A 1,3-DIPOLAR CYCLOADDITION REACTION OF 1-METHYLINDAZOLE

Michele Ruccia*, Nicolò Vivona, and Giuseppe Cusmano

Istituto di Chimica Organica - Facoltà di Scienze -
Università di Palermo, Via Archirafi, 20, 90123 Palermo

A 1,3-dipolar cycloaddition reaction of 1-methylindazole with C-acetyl-N-phenyl-nitrilimine was performed. The cycloadduct could be used to synthetize 1,2,4-triazole derivatives.

In the framework of our studies on the behaviour of heterocyclic systems towards nitrilimines, we have carried out the reaction between 1-methylindazole (I) and C-acetyl-N-phenyl-nitrilimine (II), prepared in situ. Treatment of (I) with stoichiometric amount of α-chloro-(N-phenylhydrazone)acetone and three-fold excess of triethylamine (THF, 20 days, room temperature) gave a reaction mixture which, after triethylamine hydrochloride being filtered off and the solvent evaporated under vacuum, afforded 1-phenyl-3-acetyl-5-methyl-1,9b-dihydro-5H-1,2,4-triazol-14,3b-indazole (III), mp 134-135°C, in 40% yield. The structure of the cycloadduct (III) was assigned on the basis of elemental analysis, spectroscopic data and chemical transformation. An examination of the nmr spectrum (CD66) δ: 2.17 (3H, s, -CO-CH3), 3.26 (3H,
s, -N-CH$_3$), 6.61 (1H, s, 8a-H), 6.35-7.10 (9H, m, Ar-H)] revealed large shielding effect on 9b-H and -N-CH$_3$ protons with respect to 3-H and -N-CH$_3$ protons of (I) ($\Delta\delta = -1.30$ and -0.27 respectively). This shielding effect substantiated the absence of ring current clearly supporting the structure proposed. The carbonyl frequency (ν max (nujol mull) 1666 cm$^{-1}$) observed is also consistent with (III). A sample of (III) with catalytic amount of conc. HCl (THF, 24 hr, room temperature) gave, after evaporation of the solvent under vacuum, 1-phenyl-3-acetyl-5-[o-methylaminophenyl]-1,2,4-triazole (IV), in almost quantitative yield. The structure of (IV), mp 201-202$^\circ$, was deduced on the basis of the following evidence: ν max (nujol mull) 3322, 1690 cm$^{-1}$; nmr (DMSO-d$_6$) δ: 2.63 (3H, s, -CO-CH$_3$), 2.68 (3H, d, -N-CH$_3$, J=4.5), 6.03 (1H, br q, NH, J=4.5), 6.20-7.70 (4H, m, Ar-H), 7.39 (5H, s, N-C$_6$H$_5$); ν max EtOH nm (log ϵ): 221sh (4.37), 258sh (4.06), 3.44 (3.65). Moreover, a suspension of (IV) in a warm solution of sodium hydroxide treated with KMnO$_4$, afforded 1-phenyl-1,2,4-triazol-3-carboxylic acid (V). The results obtained give further information on the behaviour, as dipolarophiles, of the nitrogen heteroaromatic compounds putting in evidence the tendency of C=N bond of 1-methylindazole (I) to react towards nitrilimines so as the C=N bond of some mono3 and diazines4, azomethines5, oximes6, etc. As expected, the unsubstituted nitrogen controls the orientation of the dipole. Furthermore the transformation of (III) into (IV) furnishes an interesting alternative route to synthetize 1,2,4-triazole derivatives. This behaviour is similar to that of other non aromatic cycloadducts7,8
which, by treatment with acids, give aromatic compounds through an elimination reaction, e.g. scheme (VI→VII).

REFERENCES AND FOOTNOTES

8 Likewise, we have observed that cycloadduct obtained from N-methylindole and diphenyl-nitrilimine gives 1,3-diphenyl-4-o-methylaminophenyl pyrazole by treatment with HCl in ethanolic solution at room temperature, through a fission of D-B bond (unpublished results). A different behaviour showed cycloadducts obtained from N-substituted indole derivatives and C-acetyl or C-carbethoxy-N-phenyl-nitrilimines. In these cases, in fact, under similar experimental conditions we have observed the cleavage of the B-Z bond 1a,1d.

Received, 10th August, 1976