C-SUBSTITUTION OF NITROGEN HETEROCYCLES

Helmut Vorbrüggen *) and Manfred Maas *)
Research Laboratories, Schering AG,
Berlin/Bergkamen, D-1000 Berlin 65, Germany

Abstract - An attempt has been made to summarize, evaluate and compare the available methods for the introduction of C-substituents into aromatic nitrogen heterocycles. However due to the large number of publications on this topic this review is necessarily limited to the most important publications.

CONTENTS
1.0. Preface
2.0. Direct Introduction of C-Substituents
2.1. Electrophilic Substitutions
2.2. Ionic Nucleophilic Additions
2.2.1. Addition of Dimsylsodium
2.2.2. Addition of Alkyl- or Aryllithium or Grignard Reagents
2.2.3. Hydrogen-Metal Exchange and Subsequent Reactions
2.2.4. Miscellaneous Reactions
2.3. Reissert-Type Reactions
2.4. Reissert Reactions
2.5. Reactions of Hydroxy-N-Heterocycles
2.6. Emmert Reaction
2.7. Radical Reactions
2.7.1. Reactions with Chemically Generated Alkyl Radicals
2.7.1.1. Reactions with Alkyl Radicals
2.7.1.2. Reactions with Chemically Generated Acyl Radicals
2.7.1.3. Reactions with Chemically Generated Amide Radicals
2.7.2. Reactions with Photochemically Generated Radicals

*) Dedicated to Professor T. Kametani on the occasion of his 70th birthday
+) Deceased on October 22, 1985
3.0. Reactions or Modifications of Reactive Substituents at the Heterocycle
3.1. Reactions of Halogens
3.1.1. Reactions of Heteroaryllithium and Magnesium Compounds
3.1.2. Reactions with Enolates and Activated CH-Active Compounds
3.1.3. Reactions with Grignard Reagents in the Presence of Nickel-Complexes
3.1.4. Reactions with Olefins and Acetylenes in the Presence of Palladium-Complexes
3.1.5. Reactions with Copper Metal (Ullmann-Type)
3.1.6. Reactions with Wittig Reagents
3.1.7. Reactions with Sulfur Ylides
3.1.8. Reactions with Cyanides
3.2. Replacement of O-Alkyl, O-Aryl, O-Acetyl, and O-Sulfonate Groups
3.3. Replacement of Quaternary Ammonium Groups
3.4. Replacement of Sulfones
3.5. Sulfide Contractions of S-Alkylated Groups
3.6. Replacement of Carboxyl Groups (Hammick Reaction)
3.7. Modification of Alkyl Groups
3.7.1. Nucleophilic Reactions
3.7.2. Electrophilic Reactions
3.7.3. Oxidation and Halogenation of Alkyl Groups
3.8. Modification of Cyano Groups
3.9. Reactions of Miscellaneous Organometallic Substituents
4.0. Reactions of N-Quaternary-Type Bases
4.1. Reactions of Aromatic N-Oxides and N-Amino Compounds
4.1.1. Activation via O-Acylation or Sulfonylation and Rearrangements
4.1.2. Activation via O-Alkylation of O-Silylation
4.2. Reactions of N-Alkylated Heterocycles
4.3. Reactions of Other N-Substituted Heterocycles
5.0. C-Substitution by Rearrangements
5.1. Claisen Rearrangements
5.2. Sommelet-Hauser [2,3] Sigmatropic Rearrangements
5.3. Benzidine-Type Rearrangements

Supplement
1.0. PREFACE

Many natural products, drugs, herbicides and pesticides are C-substituted N-heterocycles, which can be prepared by various methods. Since these methods have not as yet been reviewed, we attempt to survey in this article the different reactions which permit a C-substitution of nitrogen heterocycles. Due to the vast amount of literature on this topic, no attempt has been made to give a complete review. Instead, typical reactions of the different types of C-substitutions in the most common nitrogen heterocyclic systems, preferably from the most recent literature, have been selected. We hope that this permits a comparison of the available methods by providing access to the literature and complementing the standard textbooks and review literature e.g. A. Weissberger, The Chemistry of Heterocyclic Compounds, Elderfield, as well as Advances in Heterocyclic Chemistry.

2.0. DIRECT INTRODUCTION OF C-SUBSTITUENTS

2.1. Electrophilic Substitutions

An electrophilic substitution of nitrogen heterocycles under mild conditions is only possible with weakly basic systems like pyrroles(1) which can either be trichloroacetylated to 2\(^1\), formylated to 3\(^2\) or add chloral to 4\(^3\). Imidazoles(5) react on heating with phenylisocyanate to 6\(^4\) and with aldehydes to 7\(^5\). Furthermore N-phenylpyrazole(8) is readily chloromethylated to 9\(^6\). Isoxazoles 7 and isothiazoles 8 react analogously.

\[
\begin{align*}
2 & \quad \text{CCl}_3\text{COCl} \\
3 & \quad \text{CHO} \quad 89\% \\
4 & \quad \text{CCl}_3 \\
5 & \quad \text{H} \\
6 & \quad \text{CONHC}_6\text{H}_5 \\
7 & \quad \text{CH} \quad \text{R'} \\
8 & \quad \text{OH} \\
9 & \quad \text{H} \\
10 & \quad \text{CH}_3 \\
11 & \quad \text{OH} \\
12 & \quad \text{H} \\
13 & \quad \text{CH} \\
14 & \quad \text{R'} \\
\end{align*}
\]
Most of the other electrophilic substitutions demand rather drastic conditions.

The Ladenburg reaction of pyridine hydrochloride (10) affords a mixture of 2- and 4-benzylpyridines (11 and 12) in 75 % yield. However, the mechanism of this reaction has not as yet been determined. Pyridine (13) is alkylated by perfluoroalkyl iodides to afford the monoalkylated products (14, 15 and 16) in the ratios given.

\[\text{Pyridine (13) \text{C}_6\text{H}_5\text{CH}_2\text{Cl}} \rightarrow \text{Pyridine (13) \text{C}_6\text{H}_5\text{CH}_2\text{Cl}} + \text{Pyridine (13) \text{C}_6\text{H}_5\text{CH}_2\text{Cl}} \]

2.2. Ionic Nucleophilic Additions

2.2.1. Addition of Dimsylsodium

Methylsulfanyl carbanion sodium salt (dmsylsodium) adds to more reactive heterocycles like quinoline, isoquinoline, acridine, phenanthridine, 4,6-phenanthroline, 1,5- and 1,6-naphthyridine or benzoquinoline via intermediates like 18 which eliminate methanesulfonic acid to afford the corresponding methylated heterocycles like 1-methylisoquinoline (19) in high...
Quinaldine (20) apparently affords the anticipated intermediate addition product 21 which, however, does not eliminate methanesulfinic acid to 2,4-di-methylquinoline (22) but instead cyclises via 23 in 60% yield to 24.

2.2.2. Addition of Alkyl- or Aryllithium and Grignard Reagents

N-Heterocycles like pyridine (13), quinolines, and acridines react with alkyllithiums to adducts such as 25 which eliminate lithium hydride on heating to form C-substituted heterocycles such as 26 in high yields.
Under more vigorous conditions, further alkyllithiums can be added to pyridines to furnish 2,6-dialkylpyridines, for example 2,6-di-tert-butylpyridines, in high yields. Under even more drastic conditions, pyridine reacts with excess tert-butyl lithium to give 2,4,6-tri-tert-butylpyridine in 55% yield. Reaction intermediates like 25, which were investigated by NMR, can be trapped by methanol at -78°C to afford 1,2- and 2,5-dihydropyridines. 3-Isopropylpyridine (27) reacts with phenyllithium to give, after subsequent oxidation, a 7:3 mixture of the 1,2- (28) and the 1,6-addition product (29).

Of special importance are the reactions of intermediate adducts (25) with electrophiles. Thus, 25 (R = CH₃, n-butyl or C₆H₅) reacts as an N-metallated enamine with soft electrophiles such as alkyl halides to afford, after dehydrogenation, the corresponding 2,5-dialkylated pyridines (30) in moderate yields. Addition of lithiumaluminium hydride to pyridines gives intermediates (25) (R = H) which furnish readily 3-alkylated or brominated pyridines (30) (R = H; R' = alkyl or Br). However, reaction of 25 (R = C₆H₅) with harder electrophiles such as ethyl benzoate gives also N-substituted products, e.g. a mixture of 31 (18%), 32 (42%) and 33 (34%)
Formylation of intermediate 25 ($R = C_6H_5$) with ironpentacarbonyl furnishes 34 which is cleaved by acetic acid to 2-phenyl-5-formylpyridine (35). Oxidation of 34 with iodine gives 2-phenyl-5-pyridinecarboxylic acid (36), whereas alkylation with methyl iodide yields 2-phenyl-5-acetylpyridine (37).

Intermediates 25 ($R = n$-butyl) react furthermore with aliphatic or aromatic isocyanates to give complex mixtures 31, whereas 25 ($R = t$-butyl) is dimerized by bromine to give 6,6'-di-tert-butyl-3,3'-bipyridyl $32,33$. When intermediates 25 are alkylated to 38 and again treated with lithium reagents to 39, the resulting trisubstituted tetrahydropyridines can be dehydrogenated with selenium to the trisubstituted pyridines (40). The dehydrogenation of dihydropyridines is also discussed by Giam 35.

- 2665 -
Reactions of pyridine with 2-lithio-1,3-dithianes (41) in THF gives, after oxidation with air or p-quinone, the corresponding 4-substituted pyridines (42) in up to 69% yield.

\[
\text{Pyridine} \xrightarrow{\text{O}_2} \text{Pyridine}
\]

\[
\begin{array}{c}
\text{41} \\
\text{R} = \text{H; CH}_3; \text{CH}_2\text{C}_6\text{H}_5
\end{array}
\]

3-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)pyridine (43) adds alkyllithiums to 44 which is readily oxidized to 45.

Additions of alkyl- and arylmagnesium halides as well as lithium reagents to pyrimidines 41-43, pyridazines 42,44, and pyrazines 42 have been described recently. Addition of phenyllithium to quinoline followed by N-acylation with benzoyl chloride gives more than 75% of 46 which is transformed by butyllithium in boiling ether via a Reissert-type anion and rearrangements in 60 - 80% yield to 48.
Addition of Grignard reagents instead of alkylolithiums to pyridine and other N-heterocycles is usually more complex. Thus, benzylmagnesiumchloride reacts with pyridine to give in 10% yield a 8:2 mixture of 4-benzylpyridine and 2-benzylpyridine. However, allylmagnesium halides add "normally" to quinoline, isoquinoline, quinoxaline, and acridine in good yields.

Reaction of Grignard reagents generated in situ from butyl chloride in the presence of excess magnesium metal with pyridine (13) furnishes 50% of 4-butylpyridine (49) as well as 50% of a mixture of bipyridyls (50) (mainly of 4,4-bipyridyl), the formation of which indicates intermediate radical reactions caused by electron transfer from the magnesium metal.

3-Dimethylaminopropylmagnesium chloride (51), which is intramolecularly stabilized by complexation with the dimethylamino group, adds readily to quinoxalines to form the mono- or bis-adduct (52) which can be oxidized to the mono- or bis-substituted quinoxalines (53). Analogous reactions have been described with phthalazines, phthalazones, quinoxalines, and quinoxalines.

Recently, Grignard reagents have been added to purines, triazolo[4,5-d]pyrimidines, and 1,8-naphthyridines as well as to acridine.

Due to its electron-attracting nitrile group, 4-cyanoisoquinoline (54) reacts readily with sodium enolates of ketones like acetophenone with concomitant oxidation to afford the corresponding 1-substituted isoquinolines such as (55) which can undergo further reactions. Thus, the cyclohexanone product (56) is hydrolyzed by alkali in 71% yield to the acid (57).
Finally, vicarious nucleophilic substitutions proceed also with heterocycles. Thus, 3-methyl-1,2,4-triazine (58) reacts readily with nitromethane and base to form the oxime (59) in 91 % yield which is readily converted in 57 % yield into the aldehyde (60).

2.2.3. Hydrogen-Metal Exchange and Subsequent Reactions

The more acidic hydrogen atoms between two hetero atoms in 5-membered heterocycles are exchanged most readily by metal atoms. Thus, N-methylimidazole (61) is rapidly metallated by n-butyllithium to 62, which can easily be trimethylsilylated to 63 and then reacted with electrophiles like ethyl chloroformate or phthalic anhydride to 64. Reaction of 62 with acetaldehyde affords 65 in 35 % yield. N-Benzensulfonylimidazole behaves analogously. For further reactions of imidazole derivatives, compare a recent review article.
derivatives are also lithiated in the 2-position to react with various electrophiles 64,65. When the 2-position in thiiazoles or oxazoles is blocked by a methyl group, metallation and subsequent reaction with electrophiles occurs in the 5-position 66. Isothiazoles give analogously 5-substituted derivatives 67,68. Finally, it should be mentioned that N-methylpyrrole can also be metallated by butyllithium into a mono- and dianion, which react with CO₂ 69. Recently, Meyers succeeded in metallating the 2-(4-pyridyl)-4,4-dimethyloxazoline (66) with methyllithium to 67 which was treated with a variety of electrophiles e.g. with benzaldehyde to 68 70. However, the oxazoline of nicotinic acid (69) reacts with methyllithium to give the 1,4-dihydropyridine (70) (cf. 2.2.2.). Ethyl nicotinate (71) can be metallated by lithium diisopropylamide (LDA) to give the 4-lithium salt, which reacts in situ with ethyl nicotinate to afford 4-nicotinoylnicotinic acid (72) and derivatives 71. 3-Cyanopyridine can be metallated and alkylated in the 4-position if 12-crown-6 is added 72. On addition of N,N,N',N'-tetramethyl-ethylenediamine (TMEDA), 3-chloropyridine 72 as well as 3-alkoxypyridine 73 are primarily metallated in the 2-position.

