SYNTHESIS OF CYCLIC ETHER

Ajoy K. Banerjee*, Héctor E. Hurtado and Manuel S. Laya
Centro de Química, Instituto Venezolano de Investigaciones Científicas, I.V.I.C., Aptdo. 1827, Caracas 1010-A, Venezuela

Abstract - A stereospecific synthesis of the 6β,20-epoxy-12-hydroxyabieta-8,11,13-triene (14) is described.

The cleavage of the cyclic ethers has been found extremely useful in the synthesis of carboxylic acid, and thus has provided route to suitable synthon for the synthesis of natural products\(^1\). In light of these observations it was felt that the synthesis of the cyclic ether (14) and its rupture should provide a reasonable access to some natural products related to terpenes such as rosmanol\(^3\) and galdosol\(^4\). In addition the cyclic ether (14) seems to be an important synthon for entry into pisiferic acid, a bioactive diterpene\(^5\). To this end we have undertaken the synthesis of the cyclic ether (14) whose details are described in the present communication.

The starting material chosen for the present synthesis was the previously reported\(^6\) alcohol (1). Oxidation of the alcohol (1) with the reagent of Sarett\(^7\) yielded the ketone (2) (74%), mp 89-91°C (ether), m/z 210 (M\(^+\)-C\(_5\)H\(_8\)O) and \(\nu\)\(_{\text{max}}\) (KBr) 1700 (CO) cm\(^{-1}\), which on attempted isomerization with base was recovered unchanged. Ketone (2) on reduction with lithium aluminium hydride in tetrahydrofuran afforded the alcohol (3) (56%), mp 112-113°C (hexane-ether), m/z 194 (M\(^+\)-C\(_5\)H\(_8\)O\(_2\)), \(\nu\)\(_{\text{max}}\) (KBr) 3450 (OH) cm\(^{-1}\) and \(\delta\) (CDCl\(_3\)) 3.28-4.26 (in, 4H) (H on C-6', C-9 and C-6) and 4.68 (m, 1H, C-2') ppm. It was very difficult to ascertain the peak width (\(W_{1/2}\)) of the C-6 proton signal of the alcohol (3) because it was obscured by the protons of C-6', C-6 and C-9 and therefore the configuration of the C-6 hydroxyl group of alcohol (3) could not be determined at this stage. However from the reported works from our laboratory\(^8\) and on the basis of the nmr spectroscopic data of the alcohols (1) and (3) there was every reason to assume the axial nature of the C-6 hydroxyl group of the alcohol (3). This stereochemical assignment was confirmed by
(1) $R = \text{OH}$

(2) $R = \text{O}$

(3) $R = \text{OH}$

(4) $R = \text{OTHP}$, $R_1 = R_2 = H, H$

(5) $R = \text{OTHP}$, $R_1 = R_2 = H, H$

(6) $R = \text{O}$, $R_1 = R_2 = H, H$

(7) $R = R_2 = \text{O}$, $R_1 = H, H$

(8) $R = \text{O}$, $R_1 = R_2 = H, H$

(9) $R = R_2 = \text{O}$, $R_1 = H, H$

(10) $R = \text{O}$, $R_1 = \text{CHOH}$, $R_2 = H, H$

(11) $R = \text{O}$, $R_1 = H$

(12) $R = \text{O}$, $R_1 = \text{COOC}_2\text{H}_5$

(13) $R = \text{O}$, $R_1 = (\text{OH})\text{C} - \text{CH}_3$

(14) $\text{THP} = \text{O}$
the latter events.

Irradiation of cyclohexane solution of the alcohol (3) with lead tetraacetate and iodine afforded as expected a mixture of the cyclic ethers which on chromatographic purification over silica gel gave the cyclic ether (4) (45%), mp 69-70°C (hexane), m/z 210 (M⁺-C₅H₈O) and δ (CDCl₃) 0.86 (s, 3H), 0.96 (s, 3H) (C₄-Me), 3.38-4.26 (m, 6H) (H on C-6', C-6, C-9 and C-13) and 4.72 (m, 1H, C-2') ppm and the oily bicyclic ether (5) (20%), m/z 210 (M⁺-C₅H₈O), δ (CDCl₃) 1.01 (s, 3H), 1.08 (s, 3H) (C₄-Me and C₁₀-Me), 3.42-4.32 (m, 6H) (H on C-6', C-6, C-9 and C-12) and 4.78 (m, 1H, C-2') ppm. The structural and stereochemical assignment of these cyclic ethers were tentatively made from our previous work. The spectroscopic evidence did not unequivocally differentiate (4) from (5). So to this end we sought chemical reactions to establish their identity.

