HETEROCYCLES, Vol. 24, No. 3, 1986

PHOSPHONO NUCLEOSIDE. 1. SYNTHESIS OF 2,3'-ANHYDRO-1'-DEOXY-1'-
PHOSPHONO-1-β-D-FRUCTOFURANOSYL URACIL

Toshio Tatsuoka, Kayoko Izao, and Kenji Suzuki
Suntory Institute for Biomedical Research, Suntory Ltd.
1-1-1 Wakeyamadai, Shimamoto-Cho, Hishima-Gun, Osaka 618, Japan

Abstract — New phosphono nucleosides, phosphono methyl derivatives of anhydro
nucleoside substituted at C-1', were synthesized starting from 2,3'-anhydro-
1-β-D-fructofuranosyl uracil.

A great many efforts have been made to synthesize phosphonates and investigate their
biological activities as analogues of natural phosphates in both "non isosteric" and
"isosteric" systems. These phosphonates (methylene substituted for oxygen of the phosphates)
may function in metabolic regulation or perturbation, since they are incapable of being
hydrolyzed by the ordinary enzymes involved in phosphate cleavage.
Various phosphonate analogues of metabolically important phosphate compounds have been
synthesized. Only a few examples of phosphono methyl replacement of an anomic carbon of a
carbohydrate are known and there are none reported for a nucleoside.

We postulated the following structure as the transition state for the condensation reaction
of orotic acid and phosphoribose-pyrophosphate (PRPP) in the biosynthetic pathway of
pyrimidine nucleotide. Then we synthesized nucleosides having a phosphono methyl group at
the C-1' position, which may inhibit or regulate the enzymatic reaction. We designed a
compound (A) as a key intermediate for the synthesis of transition state analogues of the
condensation reaction. This intermediate could also be transformed into other types of
phosphono nucleosides (i.e. arabino, deoxy-ribo and ribo type).

Now we report the first examples of the synthesis of phosphono nucleosides and phosphono
methyl derivatives of anhydro nucleoside substituted at the anomic carbon.

We chose 2,3'-anhydro-1-β-D-fructofuranosyl uracil (1) as a starting material which was
easily synthesized from D-fructose by two steps. Selective protection of the 4'- and 6'-
hydroxy group of (1) was performed by the Markiewicz method. Silyl protected (2) was
obtained by treatment with 1,3-dichloro-1,1,3,3-tetraisopropylsiloxane (53% yield). The
position of silyl protection was confirmed by further transformation of (2) to its acetate
(3) by acetic anhydride and pyridine. The NMR spectrum shows its methylene protons of C-1'
as an AB quartet (J=12.29Hz) at 4.32 and 4.60ppm.
a) DIPSCl/imidazole/DMF/-20°C to 25°C/3h/53%; b) Ac₂O/Py/25°C/16h/91%; c) MeCl/Et₃N/CH₂Cl₂/25°C/1h/93%; d) KI/DMF/150°C/1h/76%; e) Ph(OCH₂CH₃)₃/165°C/16h; f) DMSO/CCl₃COOH/Py/benzene/25°C/16h/97%; g) HPO(O)(OCH₂CH₃)₃/Et₃N/THF/25°C/16h/94%; h) HPO(O)(OCH₂CH₃)₃/Et₃N/THF/25°C/16h/91%; i) TCDI/ClCH₂CH₂Cl/25°C/3h/97%; j) PhOCl/4-DMAP/ClCH₂CH₂Cl/25°C/1h/98%; k) n-Bu₃SnH/AIBN/toluene/90°C/1h/84%; l) n-Bu₃SnH/AIBN/toluene/90°C/1h/70%; m) PhOCl/4-DMAP/ClCH₂CH₂Cl/25°C/1h/93%; n) n-Bu₃SnH/AIBN/toluene/90°C/1h/75%; o) n-Bu₄NF/THF/0°C/0.5h/64%; p) n-Bu₄NF/THF/0°C/0.5h/94%; q) t-BuNH₂/reflux/4h/91%; r) TMSI/CH₂Cl₂/0°C/0.5h/83%; s) TMSI/CH₂Cl₂/0°C/0.5h/65%.
Mesylation of (2) by methanesulfonyl chloride in the presence of triethylamine in methylene chloride gave mesylate (4) in good yield. Compound (4) was transformed to (5) by treatment with KI in DMF (76% yield). An Arbuzov reaction of (5) in triethyl phosphite gave only a trace amount of phosphonate (6) probably because of steric hindrance at the C-1' position. The silyl protected primary alcohol (2) was oxidized to the aldehyde (7) using DMSO-DCC with a catalytic amount of CF₃COOH and pyridine in benzene (97% yield). Purification of the product by silica gel column chromatography eluted with CH₂Cl₂:CH₂OH (97:3 to 90:10) afforded an isomeric mixture of the hemiacetal (8). An aldehyde equivalent (8) was condensed with diethylphosphate and/or dimethylphosphite in THF in the presence of triethylamine to give (9) and (10) as their isomeric mixture (94% yield and/or 91% yield, respectively). The C-F bond formation was supported by the coupling constants between proton at the C-1' and P₂, and the hydroxy proton and P and P₂ for example, J₁₄,H₁₂,P₂ = 12.5 Hz and J₁₄,D₁₄,H₁₂,P₂ = 14.4 Hz in case of an isomer of (9). The hydroxy group at C-1' was removed in two steps either through an imidazole triester (11) or a phenoxy thiocarbonate (12) followed by a hydride reduction which resulted in the formation of (6).

