SYNTHESES OF 7-SUBSTITUTED INDOLES

Masanori Somei* and Yoshihiro Saida
Faculty of Pharmaceutical Sciences, Kanazawa University
13-1 Takara-machi, Kanazawa 920, Japan

Abstract — A facile synthetic method for 7-iodoindole was established. Its versatility for the syntheses of 7-substituted indoles was shown by leading it to 7-methoxyindole and methyl 3-(indol-7-yl)acrylate.

There are many biologically interesting indole derivatives carrying substituents at the 7-position. However, their syntheses remain untouched due to the lack of the efficient and general synthetic method for 7-substituted indoles. In this paper, we describe a reliable and simple synthetic method for 7-iodoindole (1) which should be a common and the simplest building block for various 7-substituted indoles.

1-Acetylindoline (3), prepared quantitatively by refluxing indoline (2) in acetic anhydride, was thallated with 1.6 mol eq. of thallium tris-trifluoroacetate in trifluoroacetic acid. After evaporation of the solvent, the residue was directly iodinated with aq. potassium iodide to give 1-acetyl-7-iodoindoline (4, mp 128.0-128.5°C) in 74% yield together with 5% yield of 1-acetyl-5-iodoindoline (mp 142.5-143.5°C). When the acetyl group of 3 was substituted for methoxycarbonyl group, the expected 7-substituted indole could not be obtained. Alkaline hydrolysis of 4 gave 7-iodoindoline (5, oil) in 84% yield. After considerable efforts, treatment of 5 with oxygen in the presence of a catalytic amount of salcomine in methanol was found to produce the desired 7-iodoindole (1, mp 55.0-56.0°C) cleanly in 77% yield. The versatility of 1 was proved by the following reactions. When 1 was subjected to Heck reaction using methyl acrylate as an olefin component, methyl 3-(indol-7-yl)acrylate (6, mp 96.0-96.5°C) was produced in 91% yield. It should be noted that neither compound (4) nor (5) underwent Heck reaction successfully under various reaction conditions. Furthermore, 7-methoxyindole (7, oil) was obtained by the treatment of 1 with sodium methoxide in N,N-dimethylformamide in the presence of
The structures of 6 and 7 were unequivocally established by the alternative syntheses using improved Leimgruber-Batcho method\(^8\) starting from 3-methyl-2-nitrobenzoic acid and 3-hydroxy-2-nitrotoluene, respectively.

In conclusion, 7-iodoindole is now readily available from indoline in four steps with an overall yield of 48%. Syntheses of various 7-substituted indoles and natural alkaloids are currently in progress.

ACKNOWLEDGEMENT

This work is supported by a Grant-in-Aid for Scientific Research (Grant No. 60570983) from the Ministry of Education, Science and Culture of Japan, which is greatly acknowledged.

REFERENCES AND NOTES

Received, 29th August, 1985