AN MO INVESTIGATION OF THE FORMATION OF endo-[6 + 4]-π ADDUCT
FROM ISOBENZOFURAN AND 6,6-DIMETHYLFULVENE

Hiroaki Mametsuka, Akira Mori, Hitoshi Takeshita, and Hiyuki Yamauchi*
Research Institute of Industrial Science, Kyushu University, Hakozaki, Fukuoka 812 Japan

and

*Faculty of Science, Kumamoto University, Kurokami, Kumamoto 860 Japan

According to well known Hoffmann-Woodward rule, the concerted thermal cycloaddition reaction between
6π and 4π systems should occur with the exo-fashion. After accumulations, to date, of considerable examples
which verified the theoretical prediction, a few of the exceptional endo-[6 + 4]-π adduct formations have been
however observed. Since the [6 + 4]-π adducts are always possible to be derived, at least in a formal sense,
after symmetry-allowed sigmatropic rearrangements of the initially formed cycloadducts, like endo-[2 + 4]-π
adducts, it should not be regarded as the genuine adducts unless certain evidences on the cycloaddition were
provided. In fact, there are some observations on the formation of the [6 + 4]-π adducts from the other modes
of cycloadducts by rearrangements. As previously reported, the reaction of isobenzofuran with 6,6-dimethyl-
fulvene afforded the endo-[6 + 4]-π adduct. Since the conjugated system of dimethylfulvene is not linear,
the overlappings of the π-electron system to govern the stereoselectivity may not be sufficient unlike as other
typical 6π addends, but still the product formation has been thoroughly controled to show an inverted endo-
stereoselectivity. Therefore, we have carried out the investigations to understand the cycloaddition process by means
of the extended Hückel M.O treatment; the results obtained therefrom will be described herein.

First of all, peri-selectivity of the reaction of two components, isobenzofuran and 6,6-dimethylfulvene,
was deduced from the HOMO and LUMO interactions to show the endo-[6 + 4]-π addition being favored.
Thus, the endo-adduct seems to be a primary adduct, but not a rearrangement product of undetectable precursor.
Then, the stabilization energies for the reaction was calculated by treatments with perturbation theory assuming
the two components might approach with the geometry of parallel in each other to show again the endo-adduct
being favored over the exo-isomer by 2.9 kcal/mole. The overlap integrals between two molecules in certain
stereochemical geometries also deduced the parallel results; in cases of approach with molecular angles in 60°
for endo-addition and 20° for exo-addition, the calculation suggested the favor for the endo-adduct formation.

Therefore, the endo-addition process in the present example has been supported by M.O evidences.