NEW HETEROCYCLIC SYSTEMS: THIOPHEN CONDENSED 1-aza BICYCLO[3.3.1]NONANES

Jean-Pierre MAFFRAND, Fernand LOY
Département Recherche et Développement, Parcor, 195, route d'Espagne
31024 Toulouse Cédex, France

Marc LUCAS
Laboratoire de Chimie Organique des Hormones, Collège de France,
11, place Marcellin Berthelot, 75231 Paris Cédex 05, France

Abstract - We described the synthesis of new heterocyclic systems by acidic treatment of N-benzyl, N-thenyl or N,N-dithenyl aminocetaldehydes dimethylacetics.

In a previous communication we showed that Ticlopidine (2, \(R = 2-C1-C6H5-CH2 \)) , a new inhibitor of platelets aggregation and antithrombotic agent, could be synthesised according to the following reaction sequence:

Scheme I

This cyclisation process derived from Bobbitt's synthesis of isoquinolines.

N-Alkylation of (1) or (2) with various alkyl halides RX (K2CO3 2eq, KI cat., DMF, 90°) gave the expected tertiary amines (2) or (4). But amines (2 a-c) obtained by alkylation of (1) with the corresponding meta-methoxy substituted benzyl halides, cyclized to benzo(c)thieno[2,3-f] 1-azabicyclo[3.3.1]nonanes (6 a-c)
by treatment in 6N hydrochloric acid at room temperature or, more rapidly, at reflux.

Scheme II

![Scheme II diagram]

On the same conditions, (2,6) obtained by Mannich condensation of guaiacol and (4) with formaldehyde (40% aqueous solution, ethanol, r.t., 69% yield) cyclized into (6,8).

The same new tetracyclic compounds were also prepared from the methoxymethoxytetrahydrothienopyridine(7) as illustrated in the following reaction. (Scheme III).

Scheme III

![Scheme III diagram]

When the intermediates (1,2) or (3) were used as exemplified in scheme IV, the isomeric benzo(c) thieno[3,2-f] 1-azabicyclo[3.3.1] nonane (4) was formed.

Scheme IV

![Scheme IV diagram]
Such a double cyclisation also occurred when the methoxyphenyl ring was replaced by the thiophene nucleus as illustrated in scheme V.

Scheme V

![Scheme V diagram]

<table>
<thead>
<tr>
<th>Tetracyclic Compounds</th>
<th>Yield %</th>
<th>mp°C (Solvent)</th>
<th>H-NMR δ (CDCl₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>66 (+)</td>
<td>69</td>
<td>104-106 (iPr₂O)</td>
<td>6.91 (d, 1H, J=6Hz); 6.70 (d, 1H, J=5Hz); 3.50 (s, 3H); 3.19 (m, 2H)</td>
</tr>
<tr>
<td>66 (-)</td>
<td>39</td>
<td>hydrochloride > 260</td>
<td>6.78 (d, 1H, J=5Hz); 6.53 (d, 1H, J=5Hz); 6.57 (s, 1H); 6.37 (s, 1H); 3.77 (s, 3H); 3.64 (s, 3H); 3.26 (s, 2H)</td>
</tr>
<tr>
<td>66 (-)</td>
<td>67</td>
<td>hydrochloride 245-255</td>
<td>6.87 (d, 1H, J=5Hz); 6.67 (d, 1H, J=5Hz); 6.26 (s, 1H); 4.02 (s, 3H); 3.76 (s, 3H); 3.69 (s, 3H)</td>
</tr>
<tr>
<td>66 (+)</td>
<td>50</td>
<td>hydrochloride > 260</td>
<td>6.98 (d, 1H, J=5Hz); 6.67 (d, 1H, J=5Hz); 6.63 (s, 2H); 3.70 (s, 3H); 3.17 (m, 2H)</td>
</tr>
<tr>
<td>54 (+)</td>
<td>71</td>
<td>74-76 (iPr₂O)</td>
<td>4.40 (d, 1H, J=17Hz); 3.65 (d, 1H, J=17Hz); 3.40 (s, 3H); 4.30 (d, 1H, J=17Hz); 3.60 (d, 1H, J=17Hz); 3.05 (m, 2H)</td>
</tr>
<tr>
<td>66 (-)</td>
<td>66</td>
<td>63-85 (iPr₂O)</td>
<td>6.75 (d, 1H, J=5Hz); 6.45 (d, 1H, J=5Hz); 4.40 (d, 2H, J=17Hz); 3.65 (d, 2H, J=17Hz)</td>
</tr>
<tr>
<td>66 (-)</td>
<td>59</td>
<td>107-109 (iPr₂O)</td>
<td>4.45 (d, 1H, J=17Hz); 3.75 (d, 1H, J=17Hz); 4.55 (d, 1H, J=17Hz); 3.85 (d, 1H, J=17Hz); 3.30 (m, 2H)</td>
</tr>
<tr>
<td>80 (+)</td>
<td>61</td>
<td>145-147 (iPr₂O)</td>
<td>6.95 (d, 1H, J=5Hz); 6.70 (d, 1H, J=5Hz); 4.55 (d, 2H, J=17Hz); 3.80 (d, 2H, J=17Hz); 3.15 (m, 2H)</td>
</tr>
</tbody>
</table>
All these cyclisations were also expected since Bobbitt's work on the formation of dibenzo[c,f]-1-azabicyclo[3.3.1]nonanes (22) from the dibenzylamines (21) in which R was a hydroxy or methoxy substituant (scheme VI).

Recently, Takayama and coll.\(^8\) showed that the cyclisation of (21) analogs could be carried out even in the absence of electron-donating group if the reaction was performed in 70% perchloric acid. Nevertheless, neither with this reagent nor with trifluoromethanesulfonic acid\(^10\), we were able to prepare cyclic analogs of (6,8,9,10) or (14) which did not contain a methoxy or hydroxy groups in the right position.

ACKNOWLEDGEMENTS. Alain Andrieu and Alain Baïorc rendered skilful technical assistance.

REFERENCES.

6. J.P. MAFFRAND, Brevet Français n° 75 17 007.
7. A. HEYMES and J.P. MAFFRAND, Brevet Français n° 75 16 635.

Received, 12th December, 1980