PALLADIUM(II)-CATALYZED CYCLIZATION VIA N-ALKYLATION OF AN ALLYL ALCOHOL WITH AN URETHANE AND ITS APPLICATION TO THE SYNTHESSES OF NATURAL PRODUCTS

Hajime Yokoyama and Yoshiro Hirai*

University of Toyama, Graduate School of Science and Engineering, 3190 Gofuku, Toyama 930-8555, Japan
hirai@sci.u-toyama.ac.jp

Abstract – Stereoselective amino-palladation of alkenylamines is one of the most important approaches for the stereoselective construction of N-hetero-alicycles, which form the skeletons of several biologically active natural products and related compounds. We reviewed our work with the utility of palladium(II)-catalyzed cyclization via N-alkylation of an allyl alcohol with a urethane. The syntheses of natural products by using Pd(II)-catalyzed cyclization were also reviewed.

INTRODUCTION
Among the vast number of biologically active natural products, the alkaloids, which have often complex structures containing multiple chiral centers, show considerable potential as drug candidates. Some, such as morphine and quinine, are already in clinical use. Alkaloids are interesting synthetic targets not only because of their potential medical applications, but also because of their structural complexity in many cases. Stereoselective amino-cycloaddition of alkenylamines is one of the most important approaches for the stereoselective construction of N-hetero-alicycles, which form the skeletons of several biologically active natural products and related compounds. Many syntheses along this line have been reported, including palladium chemistry. In palladium chemistry, amino-palladation is one of interesting and exciting topics. As we know, three relevant termination mechanisms have been proposed for amino-palladation. One mechanism, amino-palladation-β-elimination, produces a enamine (2) (Figure 1).
The second mechanism, amino-palladation via π-allyl palladium complex, gives allylamines (4) and (5). The π-allyl-palladium chemistry have many books and reviews. The allylic esters (3) are used as the substrate (Figure 2).

The last mechanism, amino-palladation-hydroxy elimination, gives allylamines (4) and (5) as same as these of second mechanism (Figure 3). The Pd(II) species are not reduced, and thus the catalyst can recycle without reoxidation. Sometimes allylethers are used in stead of allyl alcohol (6).

In this review, we should focus the amino-palladation-hydroxy elimination sequence in the sight of total synthesis of natural products. Especially, in the application to the synthesis, scope and limitation of this methodology and stereoselectivity were discussed.

SYNTHESIS OF PYRROLIDINE ALKALOID

Synthesis of (-)-bulgecinine (11)

In 1992, Saito group reported the synthesis of the dihydropyrrol using Pd(II)-catalyzed cyclization. The cyclization of the allyl alcohol (7) was effected with palladium catalyst in THF to afford the dihydropyrrol derivative (8) in 67% yield with 97% ee (Figure 4).
On the other hand, we examined the construction of the pyrrolidine using Pd(II)-catalyzed cyclization of the urethane and its application to the synthesis of natural products, such as (-)-bulgecinine (11) in 1992, independently. (-)-Bulgecinine (11) is one of the constituted amino acid of the novel glycopeptides bulgecins, which are potent β-lactam synergists found in the culture broth of *Pseudomonas acidophila* and of *Pseudomonas mesoacidophila*.\(^8,^9\) We have focused our attention to the asymmetric construction of an oxazolidinone (10) which were expected to be an important intermediate on the synthesis of (-)-bulgecinine (11) (Figure 5).

The substrate (13) was synthesized from (Z)-2-butene-1, 4-diol (12) via Sharpless asymmetric epoxidation by 7 steps. In order to examine the effect of the double bond geometry on the stereochemical outcome of this cyclization, 15, the *E*-isomer of 13, was also prepared from 2-butyne-1, 4-diol derivative (14) by the similar method to the synthesis of 13 (Figure 6).
The intramolecular cyclization of 13 was effected by treatment with bis(acetonitrile)palladium(II) chloride (30 mol%) in THF to give an oxazolidinone (16) in 85% yield (96% ee) as a single diastereoisomer. The palladium(II)-catalyzed cyclization of the isomer 15 resulted in the formation of the same product 16 in 85% yield (Figure 7).

![Figure 7](image)

The reaction mechanism may be shown in Figure 8. The oxa-π-alkene palladium complex would be produced by coordination of the Pd catalyst with C-C double bond of allyl alcohol and alcohol moiety. The stereoselective formation of 16 could be explained by assuming the transition state A or B. The transition state A would be disadvantageous, because of steric repulsion between the amide moiety and oxa-π-alkene palladium complex (Figure 8). The geometry of double bond was not affected to the diastereoselectivity.

