NITROGEN-CONTAINING HETEROCYCLES VIA PALLADIUM-CATALYZED REACTION OF ALKYNES WITH ORGANIC HALIDES OR TRIFLATES

Sandro Cacchi,* Giancarlo Fabrizi, and Luca M. Parisi

Dipartimento di Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Università degli Studi “La Sapienza”, P.le A. Moro5, 00185 Roma, Italy,
Fax: + 39 (06) 4991-2780; e-mail: sandro.cacchi@uniroma1.it

Abstract – The construction of nitrogen-containing heterocycles promoted by the reaction of alkynes with organic halides or triflates in the presence of palladium catalysts is reviewed.

Introduction
Organopalladium chemistry is presently one of the most powerful and versatile tool for the functionalization of organic molecules. It is utilized in vast areas of the organic synthesis and a great number of applications deal with heterocyclic synthesis. As for the synthesis of heterocyclic compounds, palladium catalysis has been primarily employed to develop two basic approaches: the functionalization of pre-existing heterocycles and the construction of heterocyclic rings through the formation of the carbon-heteroatom bond. This review is focused on the latter type of reactions, particularly on the procedures leading to the construction of nitrogen-containing heterocycles which involve the following general classes of reactions: carbopalladation-cyclization, aminopalladation-reductive elimination and coupling-cyclization.

All these procedures are based on the palladium-catalyzed reaction of alkynes with aryl and vinylic halides or triflates and the formation of carbon-nitrogen bond at the key step of the heterocyclic ring construction.

Carbopalladation-Cyclization
The carbopalladation-cyclization process involves the conversion of the alkyne to a carbopalladation adduct whose fate depends on the nature of the starting alkyne and the aryl or vinylic halide or triflate: with starting alkynes containing a proximate nitrogen nucleophile on one side and an electrophilic center on the other side, heterocycles can be obtained through the hydroarylation(hydrovinylation)/cyclization
pathway outlined in Scheme 1; when the aryl or vinylic halide contains a nitrogen nucleophile in a location that allows it to attack the palladium atom once the carbopalladation adduct is formed (Scheme 2), intramolecular halide displacement from the palladium can occur to form a nitrogen-containing palladacycle 1 which subsequently affords the cyclization product via a reductive elimination step.

Scheme 1

![Scheme 1 Diagram](image)

Scheme 2

The carbopalladation step is crucial to the stereo- and regiochemical outcome of these reactions. As for the stereochemistry, the formation of cyclic derivatives argues in favor of a syn addition mechanism. Furthermore, a general predominance of cis addition products following the carbopalladation step has been observed when carbopalladation adducts have been trapped with external nucleophiles such as hydrogen donors (formate anions), organometals, carbon monoxide and oxygen or nitrogen nucleophiles. The formation of trans addition products has been in some cases observed. However, their formation is more likely due to a cis-trans isomerization of the initially formed cis adducts rather than a direct trans addition paralleling the cis addition pathway. The regiochemistry of the carbopalladation step appears to be primarily controlled by steric and coordinating effects. Steric effects control the carbopalladation step in such a way that the palladium moiety ends up close to the more hindered end of the carbon-carbon triple bond and the organic residue to the less hindered end. Coordinating effects tend to favor the formation of carbopalladation adducts with the added palladium close to the coordinating group. In general, electronic effects appear to play a minor role, though there are indications that in some cases they can control the carbopalladation step.

The hydroarylation(hydrovinylation)/cyclization methodology has been applied to the regioselective synthesis of 3-aryl- and 3-vinylquinolines (Scheme 3). The new carbon-carbon bond is formed
preferentially at the carbon close to the acetal group. Regioisomeric 4-substituted quinolines have been isolated in minor amounts. The reaction can be best carried out as a one-flask process, omitting the isolation of hydroarylation or hydrovinylation products.

Scheme 3

The second methodology has been developed by employing internal alkynes and aryl or vinylic halides containing proximate nitrogen nucleophiles to provide access to 2,3-disubstituted indoles, isoindolo[2,1-a]indoles, substituted β- and γ-carbolines, isoquinoines, pyridines, pyrrolo[3,2-c]pyridines, 1,2-dihydroisoquinoines, alkylidene-dihydropyrroles, thieno[3,2-b]pyrroles, pyrrolo[3,2-c]pyrimidines. The methodology has been adapted to solid phase syntheses of indole derivatives. Some examples of this chemistry are shown in Schemes 4-8.

