SURVEY OF BRIARANE-TYPE DITERPENOIDS – PART VII

Yu-Hsin Chen,a† Hsien-Kuo Chin,b,c† Bo-Rong Peng,a You-Ying Chen,a Chiung-Chin Hu,a Li-Guo Zheng,a Thanh-Hao Huynh,a Tung-Pin Su,a Yi-Lin Zhang,a Zhi-Hong Wen,b Tsong-Long Hwang,d,e,f,g Yang-Chang Wu,h* and Ping-Jyun Sung*a,b,l,j,k*

a National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.

b Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan. c Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, 80284, Taiwan. d Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan. e Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan. f Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan. g Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan. h Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan. i Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan. j Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan. k Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.

E-mail: htl@mail.cgu.edu.tw, yachwu@gmail.com, pjsung@nmmba.gov.tw

† These authors contributed equally to this work.

Abstract – The structures, names, bioactivities, and references of 78 briarane-type natural products, including 56 new metabolites, isolated between 2017 and 2019 are summarized in this review article. All the briarane diterpenoids mentioned in this review were isolated from the octocorals Alcyonacea belonging to genus Briareum; the Gorgonacea belonging to genus Junceella and
Subergorgia; and the Pennatulacea belonging to genus Anthoptilum. Some of these compounds exhibited potentially biomedical activities, including anti-inflammatory activity, antiviral activity, and cytotoxicity.

1. INTRODUCTION
Following previous review articles from our research group focused on marine-origin briarane-type natural products,1–6 this review covers the literature from 2017 to 2019, and describes 78 naturally-occurring briarane-related diterpenoids (including 56 new metabolites), all of which are characterized by the presence of a γ-lactone moiety fused to a bicyclo[8.4.0] ring system, obtained from various octocorals, including Briareum excavatum, Briareum violaceum, Junceella fragilis, Subergorgia suberosa, and Anthoptilum grandiflorum. Many of these compounds exhibited bioactivities in vitro, which might indicate a potential for use in biomedical applications. This survey of briarane-related compounds is presented taxonomically according to genus and species.

2. ALCYONACEA
2-1. Briareum excavatum (family Briareidae)
In 1977, the first briarane diterpenoid, briarein A, was isolated from the Caribbean octocoral B. asbestinum,7 and since then Briareum played the most important role to produce briarane-type natural products. In 2017, four new briaranes, briarenols B–E (1–4) (Figure 1), were isolated from B. excavatum, collected off the waters of Taiwan, and the structures of briaranes 1–4 were established by interpretation of spectroscopic data.8,9 It is interesting to note that 1 was found to enhance the expression of iNOS and COX-2 (158 and 132%, respectively)8 than those of its 12-O-n-butyryl analogue, briarenolide ZII (5) (47 and 90%, respectively),8,10 at a concentration of 10 μM. It means that the size of functional groups at C-12 could influence the bioactivity. Briarenols D (3) and E (4) reduced the levels of iNOS to 78 and 67%, at a concentration of 10 μM, respectively, and 3 showed an inhibitory effect on the release of elastase with an IC\textsubscript{50} value of 4.65 μM.9

![Figure 1. Structures of briarenols B–E (1–4) and briarenolide ZII (5)](image-url)