![Figure 8](image)

The oxazolidinone (16) thus obtained is a useful precursor for the preparation of the nitrogen-containing natural products, and its versatility was demonstrated by its transformation into (-)-bulgecinine (11) (Figure 9). The deprotection of 16 followed by benzylation gave a benzyl ether (17). The cleavage of the oxazolidinone ring in 17 was effected by the treatment with 1 N KOH to give a pyrrolidine derivative, which was subjected to sequential N-benzoyloxy carbonylation and O-benzoylation to afford the pyrrolidine (18). Finally, the conversion of 18 to 11 was achieved in four steps (ozonolysis, oxidation of the resulting aldehyde with KMnO₄, debenzylation, and acid hydrolysis of the carbamate and benzoate moiety). The physical data for the synthetic product (11) were in accordance with those reported for natural (-)-bulgecinine.
SYNTHESIS OF PIPERIDINE ALKALOID

Synthesis of (+)-prosopinine (21)11

In 1997, we tried on the asymmetric construction of bicyclic oxazolidinone derivatives (20), which provide a path to piperidine alkaloids12 (Figure 10). Prosopinine (21), which was isolated from the leaves of the African mimosa \textit{Prosopis africana} Taub,13 is one of the piperidine alkaloids and has anesthetic, analgesic and antibiotic activities.14

We prepared the chiral allyl alcohol (19) as the substrate for Pd(II)-catalyzed cyclization from 3-methoxymethoxypropyne by 9 steps. The intramolecular cyclization of 19 was achieved by treatment with bis(acetonitrile)palladium(II) chloride (20 mol\%) [PdCl\textsubscript{2}(MeCN)\textsubscript{2}] in THF at room temperature to give a bicyclic oxazolidinone (22) in 75\% yield as a single diastereoisomer (Figure 11).15 The structure of
22 was confirmed by the spectral data and by an NOE experiment that indicated that the proton at the 1-position and the vinyl group at the 5-position are in a cis relation.

\[
\text{HOHINH} \quad \text{PdCl}_2(\text{MeCN})_2 \quad \text{THF, rt} \quad (75\%)
\]

\[
\begin{array}{c}
\text{OCOPh} \\
\text{HN} \\
\text{O}
\end{array}
\]

\[
\begin{array}{c}
\text{OCOPh} \\
\text{HN} \\
\text{O}
\end{array}
\]

Figure 11

This high stereoselectivity of the palladium(II)-catalyzed cyclization can be explained by assuming the involvement of a transition state A, which minimizes steric repulsion between the oxa-π-alkene palladium complex and the oxazolidinone ring (Figure 12). The initial formation of an oxa-π-alkene palladium intermediate A, followed by backside N-nucleophilic attack upon the remote Pd-coordinated alkene, usually results in palladium-hydroxy elimination to give the trans-2,6-disubstituted piperidine system (22) stereoselectively.

The resulting oxazolidinone (22) is an useful chiral building blocks for the preparation of the piperidine alkaloids and that versatility was demonstrated by the transformations into (+)-prosopinine (21). Debenzylation and benzylation of 22 followed by ozonolysis gave the aldehyde, which was subjected to Wittig reaction and hydrolysis of the acetate moiety to give the alcohol (23) in 22% overall yield (Figure 13). After Swern oxidation of 23, Grignard reaction with EtMgBr in THF and oxidation of the resulting alcohol with PCC gave the ketone, which was converted to the ketal (24). Finally, the conversion of the ketal (24) to (21) was achieved in three steps: debenzylation and hydrogenation of the olefin moiety, cleavage of the oxazolidinone ring, and deketalization. The physical data for the synthetic product (21), including the specific rotation, were identical to those reported for natural (+)-prosopinine.16
Synthesis of (+)-coniine (27)17

We examined the Pd(II)-catalyzed cyclization of the chiral allyl alcohol (25) to discuss the reaction mechanisms and chiral transfer (Figure 14).