When 2-ethoxyquinoline (73) is lithiated by LDA and reacted subsequently with excess benzonitrile the tricyclic system (74) is obtained in 20 % yield 74.

2',3'-O-isopropylidene-5'-methoxymethyluridine can be converted by excess LDA into the N³,C⁶-dilithio derivative, which reacts with various electrophiles like benz- or propionaldehyde, ketones, and ethyl formate to give 6-substituted uridines in moderate yields 75,76. 6-Substituted 9-(2',3'-O-isopropylidene-β-0-ribofuranosyl)purines give analogously mono- or dilithium salts which react with electrophiles to furnish 8-substituted purine nucleosides 77,78.
2.2.4. Miscellaneous Reactions

Recently, Tsuge used the 1,4-bis(trimethylsilyl)-1,4-dihydropyridine (75), which is readily available from the reduction of pyridine with lithium and trimethylsilyl chloride, for the fluoride catalyzed reaction with aldehydes e.g. benzaldehyde to obtain 3-benzylpyridine (76) in 72% yield.
2.3. Reissert-Type Reactions

Electrophilic agents like acid chlorides, acid anhydrides, sulfonyl chlorides, thionyl chloride, and sulfuryl chloride as well as halogens like bromine and Lewis acids combine with pyridines, quinolines, and all the other basic N-heterocyclic compounds to σ-complexes. Typically, acid chlorides furnish complexes like 77 and 78.

These σ-complexes, which are formed in an equilibrium depending mainly on the electrophilic agent (or Lewis acid) and the basicity and polarizability of the heterocyclic base, behave like typical ambident electrophiles which can react

1) with "hard" nucleophiles, such as alcohols, phenols or amines, at the electrophilic carbon attached to the heterocyclic nitrogen to furnish either esters or amides (Einhorn-acylation)

2) with alkali at the α-carbon of the heterocycle to yield the so-called "pseudo bases" which often undergo ring-opening (Zincke-König reaction 80, 81)
3) With cyanides especially in the pyridine, quinoline, and isoquinoline series to form the Reissert compounds (cf. 2.4.)

4) With "soft" nucleophiles, e.g., N,N-dimethylaniline, Grignard reagent indoles or ketone enolates, in the α- or γ-position (for details see below)

5) With pyridine in the presence of zinc-dust in acetic anhydride to generate radicals which subsequently dimerize (Dirnroth-reduction, details are discussed below)

The orientation of the attack of nucleophilic agents is determined by steric factors as well as by the relative "softness" or "hardness" of individual positions of the ring or the acyl carbon atom.

In the pyridine series, electrophiles like thionyl chloride 82 or bromine 83 form very reactive 6-complexes. These complexes, which are only stable at low temperatures, are attacked by chlorine or bromine or free pyridine in the γ-position to afford eventually 4-pyridylpyridinium chloride hydrochloride or 4-pyridylpyridinium bromide hydrobromide in high yields which are interesting starting materials for the C-substitution of pyridines in the 4-position (cf. 4.0.).

The 6-complex between pyridine (79) and benzoyl chloride affords on heating with N,N-dimethylaniline a 67% yield of 4-(4-dimethylaminophenyl) pyridine (80). (compare also ref. 84). Reaction of 79 with acetophenone for 4 months at 24°C leads to formation of 81, which can be oxidized by oxygen directly to 4-phenacylpyridine (82). The latter is also available via 83 85. Comparable treatment of the cyclohexanone derivative (84) with iodine gives 85 85. Addition of indole to 79 furnishes the adduct (86) 86, 87 which can be efficiently dehydrogenated to 87 88. The analogous reaction of indole with 4-cyanopyridine affords in 73% yield the 2-(3-indolyl)-4-cyanopyridine 89.
Further reactions of indole with C-complexes of pyridine with acetyl chloride 90, ethyl chloroformate or cyanogen bromide 91 afford similar yields of compounds analogous to 86. The C-complexes between benzoyl chloride 92-102, acetic anhydride 103,104,106, or sulfonyl chlorides101,105,107 and pyridine 93,103,107, quinoline 93,97,99,107, isoquinoline 93,96,104-106, 1,6-naphthyridine 106, 1,8-naphthyridine 92, phenanthridine 93,98 as well as quinoxaline 94 react analogously with N,N-dimethylaniline 97,98,100, indolizine 95, acenaphthene 103, acetophenone 93,99, cyclopentanone 93, steroid-3-ketones 96,108, ethyl benzoylacetate 99 as well as indoles 92,105,107, or other nucleophiles 99-102,105,109. Acridine derivatives rearomatize during their reactions 93,100.

Remarkable are the recently described 1,2- and especially 1,4-additions to Reissert complexes of pyridines. Whereas the regioselectivity in the case of unsubstituted pyridinium salts 110,111 as well as of quaternary salts of nicotine 112 depends on the structures of the Grignard reagents and the 1-acyl group (compare 2.2.2.), the alkylcopper 111,113 or alkylcopper-boron trifluoride complexes 114-116, titanium-enolates 117, or organoaluminium compounds 118 show very high or exclusive 4-selectivity. Thus, 89 can be prepared from 88 in a nearly regiospecific manner with only 0.5% of 1,2-adduct as byproduct using the n-BuCu-BF3-complex 114. Compound 89 is readily oxidized to 90.

Butylimagnesium chloride adds selectively to the 4-position of 91 in the presence of catalytic amounts of CuI to give a nearly quantitative yield of 92. Transesterification with potassium tert-butoxide to 93 followed by α-metallation permits the subsequent reaction with methyl iodide to give 94 113. Dehydrogenation leads finally to the 2,4-substituted pyridine (95).

Quaternization of pyridine with bulky tert-butyldimethylsilyl triflate followed by addition of Grignard reagents gives nearly exclusively 4-alkylated products 113,119) (compare also ref. 120).
For further methods to introduce alkyl groups selectively into the 4-position of quinoline, see ref. 121 and into the 1-position of isoquinoline 122.

Analogous reactions of Reissert compounds of quinoline 123 and isoquinoline with enol silyl ethers 124,125 or boron enolates 126 give high yields of the corresponding 2- and 4-substituted 1,4-dihydroquinolines and 1-substituted 1,2-dihydroisoquinolines. Enol silyl ethers react also with pyrimidinium salts as has been shown recently 127. The intermediate 1,4-adducts such as 92 can be acylated by acyl chlorides/SnCl₄ in the 3-position 128. The Reissert-type complexes between pyridine-benzaldehyde and benzoyl chloride are rearranged by strong bases to 2-acylpyridines 129.

In formic, acetic or propionic acid, isoquinoline, phthalazine, and 1,6-naphthyridine add diketene or acetic anhydride to adducts which can be used for subsequent reactions 130-132. In trifluoroacetic acid or dilute sulfuric acid, pyrimidine 133, quinazoline 109,133 add readily resorcinol, aniline, N-methylaniline, and N,N-dimethylaniline in high yields to give compounds such as 97, which can be oxidized by potassium ferricyanide to 98. Analogous additions of phenol, anisol, indole, and 2-methylfuran to 96 afford the corresponding 3,4-dihydro adducts in nearly 100% yield 109.
The 6-complex between pyridine (13) and acetic anhydride dimerizes with zinc-dust via the corresponding radical (99) to the dimer (100) which can be pyrolyzed to 101 or reduced to 4-ethylpyridine (102).

Replacement of acetic anhydride by ethyl chloroformate opens an entry to ethyl isonicotinate. Higher 4-alkyl homologues can be prepared, albeit in lower yields. Coupling of pyridine with indole by the help of zinc-dust has already been discussed (cf. reaction 79→86).
Since all these reactions of 6-complexes with nucleophiles lead initially to 1,2-, 3,4- or 1,4-dihydro derivatives, the overall yields of C-substituted aromatic heterocycles depend very much on the efficiency of the dehydrogenation step (compare the examples given above).

2.4. Reissert Reactions

The Reissert reaction has been the subject of a number of excellent reviews covering the chemical literature up to September 1982141-144. We shall therefore discuss primarily some typical reactions of the two classical "Reissert-compounds", 1-benzoyl-1,2-dihydroquinaldinonitrile (103) and 2-benzoyl-1,2-dihydroisoquinaldinonitrile (104).

They can be prepared under phase-transfer catalysis145 by adding KCN in heterogenous phase146, anhydrous HCN142, or (CH$_3$)$_3$SiCN147,148 in homogenous phase to the 6-complexes between an acyl chloride and quinoline and isoquinoline, resp. (cf. chapter 2.3.). Originally, Reissert compounds such as 103 were hydrolyzed with aqueous mineral acid to give benzaldehyde (105)149 and quinoline derivatives of structure 106. Whereas treatment of 103 with PCl$_5$ furnishes 2-cyanoquinoline (107)150, the addition of methyl Grignard reagent to 103 followed by subsequent rearrangement affords the tertiary alcohol (108)141. Heating of the Reissert-anion (109) (prepared from 103 with a base such as phenyllithium or sodium hydride) in refluxing xylene affords the ketone (110)142, whereas alkylation with methyl iodide gives 112 via 111. Subsequent treatment of 112 with base furnishes 4-methylquinoline (113)141. Repeated base treatment of 112 and alkylation with methyl iodide followed by treatment with alkali gives finally 2,4-di-methylquinoline (114)141.
Synthetically even more important are Reissert-compounds derived from isoquinolines. Using phenyllithium, sodium hydride or alkali and phase-transfer reagents can be easily deprotonated to \(\text{115} \), which can be readily alkylated to \(\text{116} \), reacted with aldehydes or reactive ketones to give \(\text{117} \). Addition of Michael acceptors such as ethyl acrylate, 2-vinylpyridine, or acrylonitrile afford cyclic products of structure \(\text{118} \). Intramolecular alkylation or acylation reactions of Reissert-compounds of isoquinoline with halides and aldehydes have also been described.

Besides quinolines and isoquinolines, phthalazines, 1,6- and 1,7-naphthyridines as well as 4,6- and 1,7-phenanthroline do form Reissert-compounds. Depending upon the reaction conditions, 4,7-phenanthroline from "mono-Reissert"-compounds, whereas quinazoline and 4,7-phenanthroline yield "bis-Reissert"-compounds using benzoyl chloride/trimethylsilyl cyanide. Reissert-compounds of benzoazoles and benzothiazoles have also been described.

In a very interesting recent development, Popp et al. as well as Cooney et al. have succeeded in preparing the Reissert-compound from pyridine in 92% yield, whose anion can be converted to the corresponding 2-substituted pyridines—e.g., in good yields. Compare also reactions under chapters 4.2. and 4.3.
2.5. Reactions of Hydroxy-N-Heterocycles

Hydroxy-N-heterocycles like 3-hydroxypyridine (121) behave in many ways like phenols. However, due to protonation in neutral and acidic medium, 3-hydroxypyridine (121) is most readily aminomethylated under basic conditions to form 2-substituted Mannich bases like 122.

\[
\begin{align*}
\text{CH}_2\text{O} & \quad \rightarrow \quad \text{CH}_2\text{O} \\
\text{HN(CH}_3\text{)}_2 & \quad \text{2 h/100°C} \\
121 & \rightarrow \quad 70\% \quad 122
\end{align*}
\]
The reaction of 121 with formaldehyde and alkali affords the bis-adduct (124) and the desired mono-adduct (123), which can be oxidized by MnO₂ in boiling ethanol to give the aldehyde (125) 177. The bis-adduct (124) has been converted in several steps to pirbuterol (126), a potent bronchodilator 178,179.

Analogous reactions with 6-methyl-3-hydroxypyridine and formaldehyde have been described 180.

Apparently, 125 cannot be obtained by Reimer-Tiemann reaction 181 of 3-hydroxypyridine (121), whereas hydroxyquinolines afford the corresponding aldehydes 181,182 e.g. 7-hydroxyquinoline the 7-hydroxy-8-formylquinoline 183.

4-Hydroxyquinolines undergo the Mannich reaction and condense with formaldehyde 184. 5-Hydroxyuracil (127) affords the Mannich-product (128) and 4,5-hydroxy-2-phenyl-pyrimidine-4-one the corresponding Mannich-product (129) 185,186.

Hydroxy-N-heterocycles such as 2-, 3- and 4-hydroxypyridines react like phenols and are transformed by the Kolbe-Schmidt reaction 187 to the corresponding hydroxypyridinecarboxylic acids. Thus, 2-pyridone (130) affords under Matasse conditions the corresponding 2-hydroxy-5-pyridinecarboxylic acid (131) and under Kolbe conditions also 2-hydroxy-3-pyridinecarboxylic acid (132) 188. whereas 3-hydroxypyridine (121) gives, depending on the reaction conditions, either 3-hydroxy-2-pyridinecarboxylic acid (133) or 3-hydroxy-6-pyridinecarboxylic acid (134) 189. Finally, 4-pyridone (135) gives rise to 3-carboxy-4-pyridone (136) and some 3,5-dicarboxy-4-pyridone (137) 190.
Methyl- and amino-substituted hydroxypyridines lead to the expected Kolbe-products 191-195, e.g. 2-methyl-5-hydroxypyridine (139) affords a nearly quantitative yield of 3-hydroxy-6-methyl-2-pyridinecarboxylic acid (138), whereas 2-amino-3-hydroxypyridine (141) furnishes 2-amino-3-hydroxy-6-pyridinecarboxylic acid (142).