Dimethylphosphonate (14) could be obtained from (10) through the thiocarbonate (13) followed by hydride reduction. Cleavage of the silyl protecting group of (6) and (14) afforded their corresponding triester type dialkylphosphonates (15) and (16) in 64% and 94% yield, respectively.

The diester type of compound (17) was obtained by selective demethylation of (16) by refluxing with t-butyl amine. Treatment of (6) and/or (14) with trimethylsilyl iodide gave only the free acid analogue of the phosphono nucleoside (18) in 83% overall yield from (6) and in 65% yield from (14).

These enhydro phosphono nucleosides are also very useful as key compounds for synthesis of other types of phosphono nucleosides.

ACKNOWLEDGEMENT

The authors are grateful to Prof. Dr. Teruhisa Noguchi, Director of Suntory Institute for Biomedical Research, Dr. Minoru Morita and Dr. Fumio Satoh for encouragement and helpful advices throughout the work.

REFERENCES AND NOTES

5. NMR (6 in CDCl₃) 0.9-1.15(m, 28H, isopropyl), 3.82-4.01(m, 4H, H-1'a, H-5',H-6'a and H-6'8), 4.16(dd, 1H, J₆,7=13.5 Hz, J₆,8=6.04 Hz, H-1'8), 4.47(dd, 1H, J₃,₄=5.18 Hz, J₅,₄=8.35 Hz, H-4'), 5.41(d, 1H, J₄,₅=5.18 Hz, H-3'), 5.92(d, 1H, J₆,₅=8.06 Hz, H-5), 5.98(dd, 1H, J₁₄,a,OH=9.22 Hz, J₁₄,b,OH=6.04 Hz, 1'-OH), 7.33(d, 1H, J₅,₆=8.06 Hz, H-6).

--- 619 ---
6. $[a]_D^{25} = -66.7$ (c=0.3, CHCl$_3$); IR (KBr, cm$^{-1}$) 1630, 1540, 1460; UV (l$_{max}$, nm in EtOH) 225 (e=9040), 247 (e=7640); HIMS (Calcld. = 618.2555; Found = 618.2542); NMR (δ in CDCl$_3$): 0.93-1.13 (m, 2H, isopropyl), 1.25 (t, 3H, J=7.2Hz, CH$_3$), 1.27 (t, 3H, J=7.2Hz, CH$_3$), 2.56 (dd, 1H, Jgem=18.72Hz, J$_{P,1'a}$=16.70Hz, H-1'a), 2.63 (dd, 1H, Jgem=18.72Hz, J$_{P,1'b}$=16.70Hz, H-1'b), 3.85-4.03 (m, 3H, H-6'a and H-6'b), 4.04-4.23 (m, 4H, CH$_2$-x2), 4.49 (dd, 1H, J$_{3',4'}$=5.18Hz, J$_{5',4'}$=8.35Hz, H-4'), 5.48 (d, 1H, J$_{4',3'}$=5.18Hz, H-3'), 6.09 (d, 1H, J$_{3',4'}$=7.78Hz, H-5), 7.34 (d, 1H, J$_{5',6'}$=7.78Hz, H-6).

8. $[a]_D^{25} = -57.3$ (c=0.3, CHCl$_3$); IR (KBr, cm$^{-1}$) 1650, 1550, 1470; UV (l$_{max}$, nm in EtOH) 226 (c=9000), 248 (c=7830); HIMS (Calcld. = 376.1035; Found = 376.1055); NMR (δ in CDCl$_3$): 1.30 (t, 3H, J=6.62Hz, CH$_3$), 1.34 (t, 3H, J=6.90Hz, CH$_3$), 2.83 (dd, 2H, J$_{P,CH}_3$=17.9Hz, H-3'), 3.52-3.67 (m, 2H, H-6'), 4.05-4.18 (m, 5H, H-5' and CH$_2$-x2), 4.38 (m, 1H, H-4'), 5.45 (s, 1H, H-3'), 6.01 (d, 1H, J=7.8Hz, H-5), 7.48 (d, 1H, J=5.6Hz, H-6).