The chiral alcohol (-)-(25) was easily prepared via enzymatic resolution from 5-amino-1-pentanol by 5 steps. The palladium-catalyzed cyclization of the optically active urethane (-)-(25) (98% ee) gave the piperidine (28) in 89% yield. In these reactions, highly efficient intramolecular chirality transfer was achieved. The absolute configuration of 28 was established by its conversion into (+)-coniine (27). The catalytic hydrogenation and deprotection of 28 over Pd(OH)\textsubscript{2} under hydrogen, followed by treatment with HCl gas in Et\textsubscript{2}O, afforded (+)-coniine (27) hydrochloride18,19 in 98% yield (99% ee) of 2 steps (Figure 15).
Synthesis of (-)-hydroxysedamine (31) and (-)-pseudoconhydrine (32)

In 1997, we had interest of 1, 4-asymmetric induction in Pd(II)-catalyzed cyclization. So we examined the stereocontrolled construction of 2-functionalized 5-hydroxypiperidine (30) by a palladium(II)-catalyzed intramolecular cyclization and the synthesis of (-)-hydroxysedamine (31) and (-)-pseudoconhydrine (32), which are one of the hemlock alkaloids (Figure 16).

The substrates (33) and (36) for Palladium(II)-catalyzed cyclization was prepared in straightforward fashion from (R)-O-t-butyldimethylsilyl glycidol by 12 steps. The intramolecular cyclization of 33 was effected by treatment with bis(acetonitrile)palladium(II) chloride (30 mol%) [PdCl\(_2\)(MeCN)\(_2\)] in THF to give a separable mixture consisting predominantly of the piperidine (34) and its stereoisomer (35) in a ratio of 8:1. And the Pd(II)-catalyzed cyclization of 36 gave the mixture of 37 and 38 in the ratio of 8:1 in 81% yield (Figure 17). The stereoselective formation of 34 could be explained by assuming the transition state A or B (Figure 18). The transition state B, which leads to 35, would be disadvantageous because of steric repulsion between the carbamate moiety and oxa-π-alkene palladium complex.
We examined the conversion of 34 to (-)-hydroxysedamine (31) (Figure 19). Ozonolysis of 34 followed by Wittig reaction with (methoxy)methyl-triphenylphosphonium chloride and subsequent hydrolysis with perchloric acid to give 39 in 36% yield of 3 steps. The aldehyde group of 39 was treated by PhMgBr, followed by oxidation with PCC to provide the ketone (40) in 42% yield of 2 steps. The protection of 40 by ethylene glycol, hydrogenation with Pd-C and deprotection with perchloric acid gave the alcohol (41) in 53% yield of 3 steps. The physical data for the synthetic product (41) were in accordance with those reported for the synthesis of natural (-)-hydroxysedamine (31).21, 22
Next we examined the conversion of a mixture of 37 and 38 to (-)-epi-pseudoconhydrine (44) and (+)-pseudoconhydrine (45) (Figure 20). Ozonolysis of a mixture of 37 and 38 followed by Wittig reaction using ethyltriphenylphosphonium bromide and subsequent catalytic hydrogenation on Pd-C gave 42 and 43 in 42% and 6% yield, which were easily separated by silica gel column chromatography. The carbamate group of 42 and 43 was removed by treatment with CF$_3$CO$_2$H (TFA) to provide 44 and 45, respectively. The physical data for the synthetic product (45) were in accordance with those reported for (+)-pseudoconhydrine.23 The compound (42) was also converted to (-)-pseudoconhydrine (32) (Figure 20). The inversion of the alcohol moiety of 42 under Mitsunobu conditions followed by deprotection of the resulting benzoate with K$_2$CO$_3$ in MeOH gave 46, which was treated with TFA to furnish (-)-pseudoconhydrine (32).23

![Synthesis of SS20846A (49)24](image)

In 1999, we had interest of 1, 3-asymmetric induction in Pd(II)-catalyzed cyclization and focused on a novel stereoselective synthesis of SS20846A (49) via the intramolecular cyclization of the corresponding urethane (47) using palladium(II) catalyst (Figure 21). SS20846A (49) is a biologically active piperidine
alkaloid isolated from *Streptomyces* sp. S20846.²⁵,²⁶ It is also a biosynthetic intermediate of streptazolin.²⁷