In analogy to phenol oxidations, 139 can be dimerized by lead dioxide to 140.

4-Pyridone (143) (R¹, R² = H) and its 3-methyl (R¹ = H; R² = CH₃) and 2,6-dimethyl derivatives (R¹ = CH₃; R² = H) react readily with various 5-substituted barbituric acids to give, for example, 144, which can be converted to 4-n-pentylpyridine (145).
2.6. Emmert Reaction

The Emmert reaction of pyridine, quinoline, isoquinoline or acridine with carbonyl compounds in the presence of activated magnesium or aluminium metal affords up to 70% of mainly the α-substituted and some γ-substituted heterocyclic carbinols or ketones.

Thus pyridine reacts with acetophenone, acetone, cyclopentanone, cyclohexanone, ethyl benzoate, benzaldehyde, and N,N-dimethylbenzamide to the corresponding 2- and some 4-substituted pyridines as shown in the following scheme.

As side products, pinacols, benzoin, and benzil can be isolated as neutral products of these reactions. The mechanism of the Emmert reaction was investigated by Bachman and Abramovitch.

Russell et al. have described the use of lithium metal in the Emmert reaction with benzophenone. Thus, 4-methylpyridine affords the corresponding
2-substituted product (150), whereas quinoline (150a) gives rise to the expected 2-substituted carbinol (151a) as well as the cyclized 4-substituted product (152a). Compound 152b is obtained exclusively in the case of 2-methylquinoline (150b = 20), where the 2-position is blocked.

\[
\begin{array}{c}
\text{CH}_3 & \text{C}_6\text{H}_5\text{COC}_6\text{H}_5 \\
\text{Li/Et}_2\text{O} & \Delta \\
\end{array}
\begin{array}{c}
\text{CH}_3 & \text{C}_6\text{H}_5\text{COC}_6\text{H}_5 \\
\text{Li/Et}_2\text{O} & \Delta \\
\end{array}
\]

2.7. Radical Reactions

Although quite a number of reactions like the Emmert reaction (c.f. 2.6.) or some of the S_{RN1} reactions discussed under 3.1.1. - 3.1.3. are also radical reactions, in these Chapters 2.7.1. and 2.7.2., only such reactions will be dealt with, in which the N-heterocycles will be attacked by chemically and photochemically generated "classical" free radicals.

2.7.1. Reactions with Chemically Generated Alkyl Radicals

Minisci as well as Tieco have recently reviewed their pioneering and interesting work in this field \(^{210-216}\) and have described numerous applications to many different heterocyclic systems. Thus, it should only be emphasized here that protonation of N-heterocycles bases increases their reactivity towards nucleophilic radicals, which attack the heterocyclic rings nearly exclusively at the α- or γ-position to the protonated heterocyclic nitrogen atom. Furthermore electron withdrawing substituents, such as cyano or ester groups, in the heterocyclic
system vastly increase the reactivity towards these nucleophilic radicals.

2.7.1.1. Reactions with Alkyl Radicals

4-Cyanopyridine (153) reacts with a threefold excess of isobutyric acid, AgNO₃, and (NH₄)₂S₂O₈ in dilute H₂SO₄ to afford a 7 : 3 mixture of 154 and 155 in 88% yield. 211,215 whereas alkylation with dioxane furnishes a 9 : 1 mixture of 156 and 157.²¹⁰

4-Methylquinoline (113) with trioxane (158) gives the derivative (159) in 32% yield, which can easily be hydrolyzed to the corresponding aldehyde. 2-Methylquinoline, benzothiazole, quinoxaline as well as pyrazine react analogously²¹⁰.

Pyridine (13) and dioxolane afford a mixture of the protected 2- and 4-pyridine aldehydes (160 and 161) in 51% yield²¹⁰,²¹⁷.
Reacting quinoline (150a) with the methanol-hydrogen peroxide-adduct of cyclohexanone gives a ca. 1 : 1 mixture of 162 and 163 in 50 % yield.

Methyl nicotinate (164), on reaction with succinic or glutaric acid, affords the corresponding 4-substituted acids (165).

Reaction of nicotine (166) with hydrogen peroxide and Fe²⁺ in methanol gives in 13 % yield the product (167), whereas quinine affords in 18 % yield the 2-hydroxymethylquinine 219. Lepidine (113) reacts with methanol or ethanol to furnish the corresponding derivatives (169 or 170 and 171) 210. In the presence of peroxydisulfate and silver ions, the initially formed alkoxy radical derived from an olefinic alcohol (172) reacts with the double bond to yield two intermediate C-radicals which attack 4-cyanopyridine 220 or lepidine (113) to form the two products (173 and 174) in a 9 : 1 ratio in 38 % yield 221. The analogous reaction of 113 with cyclohexene (168) affords the products (175) in 90 % yield 216.
Alkylation of quinoline and isoquinoline with the benzyl-type radical derived from p-methoxytoluene gives the corresponding products in the α- and γ-position of the heterocyclic nitrogen in a combined yield of 33% and 15%.

In connection with theories on chemical carcinogenesis, radical reactions with purines and purine-nucleosides are important. Thus, guanosine furnishes with aqueous tert-butyl hydroperoxide 8-methylguanosine (177a) in 68% yield, whereas in methanol with hydrogen peroxide, only 177b is obtained. Adenosine gives a complicated mixture of 2- and 2,8-methylated products. Thus, 8-methyladenosine is prepared via 8-methylation of 2-methylmercaptinosine. For further studies with purines, compare the references.

Finally, some recent radical alkylations of pyrimidines and pyridazines should be mentioned.
In addition to the "Minisci"-type alkylation, the classical Gomberg-Bachmann arylation \(^\text{235}\) can be applied to pyridines and quinolines. Thus, pyridine can be arylated by 3,4-dimethoxybenzenediazonium chloride to give 3,4-dimethoxyphenylpyridines in a ratio of 2 : 3 : 4 substitution = 3 : 1 : 1 \(^\text{236}\).

2.7.1.2. Reactions with Chemically Generated Acyl Radicals

Protonated heterocyclic bases are readily acylated by nucleophilic acyl radicals generated from aldehydes or \(\alpha\)-keto acids to afford mono- or poly-acyl derivatives. Thus, quinoline \((150a)\) affords 80% of the 2,4-diacetyl derivative \((178)\) and 20% of the 2- or 4-acetylquinolines \((179\) and \(180)\) \(^\text{210}\). 2-Methyl-4-phenylpyridazine \((181)\) affords with acetaldehyde the corresponding 4-acetyl derivative \(182\) in 75% yield \(^\text{237,238}\). 4,4′-Bipyridyl is acetylated by acetaldehyde to give 65% of a 1 : 9 mixture of 2,6,2′,6′-tetraacetyl bipyridyl and of 2,6,2′,5′-tetraacetyl bipyridyl \(^\text{239}\). Pyrazine \((183)\) is diacetylated by veratraldehyde \((184)\) to \(\text{185} \) \(^\text{240,241}\).
2.7.1.3. Reactions with Chemically Generated Amide Radicals

Using hydroxy or alkoxy radicals, hydrogen is abstracted from formamides to give amide radicals R_2N-CO^\cdot, which react readily with protonated heterocycles e.g. 4-cyanopyridine(153) or lepidine(113) to give the corresponding amides (186 and 187) in high yields [111]. On reaction of amides with peroxydisulfate, the initially formed amide radicals are transformed by electron transfer into amidomethyl radicals. Thus, lepidine(113) gives with N,N-dimethylformamide completely different ratios of 188 and 189 depending on whether (CH$_3$)$_3$COOH or S$_2$O$_8^{2-}$ are employed.
These amidations or α-N-amidoalkylations have been applied to many protonated N-heterocycles. Thus, 3-propionyl pyridine (190a) affords in 31% yield 191a, which can be readily converted into fusaric acid

\[\text{3-propionyl pyridine} \rightarrow \text{fusaric acid} \]

whereas 190b gives 191b in 91% yield.

\[
\begin{align*}
\text{a) } R &= \text{nC}_3\text{H}_7; \quad \text{b) } R &= \text{CH}_2\text{CH}_2\text{CN} \\
31\% &\quad 91\%
\end{align*}
\]

2.7.2. Reactions with Photochemically Generated Radicals

This part of the review covers only the typical photochemical reactions, not those which can be initiated by photochemical induction like the SRN2-reactions (compare 3.1.) of heterocyclic halogens. Since photoaddition reactions have been covered by a review until 1976, references are primarily given of recent work.

Substituents can be introduced directly by irradiating N-heterocycles with reactive halogen compounds, acids, alcohols or amines. Thus, pyridine (13) is readily trifluoromethylated on irradiation with trifluoromethyl iodide to afford the products (192, 193 and 194)\(^{245}\). Pyrrole gives analogously 33% of α-trifluoromethylpyrrole.

Irradiation of pyridine (13) with diethylamine produces a 1:1 mixture of 195 and 196.\(^{246}\)
Irradiation of methyl picolinate (197) in acidic methanol gives in neutral solution only the 5-substituted product (198), whereas in acidic solution, the nucleophilic CH$_2$OH radicals attack the protonated pyridine ring only in the α- or γ-position (200) to the heterocyclic nitrogens (cf. 2.7.1.1.).

Analogous additions of methanol or ethanol to pyrimidines, pyridazines, quinolines, isoquinolines, and phenanthridine have been described.

Cyano groups can be introduced directly by irradiation with NaCN/O$_2$ in aqueous CH$_3$CN-solution. Thus, 6-methoxyquinoline (201) affords (202) in 48 % yield, whereas 7-methoxyquinoline or 6,7-dimethoxyquinoline gives the corresponding 8-cyano derivatives in 30 - 40 % yield. The cyan0 groups can furthermore be introduced photochemically by replacing nitro groups. Thus 1-methyl-5-nitromidazole (203) furnishes the corresponding 5-cyano-1-methylimidazole (204) in 65 % yield.
Recently, the photochemical replacement of the α- or γ-cyano groups in N-heterocycles by alcohols, ketones, ketais, and olefins was described. Thus, l-cyanoisoquinoline gives, on irradiation in ethanol, 1-(1-hydroxyethyl)isoquinoline in 60% yield and l-cyanoisoquinoline (205) affords with benzophenone diphenyl(2-pyridyl)carbinol (206) in 64% yield, whereas 205 reacts with cyclopentene (207) to furnish 2-(2-cyclopentenyl)pyridine (208) in 20% as well as 209 in 5% yield.

4-Cyanopyridine (153) furnishes with cyclopentene (207) the product (210) in 60% yield, and with 1,3-dioxolane the product (161) in 16% yield.
Irradiation of 4-cyanopyridine (153) with triethylamine gives 211 in 30 % yield 259.

Irradiation of chloro-, bromo-, or iodoypyridines in benzene, anisole 260, furan, thiophene, pyrrole, or N-methylimidazole 261 affords the corresponding aryl-substituted pyridines in up to 42 % yield. In the case of 2-iodopyridine and N-methylimidazole, a ca. 1 : 1 : 2 mixture of the 2-, 4- and 5-(2-pyridyl)-N-methylimidazole 261 was obtained.

Biochemically significant are the photochemical additions of 5-bromouridines to tryptophane, tryptophan peptides 262, pyrene, or phenanthrene 263.

2- or 6-iodo- or chloropurine-nucleosides react readily on irradiation with benzene, furan or pyrroles 264,265), whereas neubularine adds methanol photochemically to give a high yield of a mixture of 6-hydroxymethyl-1,6-dihydroneubularines 266.

On irradiation in methanolic HCl, allopurinol (212) is converted in 67 % yield into the 6-methyl derivative (213) 267.

\[
\begin{align*}
\text{212} & \quad \text{H} \quad \text{H} \\
\text{O} & \quad \text{N} \\
\text{HN} & \quad \text{HN} \\
\text{213} & \quad \text{CH}_3 \\
\end{align*}
\]

3.0. REACTIONS OR MODIFICATIONS OF REACTIVE SUBSTITUENTS AT THE HETEROCYCLE

3.1. Reactions of Halogens

3.1.1. Reactions of Heteroarylolithium and Magnesium Compounds

Direct metallation of unsubstituted N-heterocycles is generally not feasible. Thus, pyridine is not metallated, since the organolithium is added to pyridine to give 2-substituted lithium salts 268 as discussed under 2.2.2.
However, halopyridines can be metallated at the hydrogen atoms adjacent to a halogen in 2-, 3-, or 4-position. Thus, 4-chloropyridine (214) gives with LDA in THF at -78°C compound 215, which can be quenched by a reactive electrophile like trimethylchlorosilane to give 216 in 92% yield 269.