1: R = OH
5: R = OC(O)Pr-n
2-2. Briareum violaceum

In continuing studies of the chemical constituents of a cultured-type octocoral \textit{B. violaceum}, 14 new briarane derivatives, briaviolides K–X (6–19),11–15 as well as four known briaranes, excavatolide Z (20),13,16 brianthein W (21),14,17,18 excavatolides B (22) and E (23) (Figure 2),15,19,20 were obtained, and the structures of new briaranes 6–19 were determined based on analysis of their spectroscopic data. In the anti-inflammatory activity test, briaviolide L (7) showed activity against the expressions of iNOS and COX-2 to 47 and 62\%, respectively, but briaviolide K (6) was found to be inactive, indicating that the activity of these two compounds is dependent on the stereochemistry of 11-hydroxy group.11 Furthermore, by comparison the inhibitory effects on the release of iNOS of 7 (47\%) with that of briaviolide O (10) (11\%),11,12 suggested that the 4\(\beta\)-acetoxy group in 10 will enhance the inhibitory activity on the release of iNOS. It is also interesting to note that briaviolide Q (12) reduced the level of iNOS to 26\% and its analogue, excavatolide Z (20),16 was found to be more weak (66\%), indicating that the length of the acyl group at C-12 could influence the bioactivity.13 Furthermore, briaviolide S (14) showed an inhibitory effect on the generation of superoxide anion with an IC\textsubscript{50} value of 5.37 \(\mu\text{M}\)14 and excavatolide B (22) could be potential use as a therapeutic agent through the inhibition of osteoclastogenesis in rheumatoid arthritis.21 Briarane 22 was also found to enhance contextual memory retrieval in both wild-type and \textit{Ca\textsubscript{3.2}+} mice via repressing the delayed rectifier potassium current in the hippocampus.22 The absolute configurations for the known briaranes, brianthein W (21), excavatolides B (22) and E (23) were determined by single-crystal X-ray diffraction analysis in later studies,14,15 and as briaranes 6–20 were obtained along with briaranes 21–23 from the same target organism, \textit{B. violaceum}, it is reasonable on biogenetic grounds to assume that briaranes 6–23 have the same configuration as the C-15 methyl group \textit{trans} to H-10, in briarane-related natural products.

\[\begin{align*}
6: & R^1 = R^2 = H, R^3 = OAc, R^4 = \beta-OH, R^5 = \alpha-OOC(O)Pr-n \\
7: & R^1 = R^2 = H, R^3 = OAc, R^4 = \alpha-OH, R^5 = \alpha-OOC(O)Pr-n \\
8: & R^1 = H, R^2 = R^3 = OAc, R^4 = \alpha-H, R^5 = \alpha-OOC(O)Pr-n \\
10: & R^1 = H, R^2 = R^3 = OAc, R^4 = \alpha-OH, R^5 = \alpha-OOC(O)Pr-n \\
11: & R^1 = R^2 = H, R^3 = OAc, R^4 = \beta-OH, R^5 = \alpha-OAc \\
12: & R^1 = R^2 = H, R^3 = OH, R^4 = \beta-OH, R^5 = \alpha-OOC(O)(CH\textsubscript{2})\textsubscript{4}Me \\
17: & R^1 = H, R^2 = OH, R^3 = OAc, R^4 = \beta-OH, R^5 = \alpha-OOC(O)Pr-n \\
20: & R^1 = R^2 = H, R^3 = OH, R^4 = \beta-OH, R^5 = \alpha-OOC(O)Pr-n \\
22: & R^1 = OOC(O)Pr-n, R^2 = H, R^3 = OAc, R^4 = \alpha-H, R^5 = \beta-OH \\
23: & R^1 = R^2 = H, R^3 = OH, R^4 = \alpha-H, R^5 = \beta-OH
\end{align*} \]
\[R = \beta - H \]
\[R = \alpha - H \]

Figure 2. Structures of briaviolides K–X (6–19), excavatolides Z (20), B (22), E (23), and brianthein W (21).

3. GORGONACEA

3.1. *Junceaella fragilis* (family Ellisellidae)