The precursor (47) for palladium(II)-catalyzed cyclization was prepared from (S)-glycidol by 11 steps. Pd(II)-catalyzed cyclization of 47 was performed as follows (Figure 22). The intramolecular cyclization of 47 was effected by treatment with bis(acetonitrile)palladium(II) chloride (10 mol%) [PdCl₂(MeCN)₂] in THF to give a separable mixture of trans- 50 and cis- 50 (89% yield) in a ratio of 85:15. Next, the conversion of 50 to SS20846A (49) was examined in the following way (Figure 23). The alcohol (51) was prepared from 50 in 4 steps (dihydroxylation of olefin (OsO₄, NMO; 89% yield), oxidative cleavage (NaIO₄, CH₂Cl₂; 87% yield), Horner-Emmons-Wittig reaction, and reduction (DIBAL, THF; 96% yield)). Swern oxidation of 51 followed by Wittig reaction, desilylation, olefin isomerization, and deprotection
gave SS20846A (49) in 22% overall yield. The physical data for the synthetic product (49) were in accordance with those reported for SS20846A (Figure 23).

A possible explanation for the stereoselective formation of trans- 50 is shown as follows (Figure 24). If the transition states are assumed to be A and B, the transition state B, which leads to cis- 50, would be disfavored because of steric repulsion between the carbamate moiety and the palladium complex.

Figure 24

Synthesis of 1-deoxymannojirimycin (56)

In 2000, we decided to investigate the synthesis of azasugar such as 1-deoxymannojirimycin (56) via intramolecular Pd(II)-catalyzed cyclization of 54 (Figure 25). Carbohydrates play an important role in many in vivo biological phenomena. Recently many azasugars were found to be efficient inhibitors of the carbohydrate hydrogenase and transferase. In these azasugars, 1-deoxymannojirimycin (56) isolated from *Lonshocarpus sericeus* by Fellows in 1979, showed significant biological activity as an inhibitor of α-L-fucosidase, α-D-mannnosidase and α-D-glucosidase.

![Figure 25](image)

The allyl alcohol (54) was prepared from D-mannitol by 15 steps. The allyl alcohol (54) was treated with 15 mol % PdCl₂(MeCN)₂ in THF at room temperature to give the cyclized mixture (57) and (58) in 86% yield, the ratio of which was >26:1 (Figure 26). The structure of the major product (57) was confirmed by its spectral data. The stereoselective formation of 57 could be explained by assuming the cyclization proceed via transition state A. Transition state B, which leads to 58, would be disadvantageous because
of steric repulsion between the Boc group and the oxa-π-alkene-palladium complex (Figure 26).

Conversion of 57 to 1-deoxymannojirimycin was effected by the three-step sequence shown in Figure 27. Ozonolysis of 57 and reductive workup (NaBH₄) gave the alcohol (59) in 92% yield. Removal of the benzyl group and the N-t-butoxy carbonyl group (Boc) in 59 (TFA, CH₂Cl₂; H₂, Pd-C, EtOH) provided 1-deoxymannojirimycin (56), whose structure was established by comparison of its NMR data with that of the natural compound.30-32

(-)-Cassine (62) was isolated from the leaves of Cassia excelsa, which has antimicrobial activity against Staphylococcus aureus.35 Its structure was determined by Highet in 1963 and its absolute configuration was determined by Rice in 1966.34,36 In 2003, Makabe group attained the total synthesis of (-)-cassine (62) by using Pd(II)-catalyzed cyclization of 60 (Figure 28).
The cyclization of allyl alcohol (60), which prepared from 1,5-hexadiyne, was effected with PdCl₂ in THF to give the mixture (61) and (63) in 69% yield. The ratio of this diastereoselectivity for 61 and 63 was >49:1 (Figure 29). The stereoselective formation of 61 could be explained by assuming the transition state A. The transition state B would be disadvantageous, because of steric repulsion between the carbamate moiety and oxa-π-alkene-palladium complex (Figure 29).

And then hydroboration of cyclized compound (61) gave the alcohol, which was followed by oxidation with PCC and Wittig carbon elongation reaction to afford 64 in 64% yield (Figure 30). The last task was Wacker oxidation, hydrogenation and deprotection. The synthetic product (62) was in good agreement with the reported values.34, 36
Synthesis of fagomine (67)37

Fagomine (67) is a piperidine alkaloid isolated from buckwheat seeds (\textit{Fagopyrum esculentum}) (Polygonaceae) and more recently from \textit{Xanthocericis zambesiaca}, which is found in dry forests in southern Africa.38-40 Fagomine exhibits inhibitory activity towards mammalian α-glucosidase and β-galactosidase.39 In 2007, we examined an asymmetric synthesis of fagomine (67) via Sharpless asymmetric dihydroxylation and Pd(II)-catalyzed cyclization (Figure 31).