Furthermore, the halogen-metal exchange occurs readily with lithium or Grignard reagents, and 2-, 3-, and 4-pyridyl derivatives can be prepared from the corresponding halopyridines. Thus, 2-bromo-3,4-dimethylpyridine (217) gives, after lithiation and treatment with anisaldehyde, the carbinol (218) in 93% yield. 270,271

The lithium derivative (220) of 2-bromo-5-dimethylaminopyridine (219) adds 3-cyanopyridine to yield, after acid hydrolysis, the ketone (221). 272

2-Bromopyridine (222) reacts analogously with magnesium or Grignard reagents 273-275. Thus, 222 affords with benzaldehyde the product 223 in 49% yield 273, which is also readily available by the Hammick reaction between picolinic acid and benzaldehyde (cf. 3.6.).
3-Pyridyllithium (224) derived from 3-bromopyridine was used for the synthesis of \(\text{dl-anabasine} (225)^{276} \) and the preparation of the \(17\alpha-(3\text{-pyridyl}) \) androstane derivative (226)\(^{277} \).

In contrast to the reaction of 4-chloropyridine (214) with LDA to 215, 4-bromopyridine undergoes halogen-metal exchange with butyllithium to give 4-pyridyllithium \(^{278} \). Kauffmann et al. \(^{279} \) reported the preparation of \(5,5\text{'-bipyrimidine} (228) \) from 5-bromopyrimidine (227) by a \(\text{BuLi/CuCl}_2 \) coupling reaction in 57% yield (cf. 3.1.5.).
However, in all these metallations complications can arise from the intermediate formation of heterines \(^{280-282}\). For the coupling of a 5-lithiopyrimidine with 2-methoxypyrimidine compare ref. \(^{283}\). The reaction of a 5-lithiated protected 2'-desoxyuridine has been described \(^{284}\).

6-iodo-9-(tetrahydropropyl-2-yl)purine (229) undergoes time and temperature dependent transmetallation reactions with n-butyllithium \(^{285}\). A short reaction time and low temperatures favor the formation of the 6-lithio derivative (230), while longer reaction times and higher operating temperatures lead to the 8-lithio isomer (232) as was shown by quenching with various electrophiles to give 231 or 233.

\[
\begin{align*}
\text{I} & \quad \text{n-BuLi} \quad -130^\circ\text{C} \quad \text{THF/Et}_2\text{O/PE} \quad 5 \text{ min.} \\
229 & \quad \text{Li} \quad \text{Li} \\
\text{THP} & \quad \text{THP} \\
\overset{-78^\circ\text{C}}{-} & \quad \text{R1}\text{R2} \\
230 & \quad \text{R1}\text{O} \\
\text{THP} & \quad \text{THP} \\
\overset{-78^\circ\text{C}}{-} & \quad \text{R1}\text{R2} \\
232 & \quad \text{R1}\text{OH} \\
\text{THP} & \quad \text{THP} \\
\text{R1} & \quad \text{R1} \\
231 & \quad \text{R2} \\
\text{THP} & \quad \text{THP} \\
233 & \quad \text{R2} \\
\end{align*}
\]

5-Ethyl-2,8-dibromocarbazole (234) can be converted into the dilithium intermediate which reacts with CO\(_2\) to give the dicarboxylic acid (235) in 84 % yield \(^{286}\).

\[
\begin{align*}
\text{Br} & \quad \text{Br} \\
\text{C}_2\text{H}_5 & \quad \text{C}_2\text{H}_5 \\
234 & \quad \text{C}_2\text{H}_5 \\
\overset{1) \text{n-BuLi}}{\text{benzene}} & \quad \text{HOOC} \\
\text{COOH} & \quad \text{C}_2\text{H}_5 \\
235 & \quad \text{84 %}
\end{align*}
\]
3-Bromoquinoline (236) gives analogously quinoline-3-carboxylic acid (237) in 52% yield 286.

![Chemical Structure](image)

1) N-BuLi

2) CO₂

3.1.2. Reactions with Enolates and Activated CH-Active Compounds

In 1970, Bunnett et al. 287,288 introduced the designation "SRN1" for radical nucleophilic substitution, which was recently reviewed 289. SRN1 nucleophilic substitutions, which occur with a great number of halogen-containing, non-activated, electron-deficient N-heterocycles by the general scheme depicted below 290, were especially investigated by Wolfe and his coworkers 290-292.

\[
\text{Het-X} + N^- \rightarrow [\text{Het-X}]_0 + N^- \\
[\text{Het-X}]_0 \rightarrow \text{Het}^- + X^- \\
\text{Het}^- + N^- \rightarrow [\text{Het-N}]_0 \\
[\text{Het-N}]_0 + \text{Het-X} \rightarrow \text{Het-N} + [\text{Het-X}]_0
\]

Het means heterocycle; Het-X is an appropriate heteroaromatic substrate; \(N^- \) represents a generalized nucleophile capable of initiating the chain process by electron transfer.

Komin and Wolfe studied the photostimulated reactions of 2-bromopyridine (222) in liquid ammonia with the potassium enolates of several ketones 291. They clearly established the radical course of the reactions and found reactivity for different enolates of acetone towards 222 to give 238 to be \(K^+ > Na^+ > Li^+ \) (\(M^+ \) means alkali cation) as well as the order of reactivity with potassium acetone to be 2-bromopyridine \(> 3\)-bromopyridine \(> 4\)-bromopyridine and 2-bromopyridine \(> 2\)-chloropyridine \(> 2\)-fluoropyridine. For analogous reactions with the potassium enolate of pinacolone compare the references 291-292 and of acetone or cyclohexanone the reference 293.
$\text{D-Dicarbonyl compounds like } 240 \text{ react readily e.g. with 2-bromo-3-cyanopyridine 239 to give nucleophilic displacement products like 241 in high yields.}$

Nucleophilic substitution of the 2-, 3-, and 4-halogen in pyridines with stabilized carbanions derived from 5-butylbarbituric acid, benzyl cyanide, dibenzyl malonate, diethyl methylmalonate, diethyl ethylmalonate, diethyl acetamidomalonate, ethylacetoacetate, acetylacetonate, as well as methyl sulfinyl methyl sulfide have been described without investigation of the mechanism of the reaction. Activated halopyridines like 2-chloro-5-nitropyridine, 2-chloro-3-nitropyridine, 4-chloro-3-nitropyridine, or diethyl 4-chloro-2,6-pyridinedicarboxylate give the highest yields.

Wolfe and coworkers have analyzed the influence of solvents, light of different wavelength, the presence of radical scavengers, and time on the reaction of 2-chloroquinoline (242) with potassioacetone to give 2-acetonylquinoline (243) and found clearly evidence for an S_{RN1} character. With mixtures of primary and tertiary potassium enolates, 242 shows appreciably preference for combination with tertiary enolates. For further reactions of 242 with enolates compare references.
4,7-Dichloroquinoline (244) reacts with enolizable ketones exclusively in the 4-position. The authors assume a $S_{N}A_r$ type mechanism. Other authors find for the reaction of 244 with potassiopinacolone to give 245 ($R^1 = t$-Bu; $R^2, R^3 = H$) clear evidence for an $S_{R_N}1$ character.

The reaction of 1-chloroisouquinoline (246) with several enolizable ketones (e.g. acetone) is believed to occur by addition-elimination mechanism via 247 due to the high activation of the 1-position to give 248; compare also references 312-314.

Wolfe's group investigated the reactions of 2-chloropyrimidine (249), 4-chloro-2,6-dimethoxypyrimidine (250), 3-chloro-6-methoxypyridazine (251), and 2-chloropyrazine (252) with representative enolates and found their order of $S_{R_N}1$ reactivity to be $252 > 251 > 250 > 249$.

2699
The 4-position of 2,4-dichloropyrimidine (253) is more reactive than the 2-position as shown below. For reactions of 5-halogenpyrimidines with enolates compare reference 316, for reaction of a 4-chloropyrimidine with active methylene compounds compare reference 317.

3-Chloropyridazines undergo reactions with enolates as well as with the anions of phenylacetonitriles. While reaction of 253 with potassium phenylacetonitrile to yield 254 seems to occur by a dual mechanistic pathway involving both radical-chain and AE reaction, the reactions of 2-chloropyrazine (252) with the potassium salts of different enolizable ketones and nitriles give in typical thermal S_{RN1} reaction products like 255. However, the reactions of 2,6-dichloropyrazine and of 2,3-dichloropyrazine with potassium phenylacetonitrile to monosubstitution products are classified as mainly addition-elimination (S_{NAr}) processes.

249

250

251

252

For reactions of 5-halogenpyrimidines with enolates compare reference 316, for reaction of a 4-chloropyrimidine with active methylene compounds compare reference 317.

3-Chloropyridazines undergo reactions with enolates as well as with the anions of phenylacetonitriles. While reaction of 253 with potassium phenylacetonitrile to yield 254 seems to occur by a dual mechanistic pathway involving both radical-chain and AE reaction, the reactions of 2-chloropyrazine (252) with the potassium salts of different enolizable ketones and nitriles give in typical thermal S_{RN1} reaction products like 255. However, the reactions of 2,6-dichloropyrazine and of 2,3-dichloropyrazine with potassium phenylacetonitrile to monosubstitution products are classified as mainly addition-elimination (S_{NAr}) processes.

252

255 78%
Several alkylations of chlorotriazines have been described319-321. Typical is the reaction of cyanuric chloride (256) with the sodium salt of diethyl malonate (Kolb 1894)319 to give the presumable product (257).

\begin{equation}
\begin{array}{c}
\text{Cl} \\
\text{N} \\
\text{N} \\
\text{Cl}
\end{array} \xrightarrow{\text{Na}^+} \begin{array}{c}
\text{C}_2\text{H}_5\text{COOC}_2\text{H}_5 \\
\text{C}_2\text{H}_5\text{COOC}_2\text{H}_5
\end{array}
\end{equation}

4-Chloroquinoxaline reacts smoothly with active methylene compounds314 and with enolates290,322,323 probably via an $S_N\text{Ar}$ mechanism. 2-Chloroquinoxaline shows somewhat lower reactivity towards active methylene compounds than the 4-isomer314. As expected, 4-chloropyrido[2,3-d]pyrimidine (258) reacts like 4-chloroquinoxaline when treated with the sodium enolates of acetophenone and acetone to afford 259 ($R = \text{C}_6\text{H}_5$, 45%; $R = \text{CH}_3$, 21%)324.

\begin{equation}
\begin{array}{c}
\text{Cl} \\
\text{N} \\
\text{N}
\end{array} \xrightarrow{\text{H}_3\text{C} - \text{C} - \text{R}} \begin{array}{c}
\text{Cl} \\
\text{N} \\
\text{N}
\end{array}
\end{equation}

2-Chloroquinoxaline (260) reacts with potassio-pinacolone in a dual mechanistic way to give 261 (thermal $S_{RN}\text{I}$ product) and 262 as the product of competing addition-substitution processes290.

\begin{equation}
\begin{array}{c}
\text{Cl} \\
\text{N} \\
\text{N}
\end{array} \xrightarrow{\text{K}^+} \begin{array}{c}
\text{O} \\
\text{N}
\end{array} \xrightarrow{\text{NH}_3 (1)} \begin{array}{c}
\text{Cl} \\
\text{N} \\
\text{N}
\end{array}
\end{equation}

Furthermore, reactions of 2-chloro-3-methylquinoxaline and 4-chloroacridines325 with active methylene compounds have been described314.
6-Chloropurines undergo reaction with active methylene compounds 326-330. 2,6-Dichloro-9-methylpurine (263) reacts with diethyl sodiomalonate exclusively in 6-position to give 264 331.

![Chemical structure of 263 and 264]

The N-protected 4-chloropyrazolo[3,4-d]pyrimidine (265) reacts comparably 332-334 to afford 266 as does 7-chloro-3-phenyl-1,2,3-triazolo[4,5-d]pyrimidine (267) 335,336.

![Chemical structure of 265, 266, and 267]

Furthermore, the reactions of active methylene compounds with 4-chlorocinnoline, 1-chlorophthalazine, 2-chlorobenzothiazole, 2-bromothiazole, and 2-chlorobenzolepidine have been investigated 314.

3.1.3. Reactions with Grignard Reagents in the Presence of Nickel-Complexes

Based on the pioneering work of Kumada 337-339 and Corriu 340, who discovered that olefinic and aromatic halogen compounds react readily with Grignard reagents in the presence of Nickel catalysts, aromatic heterocyclic halogen molecules have been converted in high yields to the corresponding C-substituted heterocycles by reaction with Grignard reagents.

Thus, starting from 2-, 3-, or 4-bromopyridine (268), the introduction of a chiral alkyl Grignard reagent into each desired position of the pyridine ring to 269 is achieved in 67 %, 72 % and 53 % yield respectively 341 $[\text{Ni(dppe)}Cl_2 \rightarrow \text{Ni(Ph}_2\text{P-CH}_2\text{-CH}_2\text{-PPh}_2)Cl_2]$.

— 2702 —
Starting from 2-chloropyridine (270), Piccolo and Martinengo synthesized a series of (2-pyridyl)alkyl alcohols (271).

Analogously, 2-chloroquinoline (242) reacts with different Grignard reagents such as phenylethylmagnesium bromide and dichlorobis(triphenylphosphine)nickel (272) to give the desired product (273) in 78% yield, whereas 3-bromoquinoline (236) affords with methylmagnesium bromide 3-methylquinoline (274) in 65% yield.

4-Chlorofuro[3,2-c]pyridine (275) gives with allylmagnesium chloride or benzylmagnesium chloride in the presence of dichlorobis(triphenylphosphine)nickel (272) the corresponding derivative (276) in 80% yield.
2,4,6-Trichloropyrimidine (277) reacts with an excess of phenylmagnesium bromide in the presence of Ni(dppp)Cl₂ to give the trisubstituted pyrimidine (278) as the sole product in 56% yield, whereas methyl or ethyl Grignard reagents furnished the corresponding methyl- or ethylpyrimidines 345,346, compare also reference 347.

