SYNTHESIS OF PYRAZOL[3,4-d]PYRIDAZINE DERIVATIVES ——
TWO COMPARABLE APPROACHES, RING CONTRACTION THROUGH EXTRUSION OF
SULPHUR AND PHOTOCHEMICAL CYCLISATION

Kenji Kaji, Hiromu Nagashima, Yusho Ohta, Sigeto Nagao, Yoshihiko
Hirose and Hirohisa Oda*
Gifu College of Pharmacy, 5-6-1, Mitahora-higashi, Gifu 502, Japan

Abstract — Ring contraction of 7-substituted 2-phenyl-4H-pyridazino[4,5-e][1,3,4]thiadiazin-8(7H)-ones (\(\alpha\)-d) to 5-substituted 3-phenyl-1H-pyrazolo[3,4-d]pyridazin-4(5H)-ones (\(\gamma\)-d), through base-induced extrusion of sulphur, is described. Similar reactions proceed, not only on the 4-acetyl derivatives (\(\delta\)-d) in basic media, but on \(\xi\) and the 4-methyl derivative (\(\eta\)) thermally. Probable mechanisms of these reactions are discussed. A comparable approach to the ring contraction, photochemical cyclisation of 2-substituted 5-(1-alkyl-2-benzylidenehydrazino)-4-chloro-3(2H)-pyridazinones (\(\kappa\)-e) to the corresponding 1-alkylpyrazolo[3,4-d]-pyridazinone derivatives (\(\lambda\)-e) is also performed.

Previous papers from our laboratory have dealt with the conversion of 2,7-disubstituted 10H-dipyridazino[4,5-b:4',5'-e][1,4]thiazine-1,6(2H,7H)-diones into 2,6-disubstituted 9H-dipyridazino[4,5-b:4',5'-d]pyrrole-1,5(2H,6H)-diones, by ring contraction through base-induced extrusion of sulphur.\(^1\) Our observation and the attractive ring contraction in the anionic 8\(\pi\)-ring systems\(^2\) have encouraged us to extend such analogous types of reactions to the synthesis of some novel condensed pyridazine rings. We wish to call further attention here to the synthesis of the pyrazolo[3,4-d]pyridazine derivatives performed by two comparable approaches, ring contraction of pyridazino[4,5-e][1,3,4]thiazidines and photochemical cyclisation of 5-(1-alkyl-2-benzylidenehydrazino)-4-chloro-3(2H)-pyridazinones.

2-Substituted 5-[(a-bromo-benzylidene)hydrazino]-4-chloro-3(2H)-pyridazinones (\(\bar{\lambda}\)-d), as promising intermediates to formation of the pyridazino[4,5-e][1,3,4]-
thiadiazine derivatives (Δa-d, Ξa-d and $\mathcal{O} a$), were readily derived from the corresponding 2-substituted 4,5-dichloro-3(2H)-pyridazinones (Λa-d) by successive hydrazination, hydrazone formation and bromination. Compound Ξa was allowed to react with potassium thioacetate in boiling acetonitrile for 4 h to give 4-acetyl-7-methyl-2-phenyl-4H-pyridazino[4,5-e][1,3,4]thiadiazin-8(7H)-one (Λa) in 35% yield, as yellow needles (CH$_3$CN). Similar treatment of Ξb-d afforded the homologous N-acetyl derivatives (Ξb-d) (b: 38%, c: 39%, d: 82%). Removal of the acetyl group from Λa-d was effected by acidic treatment (HCl-EtOH) to yield 7-substituted 2-

$$\begin{align*}
\text{R-} & \text{Cl} \\
\text{NH}_2 & 2\text{PhCHO} \\
\text{Br}_2 \text{(for C)} & \rightarrow \text{R-} \text{Cl} \text{C}(X) \text{Ph} \\
\text{C}(X) \text{Ph} & \rightarrow \text{R-} \text{N} \text{S} \text{Ph} \\
\text{Br}_2 \text{(for C)} & \rightarrow \text{R-} \text{N} \text{S} \text{Ph} \\
\text{Br}_2 & \rightarrow \text{R-} \text{N} \text{S} \text{Ph} \\
\end{align*}$$

\(\Lambda a \rightarrow \Xi a \rightarrow \mathcal{O} a \rightarrow \Lambda a\)