In 2017, 21 new briaranes, including fragilolides B–Q (24–39),\(^{23}\) 3-deacetylpraelolide (40), 13α-acetoxy-3-deacetylpraelolide (41), 13α-acetoxy-2-deacetylpraelolide (42), 13α-acetoxy-3-deacetyljunceellin (43), and 13α-acetoxy-2-deacetyljunceellin (44),\(^{24}\) along with three known briaranes, frajunolides H (45)\(^{23,25}\) and N (46),\(^{23,26}\) fragilide J (= 2-deacetylpraelolide) (47),\(^{24,27}\) and a mixture of known metabolites 3-deacetyljunceellin (48) and 2-deacetyljunceellin (49),\(^{24,28}\) were produced by *J. fragilis*, collected off the inner coral reef in Hainan Island, China (Figure 3).\(^{23,24}\) Structures of briaranes 24–49 were elucidated by spectroscopic methods and by comparison the spectroscopic data of these compounds with those reported previously. Acetylation of 40 and 47 yield a crystal product, praelolide (50),\(^{24,25,28–43}\) and its structure, including the absolute configuration of 50, was further confirmed by a single-crystal X-ray diffraction analysis.\(^{24}\) As the naturally-occurring briaranes 24–49 were isolated from the same organism, it is reasonable on biogenetic grounds to assume that briaranes 24–49 have the same configuration as that of 50 (praelolide).

Frajunolide H (45) was found to show cytotoxicity toward Hep G2 (human hepatocellular carcinoma), SMMC-7721 (human papillomavirus-related endocervical adenocarcinoma), BGC-823 (human papillomavirus-related endocervical adenocarcinoma), HGC-27 (human gastric carcinoma), MGC-803 (human mucinous gastric adenocarcinoma), NCI-H1650 (human minimally invasive lung adenocarcinoma), A2780 (human ovarian carcinoma), and PA-1 (human ovarian mixed germ cell tumor)
with IC\textsubscript{50} values 0.89, 0.61, 2.10, 0.61, 1.97, 6.47, 1.18, and 0.42 \(\mu\text{M}\), respectively, and fragilolides D (26), G (29), I (31), L (34), and P (38), and frajunolide N (46) exhibited 19.4, 31.3, 37.3, 30.2, 26.4, and 21.1% selective inhibitory effects toward hepatitis B e-antigen (HBeAg) at a concentration of 10 \(\mu\text{M}\), respectively.23 It is interesting to note that compounds 40 and 47; 41 and 42; 43 and 44; 48 and 49 were obtained as equilibrium mixtures, respectively, and at a dose of 50 \(\mu\text{M}\), the mixtures of 40 and 47; 41 and 42; 43 and 44; and 48 and 49, exerted inhibitory activities against the NO production with inhibitory rates of 39.4, 46.4, 42.7, and 36.3%, respectively.24
In addition, 14 new briaranes, (+)-12-epi-fragilide G (51) and fragilides K–W (52–64), as well as nine known briaranes, praelolide (50) (Figure 3), 43–48 gemmacolides V (65) and X (66), juncins P (67), Z (68), and ZI (69), 43,49 junceellin (70), 25,28,31–40,42,45,48,50,51 robustolide F (71), 46,52,53 and juncellonoid D (72), 37,48,54 were isolated from J. fragilis, collected off the waters of Taiwan (Figure 4). The structures of all isolates were established by spectroscopic methods and the absolute configuration of junceellin (70) was further confirmed by a single-crystal X-ray diffraction analysis. 45,51 Fragilides S (60) and T (61) are the first two briaranes known to possess 8α-hydroxy and 17β-methyl groups in the γ-lactone moieties. 47 Briarane 51 was found to be the enantiomer of (−)-12-epi-fragilide G (73) and 73 showed a 74.5% inhibitory effect on human neutrophils in terms of the generation of superoxide anions at a concentration of 20 μM, but briarane 51 was not active. This result implied that the configurations of 51 and 73 played an important role in determining the activity. 44 Anti-inflammatory activity analysis showed that (+)-12-epi-fragilide G (51), fragilides L (53), S (60), U (62), and W (64), gemmacolide X (66), juncin ZI (69), and junceellin (70) inhibited iNOS expression to 54.7, 49.1, 61.2, 55.9, 28.6, 36.2, 43.3, 33.7%, 43,44,47,48 and gemmacolides V (65) and X (66) elicited reduction of COX-2 to 47.5 and 43.6%, at a concentration of 10 μM, in LPS-stimulated murine macrophage-like RAW264.7 cells, respectively. 43 Briarane 68 (juncin Z) showed a 25.6% inhibitory effect on the generation of superoxide anions by human neutrophils at a concentration of 10 μM. 46
3-2. *Subergorgia suberosa* (family *Subergorgiidae*)