6-Aryl and alkyl substituted purine nucleosides (280) are readily available from 6-chloropurine nucleoside (279) in 40 - 50% overall yield, after deprotection by this cross-coupling reaction 348.

2-Halogenbenzothiazoles undergo also efficient C-C cross-coupling with Grignard reagents in the presence of nickel(II)phosphine complexes 349.
Heteroaromatic thiolts and methyl sulfides react analogous to halogens. Examples are described for 2-benzothiazole-, 2-pyridine-, and 2-pyrimidine systems.

Instead of Grignard reagents, benzylic zinc reagents have recently been added to 3-bromopyridine in the presence of nickel catalysts.

3.1.4. Reactions with Olefins and Acetylenes in the Presence of Palladium Complexes

Tsuji and Heck have discovered C-C formation of vinylic- and acrylic isocyclic chloromercury or halogen compounds with unsaturated systems in presence of stoichiometric amounts of palladium complexes and reviewed the results of Pd-catalyzed vinylation of organic halides until 1979. For other general reviews compare references 339, 359, 360, describing palladium-catalyzed synthesis of conjugated systems. Mizoroki et al. discovered that catalytical amounts of palladium compounds are sufficient.

This methodology has been applied to a variety of nitrogen-heterocycles to afford high yields of substituted heterocyclic compounds. Thus, Yamanaka described a facile synthesis of ethinyl-substituted six-membered N-heteroaromatic compounds like pyridines, quinolines, isoquinolines, pyrazines, pyridazines, and pyrimidines to their corresponding acetylene derivatives using the silylated acetylene moiety.

\[
\begin{align*}
\text{Het-X} + (\text{CH}_3)_3\text{Si-C=CH}_2 & \xrightarrow{\text{CuI/NET}_3} \text{Het-C=CH}_2 + (\text{CH}_3)_3\text{SiC-C=CH}_2 \\
\text{PdCl}_2(\text{C}_6\text{H}_5)_3 & \text{KOH/CH}_3\text{OH} \\
\text{(281)} & \text{(282)} & \text{(283)}
\end{align*}
\]

Particularly, the pyridine system has been investigated thoroughly. Using the Pd-complex catalyzed cross-coupling, 2-bromopyridine is converted into 2-phenylpyridine, 2-phenylethynylpyridine, and 2-((α-trimethylsilyl)vinylpyridine. Coupling with propargyl alcohol in the presence of piperidine affords the amino indolizine.
3-Bromopyridine (288) gives with ethylene the 3-vinylpyridine (289) \(^{368}\), with allylic alcohols, for example \(\alpha\)-methallyl alcohol compound (290) \(^{369}\), and with N-3-butenylphthalimide, the corresponding nornicotine precursor (291) \(^{370}\). 3-Iodo- pyridine has reacted with N-allylphthalimide \(^{371}\).
Starting from 4-bromopyridine hydrochloride (292) and styrene the 4-styrylpyridine (293) is obtained. Analogously, 4-bromo-2,6-lutidine (294) reacts with a series of allylic alcohols to give 4-substituted lutidines (295).
For the preparation of 2,6-diethinylpyridine from 2,6-dibromopyridine in 75% yield and of 2,5-disubstituted pyridines starting from 2,5-dibromopyridine compare references 373 and 374. The Heck reaction with acetylenes and olefines has been applied to each position of the pyridine moiety in quinoline 375, isoquinoline 375-377, and acridine 375 usually in high yields.

The cross-coupling reaction of halopyrimidines with vinylic esters and acetylenes affords the corresponding 2-, 4-, or 5-substituted pyrimidines 378-383. Reaction of phenylacetylene with the 4-chloropyrimidine 296 gives an elegant entry to the pyrido[4,3-d]pyrimidine derivative 297, whereas the 5-bromopyrimidine 298 leads to the pyrido[3,4-d]pyrimidine 299.

4-Iodopyrimidines give often as side reaction homocoupling of the starting material 383-385.

Silylated 6-iodouracil 300 affords, after desilylation, the 6-ethinyluracil 301 in 65% yield 386.
However, silylation may not always be necessary as demonstrated with O- as well as N-methylated 5-iodouracil and 5-iodo pyrimidine nucleosides.

5-Mercury-substituted uridines react readily with olefines, styrenes and iodobenzenes in the presence of palladium salts.

Analogously, alkylation of 6- and 8-halopurine nucleosides gives the corresponding 6- or 8-substituted nucleosides in high yields. For an application to 5-mercuri tubercidin compare reference 400.

A facile synthesis of the natural products Z- and E-2,5-dimethyl-3-styrylpyrazine can be achieved starting from via.

![Diagram]

The same authors have introduced cyano groups with KCN in DMF into chloropyrazines using the above described catalyst.

Alkylation of a 5-chloropyrazine as well as a 6-chloropyridazine and 3- and 3,6-halopyrazines have been described.

![Diagram]

Alkenylation of the indole-Grignard-derivative gives readily.
Alkynylation of 5-ring heterocycles, like iodopyrazoles, occurs in high yields \(406,407\). 3,5-Disubstituted 4-iodoisoxazoles react both with olefins and acetylenes in the presence of palladium catalysts in good yields, as does 3-phenyl-5-bromoisoxazole with acetylenes \(406\).

However, even in the presence of olefins, homocoupling of the heterocyclic aryl halides can become the predominant reaction as seen in the case of 3-methylbromoisothiazole \(406\). Homocoupling seems to be general at positions where the \(N\)-electron density is reduced by the ring nitrogen (compare also references \(383,384\)).

3.1.5. Reactions with Copper Metal (Ullmann-Type)

Several authors have developed convenient methods for the introduction of trifluoromethyl groups into heteroaromatic halides. Thus, Kobayashi and coworkers \(408\) modified their original method of trifluoromethylation using a filtered \(CF_3-Cu\) solution in HMPT. Thus, 5-iodouridine (310) gives the corresponding trifluoromethyl derivative (311) \((n = 0)\) in \(62\%\) yield. Acetylated 6- or 8-halopurine nucleosides furnish the corresponding trifluoromethyl analogues.

![Reaction Scheme](image)

Perfluorated alkyl iodides \((n = 2,4)\) furnish analogously the higher substituted homologues \(409\).

On heating of 2-bromopyridine (222) with sodium trifluoroacetate and copper(I) iodide in \(N\)-methylpyrroldione (NMP), 2-trifluoromethylpyridine (312) is obtained in \(41\%\) yield \(410\).
Analogously, 2-chloro-5-iodopyridine (313) affords 2-chloro-5-trifluoromethylpyridine (314).

Cul-catalyzed ethinylation of α- or β-iodopyridine results in α- or β-ethinylation. β,β-Diiodopyridine (315) afforded compound 316 in 50% overall yield.

However, more reactive halides like 3-bromo-4-nitropyridine N-oxide (317) undergo an Ullmann reaction to the corresponding dimer (318) in high yield.
Coupling of 4-iodo-1,2,3-trimethoxybenzene (319) as the active aryl halide with the pyridine (320) furnishes 321 in 55% yield.

The copper-catalyzed displacement of an iodo group by acetylenic groups has also been described for N-methylimidazoles.

3.1.6. Reactions with Wittig Reagents

Taylor and Martin described a new procedure and gave several examples for the direct displacement of suitable leaving groups (Cl, Br, SO₂CH₃ etc.) by an alkylidenephosphorane (Wittig reagent). The resulting intermediate is converted either by reaction with a carbonyl compound into an alkenyl derivative of the heterocycle or by hydrolysis into an alkyl derivative of the heterocycle. The silylated purine nucleoside (322) gives thus the olefin (323) or the ethyl compound (324). The method works for halo-pyridines, -pyrazines, -quinolines, or isoquinolines, etc.
Treatment of the N-protected 6-chloropurine (325) with two equivalents of methylenetriphenylphosphorane at -30°C affords the corresponding purinyl ylid (326) which reacts with cis-dimethyl epoxysuccinate (327) to give via the oxaphospholane derivative (328) and, after ring opening, 329. Treatment of 329 with base furnishes the tricyclus (330).

Analogously, the chlorotriazine (331) reacts with methyltriphenylphosphonium bromide and n-BuLi in THF to give the methylated triazine derivative (332).
The transilylation reaction of methyl(triphenylphosphoranylidene)acetate with a 2-chlorocyclohepta[b]pyrrole derivative is described.

3.1.7. Reactions with Sulfur Ylides

A general procedure for the synthesis of epoxy substituted heterocycles \((\text{335})\) was introduced by Taylor and coworkers \(^{423}\). Treatment of a heterocycle \((\text{281})\) possessing an appropriate leaving group with two equivalents of a sulfonium ylide \((\text{333})\) generates a new ylid \((\text{334})\) which, when treated in situ with a carbonyl compound \(R_1COR_2\), affords an epoxide \((\text{335})\) in yields ranging from 17 to 70%. Rearrangement with lithium diethylamide furnishes the acylated heterocycles \((\text{336})\).

\[
\text{Het-}X + 2 \text{H}_2\text{C}=\text{S}_R \rightarrow \text{Het-CH}=\text{S}_R
\]

\((\text{281}) \quad \text{333} \quad \text{334} \)

\[
\text{Het-C}_R^\text{R}\quad \text{H} \quad \text{LiN}^\text{Et}_2 \quad \text{Het-C}_R^\text{R}\quad \text{R}_1^\text{C}=\text{O}
\]

\((\text{336}) \quad \text{335} \)

Oxosulfonium ylides are often considerably more stable than the corresponding sulfonium ylides. Thus, dimethyloxosulfonium pyrimidine-2-yl methyliide \((\text{337})\) is a crystalline, at room temperature air-stable compound \(^{424}\).
Yet oxosulfonium ylides retain still a high degree of nucleophilic character. Thus, the 2- respectively 4-chloro compounds (338 and 342) react with two equivalents of the ylid in boiling THF to give 339 resp. 343, which afford, on acylation at room temperature, the products 340 and 344. Desulfurization of these products is accomplished with deactivated Raney nickel to furnish the desired compounds 341 and 345 in high yields 425,426.

\[
\begin{align*}
\text{338} & \quad \text{CH}_3 \\
\text{339} & \quad \text{CH}_3 \\
\text{340} & \quad \text{CH}_3 \\
\text{341} & \quad \text{CH}_3 \\
\text{342} & \quad \text{CH}_3 \\
\text{343} & \quad \text{CH}_3 \\
\text{344} & \quad \text{CH}_3 \\
\text{345} & \quad \text{CH}_3 \\
\end{align*}
\]
The 5-chloro-1,2,4-triazine (346) can be methylated to 347 in overall yield of 32%.

3.1.8. Reactions with Cyanides

Treatment of the 5-bromouridine derivative (348) with sodium cyanide in dimethylformamide at room temperature for 24 h leads via 349 to the 6-cyanouridine (350) in 96% yield. Heating 350 in the same solvent at 80°C for 6 h with one equivalent of NaCN results in the formation of 5-cyanouridine (352) in 70% yield. This apparent migration of the cyano group can be rationalized by the addition-elimination mechanism through the 5,6-dicyano-5,6-dihydro intermediate (351).

[Chemical diagrams and structures are shown in the text.]

—2716—
This substitution of the 5-bromouracil moiety to give the 6-cyano derivative proceeds under such mild conditions to be carried out with nucleotides without effecting the 3,5-phosphoester linkage. The 2-chloro-6-methoxybenzothiazole (353) gives readily 354, which is converted by cysteine into luciferine (355).

\[
\begin{align*}
1) \text{KCN/DMSO} & \quad 3 \text{ h/100°C} & \quad 18\text{-crown-6} \\
\text{H}_3\text{CO} & \quad \text{Cl} & \quad \text{H} & \quad \text{C} & \quad \text{N} \\
\text{353} & \quad \text{354} & \quad \text{355} & \quad \text{89 \%}
\end{align*}
\]

Cysteine

2-Chloropyridines like 356 react with CuCN in hot HMPT to afford 357.

\[
\begin{align*}
\text{H} & \quad \text{C}_6\text{H}_5 & \quad \text{C}_6\text{H}_5 & \quad \text{Cl} \\
\text{356} & \quad \text{CuCN} & \quad \text{HMPT} & \quad 7 \text{ h} & \quad 210 - 220°C \\
\text{H} & \quad \text{C}_6\text{H}_5 & \quad \text{C}_6\text{H}_5 & \quad \text{CN} \\
\text{357}
\end{align*}
\]

After treating 4-bromoisothiazole (358) with CuCN in refluxing dimethylformamide, 53% of 4-cyanoisothiazole (359) can be isolated. For further examples in the isothiazole series compare reference 434.

\[
\begin{align*}
\text{Br} & \quad \text{CuCN/DMF} & \quad \text{reflux} \\
\text{358} & \quad \text{359} & \quad \text{53 \%}
\end{align*}
\]

1-Benzyl-4-cyanopyrazole can be prepared from 1-benzyl-4-bromopyrazole (60 - 76%).