9. $[a]_D^{25} = -6.82$ (c=0.4, CHCl$_3$); IR (KBr, cm$^{-1}$) 3300, 1660, 1530, 1480; UV (l$_{max}$, nm in EtOH) 255 (c=5590); HIMS (Calcld. = 376.1035; Found = 376.1055); NMR (δ in CDCl$_3$): 2.96 (dd, 1H, J$_{P,1'}$=19.0Hz, J$_{a,b}$=16.1Hz, H-1'b), 3.10-3.40 (m, 1H, H-1'a), 3.42-3.50 (m, 2H, H-6'), 3.72 (d, 3H, J$_{P,CH}_3$=11.5Hz, OCH$_3$), 3.78 (d, 3H, J$_{P,CH}_3$=11.0Hz, OCH$_3$), 4.25-4.33 (m, 1H, H-5'), 4.52-4.56 (d, 1H, H-4'), 5.41 (s, 1H, H-3'), 6.07 (d, 1H, J$_{5',6'}$=7.4Hz, H-5), 7.98 (d, 1H, J$_{5',6'}$=7.4Hz, H-6).

10. $[a]_D^{25} = -13.5$ (c=0.2, CH$_3$OH); IR (KBr, cm$^{-1}$) 3300, 1660, 1530, 1480; UV (l$_{max}$, nm in EtOH) 247 (c=9670), 249 (c=7480); NMR (δ in CDCl$_3$): 2.96 (dd, 1H, J$_{P,1'}$=19.0Hz, J$_{a,b}$=16.1Hz, H-1'b), 3.10-3.40 (m, 1H, H-1'a), 3.42-3.50 (m, 2H, H-6'), 3.72 (d, 3H, J$_{P,CH}_3$=11.5Hz, OCH$_3$), 3.78 (d, 3H, J$_{P,CH}_3$=11.0Hz, OCH$_3$), 4.25-4.33 (m, 1H, H-5'), 4.52-4.56 (d, 1H, H-4'), 5.41 (s, 1H, H-3'), 6.07 (d, 1H, J$_{5',6'}$=7.4Hz, H-5), 7.98 (d, 1H, J$_{5',6'}$=7.4Hz, H-6).

11. $[a]_D^{25} = -23.9$ (c=0.4, CH$_3$OH); IR (KBr, cm$^{-1}$) 3500, 1660, 1540, 1480; UV (l$_{max}$, nm in EtOH) 222 (c=7440), 253 (c=6660); NMR (δ in CD$_2$OD): 2.73 (dd, 1H, J$_{P,1'}$=18.2Hz, J$_{a,b}$=16.3Hz, H-1'b), 2.88 (dd, 1H, J$_{P,1'}$=17.3Hz, J$_{a,b}$=16.3Hz, H-1'a), 3.46 (t, 2H, J$_{P,CH}_3$=3.8Hz, H-6'), 3.63 (d, 3H, J$_{P,CH}_3$=11.0Hz, OCH$_3$), 4.25-4.32 (m, 1H, H-5'), 4.50-4.53 (m, 1H, H-4'), 5.50 (s, 1H, H-3'), 6.09 (d, 1H, J$_{5',6'}$=7.2Hz, H-5), 7.97 (d, 1H, J$_{5',6'}$=7.2Hz, H-6).

12. $[a]_D^{25} = -6.51$ (c=0.3, CH$_3$OH); IR (KBr, cm$^{-1}$) 3500, 1660, 1480; UV (l$_{max}$, nm in EtOH) 223 (c=6730), 253 (c=6720); NMR (δ in CD$_2$OD): 2.76 (dd, 1H, J$_{P,1'}$=18.3Hz, J$_{a,b}$=15.6Hz, H-1'b), 3.10 (dd, 1H, J$_{P,1'}$=18.3Hz, J$_{a,b}$=15.6Hz, H-1'a), 3.47 (dd, 1H, J$_{P,1'}$=12.4Hz, J$_{a,b}$=12.4Hz, J$_{5',6'}$=3.0Hz, H-6'), 3.56 (dd, 1H, J$_{a,b}$=12.4Hz, J$_{5',6'}$=3.0Hz, H-6'a), 4.37-4.41 (m, 1H, H-5'), 4.61 (d, 1H, J$_{5',6'}$=1.1Hz, H-4'), 5.64 (s, 1H, H-3'), 6.43 (d, 1H, J$_{5',6'}$=7.3Hz, H-5), 8.33 (d, 1H, J$_{5',6'}$=7.3Hz, H-6).

Received, 5th November, 1985