In 2014, Sun *et al.* reported the isolation of five known briaranes, brianthein W (21) (Figure 2),

funicolide E (74),

9-deacetylbriareolide H (75),

9-deacetylstylatulide lactone (76),

and
umbraculolide A (77),32,59 from the South China Sea gorgonian coral, \textit{S. suberosa} (Figure 5).60 Structural determination of known briaranes 21 and 74–77 were conducted using spectroscopic methods and by comparison with the spectral data previously reported in literature. The hydroxy group at C-7 in briarane 74 shown in ref.60 should be revised as α-oriented as shown in Figure 5. An exocyclic double bond between C-11/20 was existed in umbraculolide A (77),32,59 and based on this finding, the structure for umbraculolide A that shown in ref.60 also should be revised as shown in Figure 5. Briarane 75 exhibited cytotoxicity toward A549 (human epithelial lung carcinoma) cells with an IC\textsubscript{50} value of 26.7 μM.60

![Structures of funicolide E (74), 9-deacetylbriareolide H (75), 9-deacetylstylatulide lactone (76), and umbraculolide A (77)](image1)

Figure 5. Structures of funicolide E (74), 9-deacetylbriareolide H (75), 9-deacetylstylatulide lactone (76), and umbraculolide A (77)

4. PENNATULACE

4-1. \textit{Anthoptilum grandiflorum} (family Anthoptilidae)

Investigation of the chemical constituents of \textit{A. grandiflorum}, collected off the north of Burdwood Bank by trawling on the R/V Nathaniel B. Palmer, the U.S. Antarctic Programs’ research ship, afforded three novel briaranes, bathyptilones A–C (78–80) (Figure 6).61 The structures, including the absolute configurations of briaranes 78–80 were elucidated by interpretation of spectroscopic methods, and further confirmed by single-crystal X-ray diffractions analysis. Briarane 78 showed cytotoxicity toward NTREA-2 (NT2) (human malignant pluripotent embryonal carcinoma) with an IC\textsubscript{50} of 29 nM and briarane 80 was found to be more inactive in terms of cytotoxicity toward NT2 cells, indicating that the cytotoxicity of these compounds are largely dependent on the functional group at C-7.

![Structures of bathyptilones A–C (78–80)](image2)

Figure 6. Structures of bathyptilones A–C (78–80)
5. CONCLUSIONS
In the past three years, 78 briarane-type diterpenoids, including 56 new metabolites have been prepared from soft corals belonging to the orders Alcyonacea, Gorgonacea, and Pennatulacea and compounds of this type have been demonstrated to possess various bioactivities, for example, excavatolide B (22) has been proven to show anti-inflammatory and to enhance contextual memory retrieval and bathyptilone A (78) showed potential cytotoxicity. Because of the structural diversity and biomedical bioactivities, there have been little synthetic work on briarane analogues.62–65 It is interesting to note that most briaranes, excepting bathyptilones A–C (78–80), reported as having been isolated between 2017 and 2019 were all collected from octocorals distributed in the South China Sea.

Figure 7. Numbers of briarane-type diterpenoids between 2017–2019 and their biomedical activities

ACKNOWLEDGMENTS
This research was supported by grants from the National Museum of Marine Biology and Aquarium; the National Dong Hwa University; and the Ministry of Science and Technology (Grant Nos. MOST 106-2320-B-291-001-MY3 and 107-2325-B-291-001-MY3), Taiwan, awarded to Ping-Jyun Sung.