The carbopalladation-cyclization mechanism has been suggested to be operating even with terminal alkynes. Particularly, it has been invoked to account for the formation of 6-imino-substituted pyrrolo[3,2,1-ij]quinolines from 8-iodoquinoline derivatives and propargyl alcohol in the presence of iodo(phenyl)bis(triphenylphosphine) and copper(I) iodide (Scheme 9).
Aminopalladation-Reductive Elimination Domino Reaction

The aminopalladation-reductive elimination domino reaction has been suggested to proceed through the intermediacy of an η2-alkyne-organopalladium complex (2) that undergoes an intramolecular nucleophilic attack by the nitrogen atom across the carbon-carbon triple bond. Subsequently, the resultant endo-dig aminopalladation adduct (3) or exo-dig aminopalladation adduct (4) affords the heterocyclic product via a reductive elimination step (Scheme 10). Exo cyclization products normally contain the organic fragment transferred onto the carbon-carbon triple bond trans with respect to the nitrogen nucleophile. The course of this reaction is strongly influenced by a number of reaction parameters such as the absence or the presence – as well as the nature – of phosphine ligands, the solvents, the substitution pattern of the alkyne, the presence of added salts, and the nucleophilic strength of the nitrogen.
This chemistry has been widely employed in the synthesis of substituted indoles: 2-unsubstituted 3-arylindoles\(^{17}\) (Scheme 11), 2,3-disubstituted indoles\(^{18}\) (Scheme 12), 2-substituted 3-alkylindoles\(^{19}\) (Scheme 13), 2-substituted 3-allylindoles\(^{20}\) (Schemes 14) have been prepared from \(o\)-alkynyltrifluoroacetanilides and aryl and vinylic iodides, bromides, triflates, alkyl halides, allylic carbonates. Employment of alkynes containing free amino groups and acetamido groups met with failure. The trifluoracetamido group was proved to be the nitrogen derivative of choice, suggesting that the success of the reaction is strongly dependent on the acidity of the nitrogen-hydrogen bond. The trifluoroacetamido group exhibits the additional advantage of being readily removable under reaction conditions, leading to the isolation of \(N\)-unprotected indoles.
Extension to bis(o-trifluoroacetamidophenyl)acetylene as the starting alkyne allowed the development of a straightforward approach to 12-aryl(vinylic)indolo[1,2-c]quinazolines21 (Scheme 15), whose skeleton is present in the unusual marine alkaloid hinckdentine A.22 The best conditions developed employ Pd(PPh\textsubscript{3})\textsubscript{4} and K\textsubscript{2}CO\textsubscript{3} in DMSO at 50 °C.

The methodology has been adapted to a solid-supported synthesis, to afford indoles with three independently variable components,23 and employed to develop an elegant synthesis of the indolo[2,3-\textalpha]carbazole alkaloid ring system24 (Scheme 16), a common functionality of several biologically active molecules such as the potent antitumor agent rebeccamycin25 and arcyriaflavin A.26
The tendency of the cyano group to add strong bases generating anionic species has been exploited to involve \(\sigma \)-alkynylbenzonitriles in this type of chemistry. Indeed, subjection of \(\sigma \)-alkynylbenzonitriles to aryl iodides in the presence of \(\text{Pd(PPh}_3\text{)}_4 \) and sodium methoxide gives isoquinoline and/or isoindole derivatives depending on the nature of the alkynyl fragment\(^{27}\) (Schemes 17 and 18).

Scheme 17

This cyclization strategy has also been applied to alkynes with non-aromatic amino groups close to the carbon-carbon triple bond to prepare a variety of five- and six-membered ring heterocycles: acetylenic tosylamides have been used as building blocks in the synthesis of \(\alpha \)-alkylidenepyrrolidines\(^{28}\) and \(\alpha \)-alkylidenedepiperidines;\(^{29}\) ethyl 2-acetyl-4-pentynoate tosyldrazozone has been treated with aryl iodides to give 1,2,3,5-tetrasubstituted pyrroles;\(^{30}\) propargylic tosylcarbamates have been subjected to aryl iodides or vinylic triflates to afford regio- and stereoselectively \((E) \)-4-alkylidene-3-tosyloxazolidin-2-ones.\(^{31}\) A couple of examples are shown in Schemes 19 and 20.

