2a, indicating that the ipso-substitution reaction could be sensitive to steric hindrance. Thus, the high nucleophilicity and low steric hindrance of trifluoroborate 1a could be crucial for the high reactivity. The choice of the reaction solvent was also important (entries 7–9). The reaction in DCM, which was used in our previous study, did not provide 2a (entry 7), while 2a was obtained in moderate yield in EtCN (entry 8, 41%). The use of DMA led to a yield similar to that in DMF (entry 9, 77%). At this point, we think that the good solubility of trifluoroborate salt 1a in polar solvents contributes significantly to the good reactivity.

Table 1. Investigation of the reaction conditions for the ipso-substitution reactions of arylboron compounds with ITT

<table>
<thead>
<tr>
<th>Entry</th>
<th>Deviation from the standard conditions</th>
<th>Yield[a] [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>80(74)[c]</td>
</tr>
<tr>
<td>2</td>
<td>Ar-Bpin (4a) instead of 1a</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Ar-Bnep (5a) instead of 1a</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Ar-B(OH)₂ (6a) instead of 1a</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>Ar-BMIDA (7a) instead of 1a</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Ar-triolborate (8a) instead of 1a</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>DCM instead of DMF</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>EtCN instead of DMF</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>DMA instead of DMF</td>
<td>77</td>
</tr>
</tbody>
</table>

[a] Reaction conditions: 1) 1a (0.10 mmol), ITT (0.06 mmol) in DMF (1.0 mL) for 16 h at 0 °C; 2) 3 (0.20 mmol), aq. Na₂CO₃ (15% w/v, 1.0 mL) for 1 h at room temperature. [b] Determined by ¹H NMR analysis of the crude mixture using 1,1,2,2-tetrachloroethane as the internal standard. [c] Isolated yield on a 0.30 mmol scale. DMF = N,N-dimethylformamide. DCM = dichloromethane. DMA = N,N-dimethylacetamide. EtCN = propionitrile.

Subsequently, we applied the optimized conditions (Table 1, entry 1) to aryltrifluoroborates 1 that contain various functional groups, and the results are summarized in Scheme 2. In all cases, the generated monoaryl-λ³-iodane (ArIL₂) was converted to the corresponding iodonium ylide 2 and isolated by chromatographic purification or recrystallization. Electron-rich as well as electron-deficient...
aryltrifluoroborates smoothly underwent the site-selective *ips*o-substitution and afforded the corresponding ylides in a moderate to good yield (2a–2g). When we used an electron-rich aryltrifluoroborate such as 2m, a small amount of the corresponding diaryliodonium salt was observed in the NMR analysis of the crude mixture. Regardless of the substitution pattern, the formation of the C–I(III) bond proceeded at the *ips*o-position relative to the borate group. Then, we investigated heterocyclic substrates (1h–1k), including an oxidizable indole derivative (1i). Although the standard reaction conditions afforded lower yields, probably on account of some side reactions, the corresponding iodonium ylides (2h–2k) were obtained in moderate yields by decreasing the reaction temperature and/or the amount of ITT. Furthermore, aryltrifluoroborates derived from estrone (1l), a fibrate-like structure (1m), and tyrosine (1n) provided iodonium ylides 2l–2n in 65–77% yield, validating the applicability of our protocol for the synthesis of functionalized, biologically active molecules.

![Scheme 2](image)

In order to further demonstrate the utility of the developed protocol, we synthesized iodonium ylides via sequential C–H borylation and *ips*o-substitution reactions using ITT (Scheme 3). The iridium-catalyzed C–H borylation of aromatic compounds is a well-established method for the introduction of boron-based functional groups at the sterically most accessible position.23 Thus, the integration of the C–H borylation and the *ips*o-substitution protocol could potentially allow us to introduce the I(III) moiety under steric rather than electronic control. Therefore, we subjected 1,3-disubstituted benzenes (9o, 9p) to the reported
conditions for Ir-catalyzed C–H borylation using B$_2$pin$_2$.24 The obtained arylboronates were then directly converted into the corresponding aryltrifluoroborates (1o, 1p). In the end, treatment of 1o and 1p with ITT followed by Meldrum’s acid derivative 3 provided iodonium ylides 2o and 2p in 50% and 69% yield, respectively (Scheme 3a). Wirth and co-workers reported a direct electrophilic aromatic substitution reaction of m-xylene 9p with I(OAc)$_3$ to give an ArI(OAc)$_2$, but the site-selectivity was dominated by the electronic factor (Scheme 3b).16a Thus, the C–H borylation/ipso-substitution protocol exhibits the site-selectivity complementary to the direct substitution reaction.

Scheme 3. Sequential C–H borylation and ipso-substitution reactions for the synthesis of iodonium ylides

In summary, we have demonstrated that ipso-substitution reactions of aryltrifluoroborates 1 with [\(\text{[I}^{\text{III}}(\text{OCOCF}_3)_3\)]$_2$(OCOCF$_3$)NO (ITT) in DMF or DMA provided monoaryl–λ^3-iodanes, which could be readily converted to iodonium ylides 2. In addition, a sequential C–H borylation and ipso-substitution protocol enables the introduction of the I(III) moiety under steric rather than electronic control. The present method would enable facile access to monoaryl–λ^3-iodanes and iodonium ylides and facilitate the development of arylation reactions and other chemical reactions using such hypervalent iodine reagents in organic synthesis.

ACKNOWLEDGEMENTS

This work was supported in part by JSPS KAKENHI Grant Number 19K22177. We thank the Open Facility, Global Facility Center, Creative Research Institution, Hokkaido University for the high-resolution mass spectrometry analysis.
SUPPORTING INFORMATION

Supplementary data (synthesis of trifluoroborates, experimental procedures, characterization data, and 1H, 13C, and 19F NMR spectra) associated with this article can be found, in the online version, at URL: https://www.heterocycles.jp/newlibrary/downloads/PDFsi/26896/103/2

REFERENCES

5. For a review on monoaryliodonium ylides in organic synthesis, see: M. S. Yusubov, A. Yoshimura, and V. V. Zhdankin, ARKIVOC, 2016, i, 342.

7. For oxidation reactions with mCPBA, see: (a) E. A. Merritt, V. M. T. Carneiro, L. F. Silva Jr., and B. Olofsson, J. Org. Chem., 2010, 75, 7416; (b) M. Inuma, K. Moriyama, and H. Togo, Synlett, 2012,

For oxidation reactions with Ozone, see: A. A. Zagulyaeva, M. S. Yusubov, and V. V. Zhdankin, *J. Org. Chem.*, 2010, 75, 2119.