Table I. Pyridazino[4,5-e][1,3,4]thiadiazines

<table>
<thead>
<tr>
<th>Compd.</th>
<th>R</th>
<th>R'</th>
<th>mp ($^\circ$C)</th>
<th>IR ν_{KBr} cm$^{-1}$</th>
<th>1H-NMR (δ in ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λa</td>
<td>Me</td>
<td>COMe</td>
<td>213-215</td>
<td>1640 (CO) 1690 (CO)</td>
<td>2.47 (3H, s, COCH$_3$), 3.74 (3H, s, NCH$_3$), 7.33-7.95 (5H, m, C$_6$H$_5$), 8.27 (1H, s, C5-H)</td>
</tr>
<tr>
<td>Ξb</td>
<td>PhCH$_2$</td>
<td>COMe</td>
<td>151-152</td>
<td>1640 (CO) 1695 (CO)</td>
<td>2.64 (3H, s, COCH$_3$), 5.23 (2H, s, NCH$_3$), 7.15-7.93 (10H, m, C$_6$H$_5$2), 8.28 (1H, s, C5-H)</td>
</tr>
<tr>
<td>$\mathcal{O} c$</td>
<td>Ph</td>
<td>COMe</td>
<td>178-180</td>
<td>1645 (CO) 1700 (CO)</td>
<td>2.50 (3H, s, COCH$_3$), 7.25-7.85 (10H, m, C$_6$H$_5$2), 8.39 (1H, s, C5-H)</td>
</tr>
<tr>
<td>Λd</td>
<td>H</td>
<td>COMe</td>
<td>248-251</td>
<td>1650 (CO) 1690 (CO) 3160 (NH)</td>
<td>2.50 (3H, s, COMe), 7.51-8.08 (5H, m, C$_6$H$_5$) 8.31 (1H, s, C5-H)</td>
</tr>
<tr>
<td>$\mathcal{O} a$</td>
<td>Me</td>
<td>H</td>
<td>255-256</td>
<td>1620 (CO) 3300 (NH)</td>
<td>3.54 (3H, s, NCH$_3$), 7.32-7.78 (5H, m, C$_6$H$_5$) 7.36 (1H, s, C5-H), 10.20 (1H, s, NH)</td>
</tr>
<tr>
<td>Ξb</td>
<td>PhCH$_2$</td>
<td>H</td>
<td>219-220</td>
<td>1625 (CO) 3260 (NH)</td>
<td>5.14 (2H, s, NCH$_2$), 7.11-7.80 (10H, m, C$_6$H$_5$2)2, 7.47 (1H, s, C5-H), 10.32 (1H, s, NH)</td>
</tr>
<tr>
<td>$\mathcal{O} c$</td>
<td>Ph</td>
<td>H</td>
<td>235-236</td>
<td>1605 (CO) 3270 (NH)</td>
<td>7.30-7.85 (11H, m, C$_6$H$_5$2 and C5-H), 10.40 (1H, s, NH)</td>
</tr>
<tr>
<td>Ξa</td>
<td>H</td>
<td>H</td>
<td>>300</td>
<td>1610 (CO) 3220 (NH)</td>
<td>7.41-7.92 (5H, m, C$_6$H$_5$), 8.12 (1H, s, C5-H), 10.18 (1H, s, NH)</td>
</tr>
<tr>
<td>Ξc</td>
<td>Me</td>
<td>Me</td>
<td>96-99</td>
<td>1645 (CO)</td>
<td>3.42 (3H, s, NCH$_3$), 3.75 (3H, s, NCH$_3$), 7.25-7.50, 7.85-7.98 (6H, m, C$_6$H$_5$ and C5-H)</td>
</tr>
</tbody>
</table>