Scheme 19

Scheme 20
The related reaction of acetylenic lactames with aryl, heteroaryl and vinylic halides yields bicyclic enamides in which aryl, heteroaryl and vinylic moieties are incorporated (Scheme 21). However, the double bond geometry is opposite of what is normally observed and this appears to be the result of a different cyclization mechanism that most probably involves coordination of the nitrogen nucleophile to the aryl(heteroaryl, vinylic)palladium complex before the carbopalladation step.

\[
\begin{align*}
\text{Scheme 21}
\end{align*}
\]

Under an atmosphere of carbon monoxide, the aminopalladation-reductive elimination domino reaction can form nitrogen-containing heterocycles incorporating a molecule of carbon monoxide. This three component approach to the preparation of heterocyclic rings has been employed to develop new routes to 2-substituted 3-acylindoles (Scheme 22), functionalized indolo[3,2-c]quinolines (Scheme 23), 12-acylindolo[1,2-c]quinazolines (Scheme 24) and 1,2,3,5-tetrasubstituted pyrroles (Scheme 25).

\[
\begin{align*}
\text{Scheme 22}
\end{align*}
\]

\[
\begin{align*}
\text{Scheme 23}
\end{align*}
\]
Coupling-Cyclization

The coupling-cyclization methodology usually involves the coupling of 1-alkynes with 0-halonitrobenzenes\(^\text{37}\) (Scheme 26) or 0-haloanilines(anilides)\(^\text{38}\) (Scheme 27) or the coupling of 1-alkynes containing a nitrogen nucleophile close to the carbon-carbon triple bond with organic halides or triflates\(^\text{39}\) (Scheme 28), followed by cyclization through the formation of the carbon-nitrogen bond. The coupling reaction is best carried out in the presence of a palladium catalyst under Sonogashira conditions.\(^\text{40}\) Depending on the nature of the nitrogen group and the acetylenic fragment, the cyclization step may or may not involve palladium catalysis and, in many cases, occurs under coupling conditions. Adaptation of the coupling-cyclization methodology to solid phase synthesis has also been described.\(^\text{41}\)
Scheme 27

Carbonylative coupling-cyclization has been employed to develop new routes to heterocycles. This approach has been used in the synthesis of 2-aryl- and 2-vinylquinolines,42 which have been prepared through the palladium-catalyzed carbonylative coupling of \textit{o}-trimethylsilylaniline and aryl iodides or vinylic triflates, followed by the palladium-catalyzed transfer hydrogenation/heterocyclization of the resultant \textit{\beta}-(2-aminophenyl)-\textit{\alpha},\textit{\beta}-ynones (Scheme 29).

Scheme 29
Cyclization of coupling products via palladium-catalyzed reactions can provide a powerful tool for increasing molecular complexity of the indole derivative by trapping indolypalladium intermediates that are initially formed with suitable reagents. This synthetic strategy has been employed to combine the cyclization step with allylation38d (Scheme 30), carbonylation43 (Scheme 31) and vinylation44 (Scheme 32) reactions.

Scheme 30

Scheme 31

Scheme 32

As it has been shown, most of the coupling-cyclization chemistry has been employed for the preparation of indole derivatives. However, some applications to the synthesis of other nitrogen-containing heterocycles have been reported. For example, functionalized pyrazoles have been prepared in good overall yield through a coupling-cyclization one-pot procedure from \(N\)-tosyl-\(N\)-propargylhydrazine and aryl iodides or vinylic triflates45 (Scheme 33).

Scheme 33
ACKNOWLEDGEMENTS

We are most indebted to the Ministero dell’Università e della Ricerca Scientifica (MURST; National Project “Stereoselezione in Sintesi Organica. Metodologie e Applicazioni”), the Consiglio Nazionale delle Ricerche (CNR), and the Università degli Studi “La Sapienza”, Rome, for their continuing financial support of the work done in our laboratories.

REFERENCES