REFERENCES AND NOTES
Yu-Hsin Chen obtained his BSc from Department of Microbiology at Soochow University. He obtained PhD degree from the Department of Life Science, National Dong Hwa University, where he studied isolation and structure elucidation of bioactive marine natural products under the guidance of Prof. Sung, 2011~2018. He undertook a postdoctoral task for Prof. Sung at National Museum of Marine Biology & Aquarium (NMMBA), 2019–present.

Hsien-Kuo Chin obtained his BSc from Department of Medicine, National Defense Medical Center. He obtained Master of Health Care Management, Department of Business Management, National Sun Yat-sen University and he studies to obtain doctoral degree under the guidance of Prof. Zhi-Hong Wen, Department of Marine Biotechnology and Resources, National Sun Yat-sen University (2016–present). His present research interests are related to bioactive marine natural products.

Zhi-Hong Wen is the distinguished professor at the Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University. He received his Ph.D. from the Graduate Institute of Life Sciences, National Defense Medical Center, Taiwan, in 2003. His research interests include drugs, cosmeceutical and natraceutical development, animal disease model (non-genetic) platform, neuroscience, and neurodegeneration.

Tsong-Long Hwang is the dean and distinguished professor at the College of Human Ecology, Chang Gung University of Science and Technology. He is also the professor at the Graduate Institute of Natural Products, Chang Gung University, Taiwan. He received his Ph.D. in Pharmacology from National Taiwan University in 2000. His research interests include inflammopharmacology, innate immunity, phytomedicine, and drug discovery. Professor Hwang has published more than 350 papers.
Yang-Chang Wu obtained his Ph.D. in pharmacognosy from the College of Pharmacy, Kaohsiung Medical University (KMU), Taiwan, in 1986. In 1990, he became professor at the College of Pharmacy, KMU and director of the Graduate Institute of Natural Products (GINP) from 1992~2006. Later, he served as the dean of the Office of Research and Development at KMU from 2006~2009. Attributed to his significant contribution to research on natural products, he was selected as the chair professor and vice-president as well as dean of the School of Pharmacy at China Medical University (CMU), Taiwan, from 2010~2017. In 2017, he returned KMU and served as the Chair Prof. of the GINP. In 2019, he returned CMU and served as the Chair Prof. of the Graduate Institute of Integrated Medicine and Director of the Chinese Medicine Research and Development Center. In 2007 and 2010, he was awarded by the Wang Ming-Ning and TienTe Lee Foundations for outstanding merit and high scholastic achievement to medical and pharmaceutical research, respectively. In 2009, he received the National Science Council Outstanding Research Award in Taiwan. Professor Wu has served as an editorial board member of 6 journals and as a referee for about 40 journals. Also, he is an outstanding member of the American Society of Pharmacognosy. So far, Prof. Wu has published more than 600 research articles in SCI journals. He has been granted more than 40 patents and is in cooperation with more than 20 industry-academic organizations. Professor Wu has transferred six patent/technologies to industry.

Ping-Jyun Sung obtained his BSs, MSc, and PhD degrees from National Sun Yat-sen University, where he studied isolation and structure elucidation of bioactive marine natural products under the guidance of Prof. Jyh-Horng Sheu, 1989~2000. He undertook a postdoctoral task for Prof. Pettit at the Cancer Research Institute, Arizona State University (ASU-CRI), 2001~2002. He then jointed the faculties of the National Museum of Marine Biology and the Graduate Institute of Marine Biology, National Dong Hwa University, Taiwan, where he is now a research fellow and professor, respectively. His present research interests are related to marine natural products.

Graduate students (from left):
Bo-Rong Peng: Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica.
You-Ying Chen: Department of Marine Biotechnology and Resources, National Sun Yat-sen University.
Thanh-Hao Huynh: Graduate Institute of Marine Biology, National Dong Hwa University.
Tung-Pin Su: Graduate Institute of Marine Biology, National Dong Hwa University.
Yi-Lin Zhang: Graduate Institute of Marine Biology, National Dong Hwa University.