*) Solvent: Λa, Ξb, $\mathcal{O} a$ (in CDCl$_3$); $\mathcal{O} d$, Ξa, $\mathcal{O} b$, Ξc, Ξd (in DMSO-d_6).
Conversion of the pyridazino[4,5-\(e\)][1,3,4]thiadiazine derivatives (\(\xi a-d\)) into the corresponding 5-substituted 3-phenyl-1H-pyrazolo[3,4-\(d\)]pyridazin-4(5H)-ones (\(\xi a-d\)), by ring contraction through extrusion of sulphur, was effectively performed either in basic media or thermally. The desulphurisation of the compounds (\(\xi a-d\)) in methanolic potassium hydroxide solution proceeded so rapidly as it reached almost to completeness within 1 h at room temperature or 10 min at refluxing. On acidification, high yields of the products (\(\zeta a-d\)) (a: 88%, b: 83%, c: 83%, d: 81%, on refluxing condition) were obtained. \(N^4\)-Acetyl derivatives (\(\xi a-d\)) afforded the same products (\(\zeta a-d\)) (a: 65%, b: 75%, c: 80%, d: 90%) by heating under reflux for 1 h in the similar basic medium. The ring contraction also took place thermally, e.g., heating \(\xi a\) in boiling DMF for 4 h gave the product (\(\zeta a\)) in 85% yield, while \(N^4\)-methyl compound (\(\xi a\)) also afforded the \(N^1\)-methyl product (\(\xi a\)) in 89% yield by refluxing for 2 h. These thermal desulphurisations seem to show that the conversion (\(\xi a\) \(\rightarrow\) \(\zeta a\)) proceeds without any deprotonation from the substrate, although the reaction is slower than that of the latter (\(\xi a\) \(\rightarrow\) \(\xi a\)). Studies on the synthesis and reaction of 1,3,4-thiadiazine and its benzo-analogue derivatives have been recently increased\(^4,6\) and the thermal or acid-catalysed ring contraction of the 1,3,4-thiadiazines into the pyrazoles has been also reported. However, to our knowledge, there has not yet been found any paper concerned with base-induced ring contraction, except some condensed 1,3,4-thiadiazines.\(^2\) A probable pathway for the ring contraction of \(\xi a-d\) to \(\zeta a-d\), through base-induced extrusion of sulphur, may be depicted as a process in which an initially generated anion (\(A^-\)) is converted, via a reactive

\[
\begin{align*}
\text{\(\xi a-d\)} & \quad \text{\(\xi a-d\)} \\
\text{\(\xi a\)} & \quad \text{\(\zeta a\)} \\
\text{\(\xi a\)} & \quad \text{\(\xi a\)} \\
\end{align*}
\]
intermediate containing a thiirane ring (C\(^{-}\)) into an anion (C\(^{-}\)).\(^1\) Analogously another transient species, zwitter ionic ones, such as D's (R=Me, R'=H or Me) in the thermal condition, might be reasonably envisaged.

Assigned structures for the pyrazolo[3,4-d]pyridazines (\(7a-d, 8a\)) were supported by their spectral and elemental analysis data\(^5\) and also confirmed by the independent synthesis using photochemical cyclisation. Recently photochemical procedure has been increasingly utilised for the synthesis of some condensed heterocycles.\(^6\) The cyclisation of 2-substituted 5-(1-alkyl-2-benzylidenehydrazino)-4-chloro-3(2H)-pyridazinones (\(9a-e\)) into the pyrazolo[3,4-d]pyridazines (\(8a-e\)) was performed as follows: A solution of \(9a\) (1 mmol) in benzene (200 ml) was irradiated with a 100 W high-pressure mercury lamp surrounded by a water-cooled Pyrex filter at room temperature for 4 h to afford \(8a\) in 86% yield, as colourless needles (EtOH), which was identical in all respects (mp, TLC and spectral data) with the product derived from \(7a\) by methylation. Of other benzylidenehydrazino derivatives (\(9b-e\)), the photochemical reaction proceeded smoothly to give the corresponding 1,5-di-substituted 3-phenyl-1H-pyrazolo[3,4-d]pyridazin-4(5H)-ones (\(8b-e\)) in good yield (b: 88%, c: 76%, e: 85%).\(^9\) Furthermore, facile dealkylation of the N\(^1\)-benzyl derivative (\(8e, R=Me, R'=PhCH\(_2\)) on exposure to a Lewis acid (AlCl\(_3\) in toluene)\(^3\) leads to the N\(^1\)-H derivative (\(7a, R=Me, R'=H, 90\%\)), which is identical with that obtained from \(8a\).

\[\text{[Scheme image]} \]

The majority of the current synthetic approaches to obtain pyrazolo[3,4-d]-pyridazines utilises pyrazoles or pyrazolones with appropriate σ-functional groups, capable of forming the pyridazine ring, as starting material.10-13 Thus, the two procedures herein presented, utilising the analogous 2-substituted 5-benzylidene-hydrazino-4-chloro-3(2H)-pyridazinones (7\textsubscript{a-d}, 8\textsubscript{a-e}), can be referred to as novel and comparable route for the synthesis of the pyrazolo[3,4-d]pyridazinones (7\textsubscript{a-d}, 8\textsubscript{a-e}).