3.2. Replacement of O-Alkyl, O-Aryl, O-Acetyl and O-Sulfonate Groups

Mixing ether solutions of 4-alkoxy- or 4-phenoxy pyridine with ethyl- or phenylmagnesium bromide at room temperature gives an insoluble amorphous precipitate of the formula (4-RO-Py)_2MgBr_2, for which a tetrahedral structure is proposed based on its IR and ^1H-NMR data. Heating of N-phenoxy pyridine (360) with ethylmagnesium iodide at 155-160°C for 3 h furnishes 4-ethylpyridine (102) in
Various γ-alkyl and γ-cycloalkyl substituted pyridines can be obtained under analogous conditions. The alkylmagnesium iodides are preferred, since the bromides and especially the chlorides give considerable amounts of N-containing resins. The nucleophilic displacement of the 4-methoxyl group of the quinazoline (361) by C-H acid compounds as malononitrile, for example to 362, proceeds in the presence of sodium methoxide as a base.

3.3. Replacement of Quaternary Ammonium Groups

4-Pyridylypyridinium chloride (363), which is readily accessible from pyridine and 50Cl₂, reacts like 4-pyridone (135 bzw. 143) (cf. chapter 2.5.) with 5-butylbarbituric acid or isopropyldiene-butyl malonate in acetic anhydride-N,N-dimethylformamide to give the corresponding 5-butyl-5-(4-pyridyl)barbituric acid (144) or the 4-(isopropyldiene-butyl-malonyl)pyridine (364) in 40 - 84 % yield. Both 144 and 364 can be readily saponified in 40 - 85 % yield to the corresponding pure 4-n-pentylpyridine (145) or to the corresponding carboxylic acids (365).
Since this reaction proceeds probably via an addition-elimination reaction at the 4-position of 363, 4-chloro- or 4-bromopyridine react analogously to give, after saponification and decarboxylation, the corresponding 4-alkylpyridine (cf. also chapter 3.1.2.).

Since chloropyrimidines do not react with KCN in ethanol or CuCN in quinoline, 2-chloro-4,6-dimethylpyrimidine (366) can be converted by trimethylamine in benzene to 4,6-dimethylpyrimidine-2-yl-trimethylammonium chloride (367), which reacts smoothly with KCN in acetamide to 2-cyano-4,6-dimethylpyrimidine (368) (442). 2,4-Dichloro-5-methylpyrimidine (369) reacts analogously via the bis quaternary salt to 2,4-dicyano-5-methylpyrimidine (369) (443). Quaternary ammonium salts of quinazolines and quinoxalines can be converted into the corresponding cyano compounds using tetraethylammonium cyanide in methylene chloride (444).
3.4. Replacement of Sulfones

Heterocyclic methylmercapto groups are readily oxidized to the corresponding methylsulfonyl groups which can be displaced by nucleophiles.

Thus, the 2-, 6- as well as 8-methylsulfonyl groups in 9-substituted purines or protected purine-nucleosides can be reacted with sodium cyanide in DMF to afford the corresponding cyano compounds in 55 - 100 % yield. The protected 6-methylsulfonylnucleobasin (370) affords with various nucleophiles like sodium cyanide ethyl sodioacetacetate, ethyl sodiomalonate and sodiomalonitrile in THF the corresponding derivatives (371, 372 and 373) in good yields. The acetic ester side chain in 372 can be alkylated and subsequently decarboxylated to give the corresponding 6-alkynucleobasines. For additional reactions of 6-methylsulfonylpurines compare references 416-418.

Protected pyrrolo- or pyrazoloypyrimidine nucleosides with a methylsulfonyl group permit analogously the introduction of cyanide groups.

Furthermore, 2-methylsulfonylquinolizidine (374) reacts with potassium cyanide in DMSO to give, besides the 2-cyano derivative (375), also the 2,3-dicyano compound (376).
4-t-Butylsulfonylpyridine (377) is converted by equimolar amounts of butyllithium to 4-butylpyridine (49). Excess butyllithium however furnishes in ca. 60% yield the bis-adduct (378) (cf. chapter 2.2.2).

Similar replacements by cyanide or active methylene groups of methylsulfonyl or tosyl groups in pyrazines and 1,2,4-triazines have been reported. It should be mentioned here that 2-chloropyridines can be converted into 2-cyano- pyridines in 35-60% yields via the corresponding sodium 2-pyridinesulfonates, obtained by heating with Na₂S₀₃ in H₂O in an autoclave to 150-210°C.

3.5. Sulfide Contractions of S-Alkylated Groups

Since heterocycles containing thiocarbonyl groups or mercapto groups in α- or γ-position to the heterocyclic nitrogen atoms are often easily accessible, the replacement of such sulfur-functions by C-substituents is an interesting preparative pathway. This can be achieved by sulfide contractions of mercapto-N-heterocycles, a reaction whose general applicability was recognized by Eschenmoser.

Especially interesting is an early experiment by Roth. Recrystallization from methylglycol of the 5-phenacyl derivative (380), which is readily accessible from 4-thiouracil (379) and phenacyl bromide, leads via an episulfide intermediate and sulfur-extrusion to the 4-phenacylpyrimidin-2-one (381) in 64% yield.
The sulfide contraction turned out to be especially useful for the conversion of protected 5-phenacyl-2-thio-6-azauridine (382) into the corresponding 2-phenacyl derivative (383). Saponification with methanolic ammonia affords the free nucleoside (384) in 90% yield. However, heating of 383 with sodium methylate or DBU in methanol causes retro-aldol cleavage to give the interesting 2-methyl derivative (384b), a compound difficult to prepare by other routes.

Protected 4-thiouridine affords analogously the S-phenacyl derivative which extrudes sulfur to give the corresponding 4-phenacyl nucleoside, which can be converted to the 4-methyl derivatives by retro-aldol cleavage.

6-Thiopurines or 6-thiopurine nucleosides (385) can be readily S-alkylated by α-haloketones, α-halo esters as well as p-nitrobenzyl chloride to the corresponding S-alkylated derivatives (386), which undergo the sulfide contraction in the presence of base and triphenylphosphine (as sulfur acceptor) to furnish the corresponding 6-phenacyl-, 6-acetonyl-, 6-ester-, and 6-p-nitrobenzyl derivatives in high yields. Heating of the 6-phenacyl derivative like 387a with sodium methoxide or DBU in abs. methanol causes again retro-aldol cleavage to the corresponding 6-methylpurines or purine nucleosides (387b) (R₂ = H) 456,457.
I-Mercaptoisoquinoline as well as 4-mercaptoquinazoline are easily alkylated by 2-chlorocyclohexanone to 388a and 388b, which eliminate sulfur on heating in DMF to the corresponding cyclohexanone derivatives (389a and 389b) \(^{458}\). Other S-alkylated derivatives of 4-mercaptoquinazoline react analogously on heating especially in the presence of base \(^{459,460}\). The sulfide contraction of compounds like 388b can also be effected by treatment with sulfuric acid \(^{461,462}\).

Reaction of 3-aminoquinoxaline-2-thione with phenacyl halides results in sulfide contraction to give 3-amino-2-phenacylquinoxalines \(^{463}\).
3.6. Replacement of Carboxyl Groups (Hammick-Reaction)

On heating heterocyclic bases containing carboxyl groups to the heterocyclic nitrogen as picolinic acid (390), quinaldine acid (391), or isoquinaldine acid (392) with aldehydes 464-470, ketones 465,467-469,472, esters 472 or acid anhydrides 473 to temperatures between 140-180°C, the carboxylic acids are decarboxylated via their zwitter ions 466,474 to the postulated intermediates (393, 394 and 395), which can either rearrange to the parent heterocycles pyridine (13), quinoline (150a), or isoquinoline (17) or add to the carbonyl groups of the aliphatic or aromatic aldehydes, ketones, or acid anhydrides to furnish adducts like (396 - 400) in ca. 30 - 60% yield based on the heterocyclic carboxylic acid.
The addition of nonpolar solvents like p-cymene has been claimed to increase the yields in the reaction between picolinic acid (390) and aromatic aldehydes or ketones up to 58%. The influence of methyl and methoxyl substituents in picolinic acid on the yield of the reaction with benzaldehyde, anisaldehyde, or methyl 7-formylheptanoate was studied in detail. p-Nitrobenzaldehyde, p-dimethylaminobenzaldehyde as well as cinnamaldehyde did not give any addition product with picolinic acid (390). Quinaldinic acid (391) reacts in low yield with 2,4-dinitrochlorobenzene to afford 401 and with methyl benzoate and methyl phenylacetate to give traces of 110 and 402.
Whereas carboxylic acids like pyrimidine-4-carboxylic acid or thiazole-2-carboxylic acids did not give any adduct, nor harmancarboxylic acid reacted, on heating with o-tolualdehyde to afford the corresponding adduct in 26 % yield. α,α'-Dicarboxylic acids like dipicolinic acid (pyridine-2,6-dicarboxylic acid) react like picolinic acid with aldehydes to ketones to form the monoadduct accompanied by only traces of bisadduct.

γ-Carboxylic acids like isonicotinic acid or cinchoninic acid afford on heating with benzophenone the corresponding carbinols in only 7 - 10 % yield.

Heating of picolinic acid (390) with equimolecular amounts of 3-phenoxybenzaldehyde (403) without solvent to 170 °C furnishes the corresponding carbinol (404) in 39 % yield, which can be used for the synthesis of pyrethroids.

\[
\begin{align*}
\text{Pyridine-4-carboxylic acid (390)} & \quad + \quad \text{3-Phenoxybenzaldehyde (403)} \\
\quad & \quad \rightarrow \quad \text{Carbinol (404)}
\end{align*}
\]

3.7. Modification of Alkyl Groups

N-Heterocycles containing methyl or alkyl groups are easily available by total synthesis as well as modification (compare chapters 2.2.2, 3.6.) of the unsubstituted heterocycle. Compared to alkyl groups in carbocyclic aromatic systems, alkyl groups in N-heteroaromatic systems are usually more acidic and therefore more reactive. Thus, alkyl and especially methyl groups have been alkylated or condensed with a large variety of electrophiles.

3.7.1. Nucleophilic Reactions

Due to the electron-attracting ring nitrogen atoms, the 2- and 4-methyl groups in pyridines and quinolines are more reactive than the 3-methyl groups. Substitution of the methyl or alkyl group in the 2-position is often kinetically favored over the 4-position due to metal complexation of strong bases with the neighbouring nitrogen atom. Thus, s-collidine (405) is metallated with
phenyl- or butyllithium in diethyl ether in a kinetically controlled reaction selectively at one of 2-methyl groups to give the anion (406) which can be trapped by benzonitrile to afford the benzyolated s-collidine (407) in 73 % yield. In contrast, metallation by lithium amide or sodium amide in liquid ammonia gives predominantly or exclusively the thermodynamically controlled anion (408), which affords with benzonitrile the benzyolated product (409).

$\text{C}_6\text{H}_5\text{Li} \text{ or n-ButLi}$

Et_2O

$\text{C}_6\text{H}_5\text{CN}$

$\text{LiNH}_2 \text{ or NaNH}_2$

$\text{C}_6\text{H}_5\text{CN}$

Reaction of 2,4-lutidine (410) with sodium amide in liquid ammonia and subsequent addition of n-propyl nitrate gives selectively the 4-substituted product (411) in 69 % yield. Analogous nitrosations have been described and the reactivities of 2-, 3- or 4-methyl groups in pyridines, pyrimidines, quinolines, and quinazolines estimated using CNDO/2 as well as PPP-calculations.

CH_3

1) NaNH_2

NH_3

$\text{2) C}_3\text{H}_7\text{ONO}_2$

CH_2NO_2

2,3-Lutidine can be aminoalkylated (sodium amide, liquid ammonia) selectively at the 2-methyl group.

In 2,4-dimethylquinoline (22), the 2-methyl group is metallated initially by butyllithium in ether-THF to give 412 which is gradually converted to the 4-methylated intermediate (413). In analogy to the isomerization of ketone-enolates, the isomerization of 412 to 413 is catalyzed by excess 2,4-dimethylquinoline (22).
The picolyl (or 2,6-lutidyl) anion has been trapped by benzyl halides, alkyl halides, diethyl carbonate, aldehydes, ketones, esters, nitriles, epoxides like hexene-oxide, N,N-dimethylcarboxamides, and styrene to give the corresponding products in up to 90% yields.

Alkylations of 2-picoly anion with aromatic halides like chlorobenzene or 2-bromostyrene occur by S_{RN1}-mechanism (compare chapter 3.1.2.).

Interestingly, 2-ethyl-6-methylpyridine (414) can be selectively acylated at the methylene group to give 415 in 35% yield, whereas 2-ethylpyridine affords the analogous product in 38% yield. Like the 2-picoly anion, the 4-picoly anion reacts readily with alkyl halides, diethyl carbonate, aldehydes, carbon dioxide, diethyl carbonate, and esters. The less reactive 3-picoly anion (416), which can be generated by LDA in THF or sodium amide or potassium amide in liquid ammonia, can be reacted with ethyl 5-methoxyindole-2-carboxylate (417) to afford 418 in high yield.