The substrate (65) for the Pd(II)-catalyzed cyclization was prepared from 3-(t-butoxycarbonylamino) propanol by 10 steps. The allyl alcohol (65) was treated with PdCl$_2$(MeCN)$_2$ in THF at room temperature to give the cyclic compound (68) as a single isomer in 90% yield (Figure 32). Next, we examined the transformation from 68 into fagomine (67). Ozonolysis of 68 followed by reductive work-up with NaBH$_4$ provided the alcohol (69). Deprotection of the Boc group of 69 under acidic conditions and removal of the benzyl groups by hydrogenation provided fagomine (67). The spectral data of synthetic product (67) were in agreement with reported data.39

The reaction mechanism may be shown in Figure 33. The stereoselective formation of 68 could be explained by assuming the transition state A. The transition state B would be disadvantageous, because of steric repulsion between the carbamate moiety and oxa-π-alkene-palladium complex (Figure 33).
SYNTHESIS OF ERGOT ALKALOID

Synthesis of N-acetyl methyl ester of clavicipitic acid (73)41

Clavicipitic acid is an ergot alkaloid isolated from SD58 and \textit{Claviceps fusiformis}.42 Clavicipitic acid was isolated as mixture of \textit{cis} and \textit{trans} diastereoisomers. In 1987, Hegedus group reported the total synthesis of N-acetyl methyl ester of clavicipitic acid (73) via Pd(II)-catalyzed cyclization of 71, which is a useful tool in the synthesis of ergot alkaloids (Figure 34).

\textbf{Figure 33}

\textbf{Figure 34}

\textit{N-acetyl methyl ester of clavicipitic acid (73)}
The allyl alcohol (71), which was prepared from 2-bromo-6-nitrotoluene, was treated with PdCl$_2$(MeCN)$_2$ in CH$_3$CN at room temperature to give the cyclic compound (72) in 95% yield (Figure 35). By photochemical reduction with NaBH$_4$ under Na$_2$CO$_3$, the cyclized product (72) was converted to target compound (73) in 61% yield.

![Figure 35](image)

N-acetyl methyl ester of clavicipitic acid (73)

Recently, Hyeung-geun group attained the total synthesis of (-)-cis-clavicipitic acid by using Pd(II)-catalyzed cyclization as a key step.44

CONCLUSION

We found that the Pd(II)-catalyzed cyclization of urethane gives the stereoselective formation of N-hetero alicycles, and done the several syntheses of natural products. In addition, the mechanistic aspect has been proposed and investigated so that the scope and stereoselectivity of this reaction can be revealed.

ACKNOWLEDGEMENTS

This work was supported by Grant-in Aid for Scientific Research on Priority Areas (18032032) from The Ministry of Education, Culture, Sports, Science and Technology (MEXT).

REFERENCES AND NOTES

15. Instead of allylalcohol (19), allyl chloride (74) derivative was treated with AgOCOCF₃ to give the diastereoisomer (75) in 61% yield.

![Figure 36](image)

Hajime Yokoyama is Assistant Professor of the Graduate School of Science and Engineering Research (Science) in the University of Toyama. He obtained his Ph.D. degree under the supervision of Professor Takashi Takahashi of Applied Chemistry at the Tokyo Institute of Technology in 1997. He has been working at the Faculty of Science of the University of Toyama since 1995 and was working as postdoctoral fellow (1998-1999) at the Colombia University with Professor Gilbert Stork. Dr. Yokoyama's research interest focuses on the development of the new reaction and total synthesis of natural products.

Yoshiro Hirai is Professor and Dean of the Graduate School of Science and Engineering Research (Science) in the University of Toyama. He obtained his Ph.D. degree under the supervision of Professor Tetsuji Kametani of Pharmaceutical Science at the Tohoku University in 1977 and joined the Pharmaceutical Sciences of the Toyama Medical and Pharmaceutical University. He has been working at the Faculty of Science of the University of Toyama since he moved in 1991. He also was working as postdoctoral fellow (1984-1985) at the Colombia University with Professor Gilbert Stork. Dr. Hirai's research interest focuses mainly on the development of the asymmetric reaction and total synthesis of natural products. In particular, he is involved in the stereo-selective construction of heterocycles using Palladium-catalyzed cyclization and its application to the synthesis of natural products for many years.