THERMAL REARRANGEMENT OF 2-VINYLPIPERIDINE AND 6-VINYL-1,2,5,6-TETRAHYDROPYRIDINE N-OXIDES: FORMATION OF 1,2-OXAZEPINE DERIVATIVES

Takashi Tsuchiya* and Haruki Sashida
School of Pharmacy, Hokuriku University, Kanagawa-machi, Kanazawa, 920-11, Japan

Abstract — The thermolysis of both 2-vinyl piperidine N-oxides (9 and 12) and 1,2,5,6-tetrahydropyridine N-oxides (15) resulted in the Meisenheimer-type [1,2] rearrangement to give the corresponding 1,2-oxazepine derivatives (19, 12, 16, and 17). In the thermolysis, the involvement of [2,3]-sigmatropic rearrangement could not be observed in contrast to the cases of the analogous cyclic amine N-imides (3, 5, and 7).

Thermal reactions of aminimides have been well documented and allyl-N-acyl-ammonium ylides are known to undergo competing [1,2]- and [2,3]-sigmatropic rearrangements to give the corresponding products in a ratio that depends upon the ylide structure and the reaction conditions (Scheme 1). On the other hand, the piperidine N-imide (1) undergoes the Stevens-type [1,2] rearrangement to give the ring expansion product (2), whereas both β,γ-unsaturated six-membered cyclic amine N-imides (3) and (5) undergo the [2,3]-sigmatropic rearrangement.

\[\text{Scheme 1} \]

\[X = \text{CHR, NR} \]
with the double bonds to give the corresponding products (4) and (6). We have also
reported that the [2,3] rearrangement with the vinyl group predominates over that
with the cyclic double bond to give the tetrahydrodiazonine (8) in the thermolysis
of the N-imide (7).

In connection with these results and the rearrangements of open-chain allylamine
N-oxides, we were interested in examining the thermal behavior of the title
cyclic amine N-oxides and present here the formation of novel tetra- and penta-
hydro-1,2-oxazepine derivatives by the Meisenheimer-type [1,2] rearrangement in
contrast to the cases of the N-imides (3, 5, and 7).

Thermolysis of 1-methyl-2-vinylpiperidine 1-oxide (9) in toluene at 110 °C for
c. 1 hr resulted in the Meisenheimer-type [1,2] rearrangement to give the
hexahydro-1,2-oxazepine (10) in 40-45% yield as the sole product. In the reaction,
the expected [2,3] rearrangement product, oxazonine derivative (11), could not be
isolated. Heating of the benzyl derivative (12) under the same conditions gave
the oxazepine derivative (13: 20%) and the N-benzyloxypiperidine (14: 55%). This
result clearly indicates that the [1,2] rearrangement takes place to either carbon
having vinyl or phenyl group and the latter predominates.

Next, thermolysis of the 1,2,5,6-tetrahydropyridine N-oxides (15a,b) gave the
tetrahydrooxazepines (16: a, 12%; b, 10%) and (17: a, 15%; b, trace), and the
Hofmann-type cyclic elimination products (18: a, 30%; b, 53%). However, the
formation of the [2,3] rearrangement product, isoxazole derivative (19), was not observed. In addition, the N-oxide (15c) having no substituent in the 2-position gave only the elimination product (18c) and did not give any rearrangement product. The result of the thermolysis of 13 also shows that the [1,2] rearrangement occurs to either side of the tetrahydropyridine ring, however the expected [2,3] rearrangement does not occur either with the double bond in the ring or with the 2-vinyl group.

It is already known that allyl and prop-2-ynyl amine N-oxides undergo preferentially the [2,3]-sigmatropic rearrangement analogous to those observed for open-chain allylamine N-imides. However, the thermal behavior of the present cyclic amine N-oxides (9, 12, and 15) is different from those of the open-chain amine N-oxides and the analogous cyclic amine N-imides (3, 5, and 7). Studies on the detailed mechanisms and synthetic applications of the present results to other systems are under investigation.
A part of this work was supported by a Grant-in-Aid for Special Project Research from the Ministry of Education, Science and Culture, Japan, which is gratefully acknowledged.

References

5. T. Tsuchiya and H. Sashida, Heterocycles, 1979, 12, 1453.

7. Satisfactory elemental analyses and n.m.r., i.r., and mass spectral data were obtained for all new 1,2-oxazepines and other products reported.

Received, 31st July, 1980