Methylpyridazines are converted by potassium tert-butoxide or LDA into the corresponding anions which react with esters and ketones. The 4-methyl group in 2,4-dimethylpyrimidine reacts preferentially, after base treatment, with electrophiles like esters and alkyl nitriles.
Hydroxypyrimidines e.g. 419 can be metallated to the dianion (420) which reacts in high yields with alkyl halides, ketones, or esters to afford the corresponding substitution products like 421.

\[
\begin{align*}
\text{CH}_3 & \quad \text{2 BuLi} \quad \text{TMEDA} \\
\text{N} & \quad \text{N} \\
\text{C}_6\text{H}_5 & \quad \text{C}_6\text{H}_5 \\
\text{CH}_3 & \quad \text{CH}_3 \\
\text{OH} & \quad \text{CH}_2 \quad \text{C}-\text{OH} \\
\end{align*}
\]

Methylpyrazines can be mono- or diacylated 534,535. 3-Methyl-2-pyrazinone can be acetylated via the corresponding dianion 536. 2-Methylquinoline (20) reacts, on heating, with chloral in pyridine to afford 422 537,538. The 2-methyl group of 2,3-dimethylpyridine reacts analogously under similar conditions 539. The 2- and 4-methyl groups in quinolines can form Mannich bases 537,540,541 as well as the anions, which react with esters 542,543. The 1-methyl group in isoquinoline is more reactive than the 3-methyl group to form the corresponding anion which reacts readily with a large variety of electrophiles to products like 423 in high yields 544-546. Methylated quinoxalines 542,547,548, pteridines 549, and purines 550,551 can be condensed with esters and aldehydes. Methyl groups on 5-membered ring heterocycles as in imidazoles 552, benzimidazoles 553, isoxazoles 554, oxadiazoles 554, and thiadiazoles 554 can be condensed with electrophiles.

\[
\begin{align*}
\text{CH}_2-\text{CH}_2-\text{CCl}_3 & \\
\text{CH}_3 & \quad \text{OCH}_3 \\
\text{CH}_3 & \quad \text{OCH}_3 \\
\text{OH} & \quad \text{OH} \\
\end{align*}
\]

Generally, methyl groups in nitrogen heterocycles can react with amide acetals or aminals to afford the corresponding enamines 555-557 which are valuable intermediates e.g. for the conversion of 4-picoline (149) via the corresponding enamine (424) into the corresponding nitrile (425) 557.
As was expected, methylene groups containing anion-stabilizing groups like the cyano \[558,559\], trimethylsilyl \[560-563\] or diethoxyphosphonate \[564\] groups combine readily with electrophiles in the presence of base. Furthermore, alkyl groups in heterocyclic N-oxides are even more reactive (cf. chapter 4.1.1.).

3.7.2. Electrophilic Reactions

Acid or Lewis acid catalyzed reactions of heterocyclic methyl groups have been known for a long time. Thus, 2-picoline (120) condenses with benzaldehyde in the presence of \(\text{ZnCl}_2\) to afford \(\alpha\)-styrylpyridine (426) \[565,566\], whereas the 4-methyl group in 3-ethyl-4-methylpyridine (427) reacts with chloral and \(\text{ZnCl}_2\) to afford the adduct (428) in 22% yield \[567,568\], which can be dehydrated and saponified in 50% yield to the acid (429).

\[
\begin{align*}
\text{C}_6\text{H}_5\text{-CHO/ZnCl}_2 \quad \text{220°C} & \quad \text{Pyridine (120)} \quad \text{426} \\
\text{CH}_3 & \quad \text{CCl}_3\text{-CHO} \quad \text{ZnCl}_2 & \quad \text{3-ethyl-4-methylpyridine (427)} \quad \text{428} \quad \text{22%} \\
& \quad \text{KOH} \quad \text{EtOH} & \quad \text{429} \quad \text{50%}
\end{align*}
\]

Analogous condensations e.g. of methylpyrazines \[569\], methylpyridazines \[570\], 1-methylisoquinolines \[571\], methylquinoxalines \[572\], 2-methylbenzothiazoles \[573\], 2-methylbenzoxazole \[573\], and methylisothiazoles \[574\] have been described.

Heterocyclic methyl groups e.g. of pyrimidines \[575\] and purines \[576\] react also with Vilsmeier reagents to afford the corresponding diformyl derivatives e.g. 430 which reacts with hydroxylamine to afford the substituted isoxazole (431) \[575\]. 4,5-Dimethylpyrimidine reacts with formamide-P0Cl\(_3\) to give the substituted pyrimidine (432) in 12% yield \[577\].
3.7.3. Oxidation and Halogenation of Alkyl Groups

Methyl or alkyl groups in N-heterocycles can be oxidized by KMnO₄, SeO₂, or oleum in the presence of selenium metal and dichromate-sulfuric acid.

Thus, 4,4-dimethyl-2,2-bipyridine (433) affords with KMnO₄ the dicarboxylic acid (434) in 54% yield, and 3,5-dimethylpyridine with oleum/selenium metal pyridine-3,5-dicarboxylic acid (436) in 76% yield.

Methyl groups can be monohalogenated e.g. by NBS or perhalogenated by Br₂ or SO₂Cl₂ in CF₃COOH.

3.8. Modification of Cyano Groups

Cyano groups can be introduced in N-heterocycles by displacement of leaving groups with cyanide ion (cf. chapters 3.1.8. and 3.3.) or by reaction of heterocyclic N-oxides with (CH₃)₃SiCN (cf. chapter 4.1.2.) and classically by conversion...
sion of carboxyl or amide groups.

Cyano moieties in N-heterocycles like 4-cyanopyridine react with Grignard reagents to form ketones \(590,591 \) but can also be replaced by sodium malonates or sodium cyanoacetates as in 1-phthalazine carbonitrile \(592 \) or photochemically by alcohols in 2-cyanopyridine \(593 \) (cf. chapter 2.7.2.).

These typical reactions may suffice as examples.

3.9. Reactions of Miscellaneous Organometallic Substituents

Heating of 2-trimethylsilyleylpyridine (437) with chloral gave, after trans-silylation with methanolic hydrogen chloride (438) in 40% yield \(594 \). 2-Trimethylstannylypyridine (439) reacted with benzoylchloride at r.t. to give 2-benzoylpyridine (147) in 77% yield. The 2-trimethylstannyquinoline or 1-trimethylstannyisoquinoline behave analogously, whereas 3- or 4-trimethylstannylypyridine or -quinoline react only in the presence of palladium catalysts \(595 \).

Analogously, diethyl(3-pyridyl)borane (440) can be arylated by aryl halides like 2-chloropyridine to form arylated pyridines like 441 in high yields \(596 \).
4.0. REACTIONS OF N-QUATERNARY-TYPE BASES

4.1. Reactions of Aromatic N-Oxides and N-Amino Compounds

Since this chemistry has been repeatedly reviewed during the last years only a few pertinent examples are given to illustrate the basic principles of C-substitution via aromatic N-oxides as well as some recent advances.

Amine oxides like pyridine, quinoline, isoquinoline or pyrimidine N-oxides react readily with soft nucleophiles at the "soft" α- or γ-positions if the hard oxygen is converted by acylation, mesylation, tosylation, alkylation or silylation into a better leaving group. The success of these reactions depends on the proper balance between the "softness" of the nucleophile and the "hardness" of the leaving groups at the N-oxide oxygen.

4.1.1. Activation via O-Acylation or O-Sulfonylation and Rearrangements

Thus, pyridine N-oxide (442) is converted by benzoyl chloride and the enamine (443) via the intermediate (444) and subsequent hydrolysis in 83 % yield into 2-(2-pyridyl)cyclohexanone (445) 598. Lepidine N-oxide (446) reacts analogously with 443 in the presence of tosyl chloride to afford the 2-(2-lepidyl)cyclohexanone (447) 598. For additional reactions of N-oxides with enamines compare references 601-609. Likewise quinoline N-oxide (448), acetylacetone and acetic anhydride furnish the 2-acetonylquinoline (449) in 68 % yields 623.
Other soft nucleophiles like malonic ester \(^{598}\), cyanacetic ester \(^{610,611}\), cyanacetamide \(^{612}\), cyanacetic acid \(^{613}\), malonitrile \(^{614}\), acrylamide \(^{615}\), propionic esters \(^{616,617}\), \(\beta\)-dicarbonyl compounds \(^{618-623}\), enamines \(^{619,624,625}\), 0-acylated cyanhydrins \(^{626-628}\), 2-buten-4-olide \(^{629}\), rhodanes \(^{630}\), 2-phenyl-2-thiazolin-4-one \(^{631}\), 2-oxazolin-5-ones \(^{632}\), barbituric acid \(^{633}\), indole \(^{634}\), indole-copper reagents \(^{635}\), oxindole \(^{636}\), and 2-alkoxyindoles \(^{637}\) react analogously with heterocyclic N-oxides.

Thus, ethylnicotinate N-oxide (450) combines readily with indole in the presence of benzoyl chloride to afford ethyl 6-(3-indolyl)nicotinate (451) in 43% yield.

\[
\begin{array}{c}
\text{C}_2\text{H}_5\text{OOC} \quad \text{C}_6\text{H}_5\text{COCl} \quad \text{C}_2\text{H}_5\text{OOC} \\
450 \quad \text{indole} \quad 451 \\
\end{array}
\]

Sulphonium ylides \(^{638-640}\) as well as diketene \(^{641-642}\) react with N-oxides to furnish new 5- and 6-membered ring systems.

Acylation of quinoline N-oxide (448) with benzoyl chloride followed by treatment with aqueous KCN leads via the probable intermediate (452) with elimination of benzoic acid to 2-cyanoquinoline (107) in ca. 92% yield. Although this type of procedure is successful with many heterocyclic systems \(^{644}\), in the pyridine-series, only 4-chloropyridine N-oxide has been reported to give the corresponding 2-cyano-4-chloropyridine in 63% yield (cf. chapter 4.1.2.) \(^{644}\).

\[
\begin{array}{c}
\text{1) C}_6\text{H}_5\text{COCl} \\
\text{2) CN}^{-} \\
448 \quad 452 \quad 107 \\
\end{array}
\]

0-Acylation of pyridine and quinoline N-oxides, however, with dimethylcarbamoyl chloride using trimethylsilyl cyanide at the cyanide source furnishes the corresponding 2-cyanopyridines and -quinolines in good yields \(^{645}\).
In related reactions of C=C bond systems with the 1,3-dipol-system of N-oxides, pyridine N-oxide (442) reacts with benzyne (453) to give mixtures of products (454 and 455) via symmetry allowed rearrangements 599,600,646.

![Reaction diagram]

Similar rearrangements are postulated for the reaction of 2-picoline N-oxide (456) with phenylpropionitrile to furnish the 5-alkylated 2-picoline (457).

Heating of pyridine N-oxide (442) with 6-methyl-4(3H)-pyrimidinone (458) in the presence of palladium-charcoal leads probably to a radical reaction with the soft 2-pyrimidyl radical to afford the adduct (459) as well as the 2,2'-dimer of 458 647.

In this connection, it should be noted that the N-oxidation of N-heterocycles leads to a considerable increase in the reactivity of nuclear hydrogen atoms 648, nuclear methyl groups 649 as well as nuclear halogen groups 650, which can be used for substitution reactions.
4.1.2. Activation via O-Alkylation and O-Silylation

Since O-alkylated heteroaromatic N-oxides, which can be readily prepared by O-alkylation, are much more stable towards hydrolysis than the corresponding O-benzoates or O-tosylates, they give, on reaction with alkali cyanides, generally higher yields of the corresponding cyano compounds \(^{651-653}\). Thus \(\alpha\)-picoline N-oxide (457) affords on methylation with dimethyl sulfate, in nearly quantitative yield the O-methyl derivative (460) which reacts with aqueous KCN solution in ca. 45% yield to 6-methylpicolinonitrile (461) \(^{653,654}\).

Pyridine N-oxide (442) gives, on alkylation and subsequent treatment with cyanide, 2-cyanopyridine (205) and small amounts of 4-cyanopyridine (153) \(^{651-653}\). The amount of 4-cyanopyridine formed is dependent on the sterical bulk of the alkoxyl group as well as on the substituents in the pyridine ring \(^{653,655}\). Thus, the O-nonyl derivative (462) obtained from pyridine N-oxide (442) gives, with cyanide, a 42% yield of 4-cyanopyridine (153) \(^{653}\). The N-oxide of ethyl pyridine-3-acetate (463) furnishes, on methylation and cyanide treatment, a mixture of mainly 465 and 466 \(^{656}\).

For some recent applications of O-alkylation and subsequent cyanation to pyridine N-oxides \(^{657-661}\), quinoline N-oxides \(^{662}\), \(\alpha\)-carboline N-oxides \(^{663}\), and \(\gamma\)-carboline N-oxide \(^{664}\) compare the references.
Since 0-alkyl and 0-silyl groups behave very similarly as leaving groups and since furthermore 0-silyl groups are readily formed due to the high affinity of silicon to oxygen, both steps, the addition of cyanide ion to the N-oxide system and the activation of the N-oxide oxygen atom, by silylation, can be combined by using trimethylsilyl cyanide (467) as a reagent.

Heating heterocyclic N-oxides like pyridine N-oxide (442) with trimethylsilyl cyanide (467) in an organic solvent like acetonitrile leads to an intermediate like 468, which aromatizes with formation of trimethylsilanol (469) to afford 2-cyanopyridine (205) in 80% yield and traces of 4-cyanopyridine (153). Trimethylsilanol (469) is subsequently silylated by a second equivalent of trimethylsilyl cyanide (467) to hexamethyldisiloxane (470). The HCN, which is liberated, has to be neutralized by a tertiary base like triethylamine to triethylammonium cyanide (471) to drive the reaction to completion.

The reaction can be simplified by generating trimethylsilyl cyanide in situ from NaCN and trimethylsilyl chloride in DMF and simultaneously silylating reactive groups like hydroxy or carboxy groups by excess trimethylsilyl chloride-triethylamine.