Table II. Pyrazolo[3,4-d]pyridazines

Compd.	R	R'	mp(°C)	IR \(v_{max}^{KBr}\) cm\(^{-1}\)	\(\text{H-NMR (δ in ppm)}\)**
7\textsubscript{a}	Me	H	258	1630 (CO) 3170 (NH)	3.68(3H,s,NCH\(_3\)), 7.30-7.50, 8.20-8.40(5H m,C\(_6\)H\(_5\)), 8.30(1H,s,C\(_7\)-H)
7\textsubscript{b}	PhCH\(_2\)	H	199-200	1630 (CO) 3280 (NH)	5.27(2H,s,NCH\(_2\)), 7.24(5H,s,C\(_6\)H\(_5\)), 7.32-7.48, 8.17-8.37(5H,m,C\(_6\)H\(_5\)), 8.38(1H,s,C\(_7\)-H)
7\textsubscript{c}	Ph	H	276-278	1625 (CO) 3195 (NH)	7.25-7.53, 8.10-8.30(10H,m,C\(_6\)H\(_5\)x2), 8.48(1H,s,C\(_7\)-H)
7\textsubscript{d}	H	H	>300	1640 (CO) 3170 (NH)	7.35-7.58, 8.30-8.45(5H,m,C\(_6\)H\(_5\)), 8.37(1H,s,C\(_7\)-H)
8\textsubscript{a}	Me	Me	146		3.85, 4.00(each 3H,s,NCH\(_3\)), 7.40-7.65, 8.30-8.60(5H,s,C\(_6\)H\(_5\)), 8.50(1H,s,C\(_7\)-H)
8\textsubscript{b}	PhCH\(_2\)	Me	137-139	1650 (CO)	4.05(3H,s,NCH\(_3\)), 5.46(2H,s,NCH\(_2\)), 7.27-7.57, 8.28-8.50(10H,m,C\(_6\)H\(_5\)x2), 8.11(1H,s,C\(_7\)-H)
8\textsubscript{c}	Ph	Me	198-200	1675 (CO)	4.09(3H,s,NCH\(_3\)), 7.32-7.75, 8.30-8.55(10H,m,C\(_6\)H\(_5\)x2), 8.22(1H,s,C\(_7\)-H)
8\textsubscript{d}	H	Me	285-286	1640 (CO) 3230 (NH)	4.42(3H,s,NCH\(_3\)), 7.60-8.10(5H,m,C\(_6\)H\(_5\)), 8.85(1H,s,C\(_7\)-H)
8\textsubscript{e}	Me	PhCH\(_2\)	135-137	1640 (CO)	3.87(3H,s,NCH\(_3\)), 5.60(2H,s,NCH\(_2\)), 7.30-7.80, 8.20-8.60(10H,m,C\(_6\)H\(_5\)x2), 8.00(1H,s,C\(_7\)-H)

**) Solvent: 7\textsubscript{a}, 7\textsubscript{b}, 7\textsubscript{c} (in DMSO-d\(_6\)); 8\textsubscript{a}, 8\textsubscript{b}, 8\textsubscript{c}, 8\textsubscript{e} (in CDCl\(_3\)); 7\textsubscript{d}, 8\textsubscript{d} (in CF\(_3\)CO\(_2\)H).

REFERENCES AND NOTE
5. All new compounds (Ja-d, Ja-a, Je-d, Je-a, Je-a, Jg-a-d, Je-a-e and Jg-a-e) gave satisfactory elemental analysis data (C, H and N).
9. Reaction solvents: Jb (1 mmol) in benzene (200 ml); C (0.5 mmol) in acetone (200 ml); C (2 mmol) in acetone (300 ml). A 400 W high-pressure mercury lamp was employed in the case of C.

Received, 4th November, 1983