Treatment of the cyclic ether (4) in acetone with Jones reagent at 0°C yielded the ketone (6) (62%), mp 81-84°C (ether-hexane), m/z 208 (M⁺), νmax (KBr) 1710 (CO) cm⁻¹ which on oxidation with chromium trioxide in acetic acid at 20°C for 2 h afforded the lactone (7) (52%), mp 80-81°C (ether-hexane), m/z 222 (M⁺) νmax (KBr) 1765 (γ-lactone) and 1710 (CO) cm⁻¹; δ (CDCl₃) 0.91 (s, 3H), 1.03 (s, 3H) (C₄-Me), 1.85 (d, 1H, J=6 Hz, C₅-H) and 4.85 (m, 1H oxymethine) ppm. Similarly treatment of the cyclic ether (5) with Jones reagent yielded the oily ketone (8) (71%), m/z 208 (M⁺), νmax (film) 1712 (CO) cm⁻¹ and this on oxidation with chromium trioxide in acetic acid at 20°C for 2 h afforded the γ-lactone (9) (48%), mp 119-121°C (ether-pentane), whose mixed melting point with an authentic specimen (lit. mp 121-122°C) remained underpressed and thus the structure of the γ-lactone (9) was confirmed. The confirmation of the structure of the γ-lactone (9) also established the structure of the cyclic ether (5). The structural and stereochemical assignment of the cyclic ether (5) and the lactone (9) also indirectly settled the structure of the cyclic ether (4) and the γ-lactone (8).

It was observed that increase of reaction time and temperature of the oxidation of the cyclic ethers (4) and (5) led mainly undesired products.

Our next goal was to annulate the cyclic ether (6) to the tricyclic ketone (11) which we accomplished by Robinson annelation. The cyclic ether (6), on being treated with ethyl formate, gave hydroxymethylene derivative (10) (67%), m/z 236
The adduct, formed by treatment of the hydroxymethylene derivative (10) with 1-diethylaminobutanone-3-methiodide, was heated under reflux with sodium methoxide in methanol to yield the cyclic ketone (11) (70%), mp 108-110°C (ether-hexane), m/z 260 (M+), ν max (KBr) 1655 (CO) and 1601 (C=C) cm⁻¹. The nmr spectrum indicated that the cyclic ketone (11) was a mixture of 8a and 8b epimers. As our aim was to aromatize the ring C, no attempt was made to separate the isomers.

Treatment of the ketone (11) with sodium hydride and diethyl carbonate in 1,2-dimethoxyethane furnished principally the keto-ester (12), m/z 332 (M+) and 286 (M+-C₂H₅OH); ν max (film) 1745 (ester CO) and 1660 (ketonic CO) cm⁻¹. Reaction of the keto-ester (12) with methyl lithium in diethyl ether produced the oily ketol (13) (45%), m/z 300 (M+-H₂O), ν max (film) 3355 (OH) and 1655 (CO) cm⁻¹. The ketol (13) on being heated under reflux with methanolic hydrochloric acid (10%) was converted to the cyclic ether (14) (46%), mp 102-105°C (ether), m/z 300 (M+), ν max (KBr) 3360 (OH) cm⁻¹, δ (CDCl₃) 0.96 (s, 6H), (C₄-CH₃), 1.26 (d, 6H, J=6 Hz, C₁₅-CH₃), 1.62 (d, 1H, J=6 Hz, C₅-H), 3.82 (q, 2H, J=6 Hz, C₂₀-2H), 6.62 (s, 1H) and 6.84 (s, 1H) (aromatic protons).

In conclusion the cyclic ether (14) is considered to be an attractive precursor which can undergo typical reactions at ether and hydroxyl function thereby yielding valuable intermediates for the synthesis of natural products.

ACKNOWLEDGMENTS - The authors wish to express their thanks to Prof. S. C. Welch for donation of an authentic specimen of lactone (9) and to the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICIT) for partial financial support (Project SI-1166).

REFERENCES AND NOTES

11. Dedicated with respect and affection to Prof. Gilbert Stork.

Received, 27th June, 1983