Thus, 3-hydroxypyridine N-oxide (472) is converted smoothly into 2-cyano-3-hydroxypyridine (473) in 90% yield. 3-Carboxypyridine N-oxide (474) gives 2-cyano-5-carboxypyridine (475) in 76% yield, whereas 3-cyanopyridine N-oxide (476) affords a mixture of the 2,3- (411) and 2,5-dicyanopyridine (478) 666.
As demonstrated for the reaction of 3-cyanopyridine N-oxide (476), the reaction with trimethylsilyl cyanide can be catalyzed by tetrabutylammonium fluoride (TBAF) in THF to proceed already at +5°C to give a 48 : 18 mixture of 477 and 478.

The more reactive quinoline and isoquinoline N-oxides are cyanated under much milder conditions as are the pyrimidine N-oxides. The different procedures of reacting heterocyclic N-oxides with trimethylsilyl cyanide have recently been reviewed and furthermore experimentally compared.

It should be mentioned here that quinolines and isoquinolines can be cyanated directly in good yields using tosyl chloride and KCN in CH₂Cl₂/H₂O via a Reissert intermediate (cf. chapter 2.3.) from which the sulfonic acid is eliminated using DBU.

As already discussed in the introduction of chapter 4.1., the aforementioned smooth reactions of heterocyclic N-oxides with trimethylsilyl cyanide can be rationalized as the favored reaction of the "soft" cyanide ion with the "soft" α-position of the N-oxide system and the "hard" potential trimethylsilyl cation with the "hard" N-oxide oxygen atom.
Analogously, the "soft" allylic of "benzylic" anions which are readily generated from allyl- or benzyltrimethylsilane and fluoride ion add to the "soft" α-position of pyridine or quinoline N-oxides to give, after elimination of trimethylsilanol, the α-propenyl or α-benzyl heterocycle.

Thus, pyridine N-oxide (442) reacts with 2 equivalents of allyltrimethylsilane to give, via the probable intermediate (479), the 2-propenylpyridine (480) as the sole product in ca. 60 - 70 % yield. Quinoline N-oxide (448) affords with benzyltrimethylsilane analogously 2-benzylquinoline (481).

It can be anticipated that further useful reactions of heterocyclic N-oxides with silicon reagents will be discovered.

4.2. Reactions of N-Amino Heterocycles

Reaction of N-aminopyridinium salts (482) with 4- or 2-pyrones like 483 and 484 gives rise to 1-pyridinio-4-pyridones (485 or 486). Compound 485 is transformed by aqueous KCN to afford 2-cyanopyridine (205) and probably 4-pyridone (135), which is not isolated.
Due to the steric shielding of the α-position of 486 by the two methyl groups, nucleophiles attack exclusively the γ-position. Thus, 486 reacts with cyanide ion to give, after pyrolysis of the intermediate, 4-cyanopyridine (153) in ca. 80 % yield as well as 487 675.

Lithium enolates of ketones like cyclohexanone add to 486 to afford intermediates like 488, which are decomposed by a free radical mechanism in high yields to 4-(α-acylalkyl)pyridines such as 489 676, which can be usually prepared by acylation of 4-alkylpyridines (cf. chapter 3.7.) or alternatively by sulfide contraction (cf. chapter 3.5.).

Excess aliphatic or aromatic Grignard reagents like propylmagnesium halide react with the intermediate (486) to the 1,4-addition product (490), which give on heating 4-n-propylpyridine (491) in 90 % yield 677. Whereas anions derived from nitroalkanes add readily to 486 to afford the 4-(nitroalkyl)pyridines in high yields 678, the anions derived from esters, nitriles, malonitriles, or ethyl cyanoacetates give only poor yields of the desired 4-alkylated pyridine due to competing ring-opening reactions 679.

These reactions work also very well with 2- or 3-substituted N-aminopyridines, which can then be transformed into a series of 4-substituted analogues.

Similar results are obtained on employing N-acyl-N-alkyl derivatives like 493, which are obtained from N-amino-2-methylpyridinium salts like 492 by acylation and subsequent alkylation 680. Thus, compound 493 reacts with aqueous KCN to give 2-methyl-4-cyanopyridine (494) in 88 % yield 681.
4.3. Reactions of Other N-Substituted Heterocycles

Pyridine is transformed by nitronium tetrafluoroborate in anhydrous acetonitrile into 495, which reacts with the sodium salt of nitromethane to give, in 80% yield, the crystalline 496. However, no attempts have been reported to effect the cleavage of 496 to 497.\(^{682,683}\)

Pyridine is alkylated by benzophenone phenylhydrazone (498) in the presence of bromine to afford in 97% yield the phenylazodiphenylmethylypyridinium bromide (499), which reacts with aqueous KCN to give 4-cyanopyridine (153) in 75% yield.\(^{684}\)

Alklyation of pyridine or 2- or 3-methylpyridine with triphenylmethyl fluoroborate affords the corresponding N-triphenylmethylpyridinium tetrafluoroborates, which are transformed by the lithium salts of esters and nitrile into the corresponding 1,4-adduct. Radical decomposition with azoisobutyronitrile (AIBN) furnishes the substituted pyridines. Thus, N-triphenylmethyl-3-methylpyridinium tetrafluoroborate (500) reacts with the lithium salt ethyl phenylacetate to give via the adduct (501) the final product (502) in 60% yield, as well as triphenylmethane (503).\(^{685}\) (Compare also the Reissert type reactions under chapter 2.3.)

\[
\text{Pyridine} \quad \text{(C_6H_5)N} \quad \text{H} \quad \text{+ HNO}_2 \\
\text{CH}_3\text{CN} \quad \text{-40°C} \\
\text{NaCH}_2\text{NO}_2 \\
\text{CH}_2\text{NO}_2 \quad \text{CH}_2\text{NO}_2 \\
\text{496} \quad \text{80%} \\
\text{Pyridine} \quad \text{Br}_2 \\
\text{Br} \quad \text{Br} \\
\text{498} \quad \text{153} \quad \text{+ 498} \\
\text{KCN} \quad \text{H}_2\text{O} \\
\text{C_6H_5-NH-N=C_6H_5} \quad \text{H}_5\text{C}_6\text{C}-\text{N=N-C_6H}_5 \\
\text{499} \\
\text{Li}^+ \\
\text{L_1}^+ \\
\text{C_6H_5-CH-COOC_2H_5} \quad \text{H}_5\text{C}_6\text{CH} \quad \text{CH}_2\text{COOC_2H}_5 \\
\text{C_6H_5} \quad \text{C_6H_5} \quad \text{AIBN} \quad \text{CCl}_4 \quad \Delta \\
\text{501} \quad \text{502} \quad \text{+ (C_6H_5)_3CH} \quad \text{503}
For analogous additions of trichloro- or tribromomethyl groups to N-benzylpyridinium or quinolinium salts compare reference 686.

5.0. C-SUBSTITUTION BY REARRANGEMENTS

5.1. Claisen Rearrangements

Since the Claisen rearrangement of aromatic and heteroaromatic compounds was recently reviewed 687; only a few examples are presented. 5-Allyloxy-1,3-dimethyluracil (504) rearranges at 120°C quantitatively to 505 688. The analogous rearrangement of 6-allyloxy-1,3-dimethyluracil gives 6-hydroxy-5-allyl-1,3-dimethyluracil in 64% yield 689. The uncatalysed 690 as well as the Lewis acid catalysed 691 ortho-Claisen rearrangements of 2-allyloxy pyridine have been described as have been Claisen rearrangements of allyl, methallyl and crotyl esters of 4-hydroxyquinoline 692. For interesting Claisen rearrangements of purine-05-allylic ether and 4-β-carboline ethers compare references 693,694.

\[
\begin{align*}
\text{504} & \quad \xrightarrow{120^\circ C, 10 \text{ min.}} \quad \text{505} \\
& \quad \text{96%}
\end{align*}
\]

5.2. Sommelet-Hauser[2,3]Sigmatropic Rearrangements

Typically, compounds like 506 rearranges to 507 in the presence of sodamide in 22% yield 695. Pyrrolo derivatives are found to rearrange analogously 695. The quaternary salt (508) is converted by potassium t-butoxide or sodium hydride in THF/DMSO at -10°C to 509, which can be hydrolysed in situ in ca. 50% to yield the aldehyde (510), or alkylated with base and alkyl halides to 2-methyl-3-acylpyridines such as 511 696.
5.3. Benzidine-Type Rearrangements

Heterocycles with an activated chlorine atom like 3-nitro-2-chloropyridine (512) or 3-nitro-4-chloropyridine (513) react with benzyl N-hydroxy-N-phenylcarbamate (514) under alkaline conditions to give, via an oxygen-benzidine-type rearrangement, the corresponding pyridones (515 and 516) in good yields 697,698.

Analogously, 2,4-dichloropyrimidine (253) affords, via displacement of the more reactive 4-chlorine atom, rearrangement, and hydrolysis of the 2-chloro group, the 5-substituted uracil (517) 698. Since 2-chloropyrimidines or 2-chloropyrazines can be transformed analogously 697, this type of rearrangement seems to be of general interest.
Due to several unfortunate circumstances, the writing of the final version of this manuscript took longer than anticipated. Thus, a few important publications, which have appeared since finishing the main draft of this review, are added as a supplement.

2.3. Reissert-Type Reactions

Benzyltin reagents \(^{698}\) as well as silyl enol ethers \(^{699,700}\) have been added to the 4-position of pyridinium and pyrimidinium \(^{700}\) compounds, whereas alkyne and alkenyl Grignard reagents attack primarily the 2-position of pyridinium salts \(^{701}\). α-Additions in pyridinium salts occur also exclusively, when the 4-position is substituted by a halogen \(^{702}\), methoxyl \(^{703}\), or trimethylstannyl group \(^{704}\).
2.7. Radical Reactions

The recent advances in preparative radical chemistry have just been reviewed in a concise monography by Giese. The Minisci-homolytic alkoxy carbonylation of pyridines and pyrazines can also be achieved in a two phase system. On UV-irradiation, 5-iodouracils and uridine undergo substitution by alkylsilanes in high yields.

3.1. Reactions of Halogens

Reaction of the lithium enolates of ketals of glycoxylic esters with 2-chloro-s-triazines, -quinoxalines, -benzoxazoles, and benzothiazoles and subsequent acidic hydrolysis furnish the α-ketoesters.

Chloro- and bromopyridines and -quinolines can be efficiently homo-coupled in the presence of nickel-complexes to afford e.g. 3,3-dipyridyl in 78% yield. Silylated 5-bromouracil couples with 2-thienylzinc chloride and 6-methylmercaptopurine nucleoside with Grignard reagents in the presence of nickel-complexes.

Halopyridines, -pyrimidines, -pyrimidine nucleosides, -pyrazines, and -purines have been cross-coupled with acetylene derivatives in the presence of palladium-complexes.

8-Methylnsulfonylpurine nucleosides react readily with the sodium salt of ethyl acetoacetate to give the ethyl ester of the corresponding 8-acetic acid.

3.2. Replacement of 0-Sulfonate Groups

Reaction of the easily accessible triflates of 2- or 8-hydroxyquinolines with trimethylstannylbenzenes in the presence of tetrakis(triphenylphosphin)palladium(0) affords the corresponding phenylated quinolines in high yields. This type of C-C coupling should be applicable to a wide variety of corresponding triflates of hydroxy N-heterocycles.

3.7. Modification of Alkyl Groups

The lithium salt of a substituted 4-methylpyridine adds to 2-cyclopenten-1-one in high yield. The competition between nucleophilic addition and metallation in 4- and 2-methylpyridine by different lithium reagents has been studied.
4.1. Reactions of Aromatic N-Oxides and N-Amino Compounds

A further comprehensive review on the reaction of aromatic N-oxides was published by Hamana 722.

Several 3- and 4-substituted pyridine N-oxides has recently been reacted with trimethylsilyl cyanide to give the corresponding 2-cyanopyridines in 70 - 88 % yield 723,724.

Finally, C-alkylations of γ-chloro heterocycles or heterocyclic N-oxides by phase transfer catalysis has been recently reviewed 725.
REFERENCES

18. K. Ziegler and H. Zeiser, Ber., 1930, 63, 1847.
82. E. Koenigs and H. Greiner, Ber., 1931, 64, 1049.
100. S. Skonieczny, Heterocycles, 1977, 6, 987.
103. E. Ghigi, Ber., 1942, 75, 764.

134. E. Weitz, A. Roth, and A. Nelken, \textit{Ann.}, 1921, \textbf{425}, 161.
150. A. Kaufmann and P. Dändliker, Ber., 1913, 46, 2924.
200. B. Emmert and E. Pirot, Ber., 1941, 74, 714.
215. F. Minisci and E. Platone, La Chimica e l'Industria, 1982, 64, 787.

300. E. Koenigs and W. Jaeschke, Ber., 1921, 54, 1351.

419. L. F. Christensen, P. D. Cook, R. K. Robins, and R. B. Meyer, Jr., J. Carbo-

449. E. Hayashi and A. Utsunomiya, Yakugaku Zasshi, 1975, 95, 774.

474. B. R. Brown, Quarterly Reviews, 1951, 5, 131.

504. K. Löffler and H. Grunert, Ber., 1907, 40, 1342.

565. H. Baurath, Ber., 1888, 21, 818.
566. H. Baurath, Ber., 1887, 20, 2719.
568. E. Koenigs and W. Ottmann, Ber., 1921, 54, 1343.
584. E. Knövenagel, Ber., 1922, 55, 1912.

597. S. Oae and K. Ogino, Heterocycles, 1977, 6, 583.

Received, 18th January, 1988