A TRANSFORMATION OF 7-AZAPTERIDINES INTO 6-AZAPURINES
(IMIDAZO[4,5-e]-AS-TRIAZINES)

Fumio Yoneda,* Mitsuko Kawamura, Tomohisa Nagamatsu,
Kazuo Kuratani, † Akio Hoshi, † and Masaaki Iigo
†
Faculty of Pharmaceutical Sciences, Kumamoto University,
Oe-honmachi, Kumamoto 862, Japan; †Pharmacology Division,
National Cancer Center Research Institute, Tsukiji,
Chuo-ku, Tokyo 104, Japan

Treatment of 6-substituted 3-methyl-7-azalumazines and 6-
substituted 1,3-dimethyl-7-azalumazines (fervenulins) with
alcoholic sodium hydroxide caused a benzylic acid type
rearrangement followed by decarboxylation and oxidation by
air to give the respective 5-methyl- and 5,7-dimethyl-5H-
imidazo[4,5-e]-as-triazine-6(7H)-ones.

The reaction of 7-azapteridine 5-oxides with acetic anhydride
or alcoholic sodium hydroxide caused a ring contraction to give the
corresponding 6-azapurines (imidazo[4,5-e]-as-triazines)¹ which are
interesting from the chemical and potentially biological point of
view. We now wish to report a further new synthetic approach to
6-azapurines which involves a benzylic acid type rearrangement of
7-azapteridines.
The key intermediates, 7-azapteridine derivatives were prepared by the following methods. It is known that the treatment of 6-benzylidenehydrazino-3-methyluracil in acetic acid with saturated aqueous sodium nitrite gives 6-benzylidenehydrazino-3-methyl-5-nitrosouracil (Ia).\(^2\) By this method, 6-(4-chlorobenzylidenehydrazino)- (Ib) (mp 224°, 89%), 6-(3,4-dichlorobenzylidenehydrazino)- (Ic) (mp 230°, 83%), 6-(4-methoxybenzylidenehydrazino)- (Id) (mp 245°, 75%), 6-(3,4-methyleneoxybenzylidenehydrazino)- (Ie) (mp 233°, 75%), and 6-(4-dimethylaminobenzylidenehydrazino)-3-methyl-5-nitrosouracil (If) (mp 220°, 68%) were obtained from the corresponding 6-benzylidenehydrazino-3-methyluracils.\(^3\) Refluxing of these 5-nitroso derivatives (Ia-f) in acetic anhydride for 1 hr caused dehydrative cyclization to give the respective 6-substituted 3-methyl-7-azalumazines (IIa-f) in 40-60% yields, which were identical with authentic samples\(^4\) prepared by the demethylation of toxoflavins. 6-Substituted 1,3-dimethyl-7-azalumazines (fervenulins) (IIg-1) were obtained by the condensation of 6-amino-1,3-dimethyl-5-nitrosouracil with aldehyde hydrazones according to the procedure
described previously.5

Treatment of the 3-methyl- (IIa-f) and 1,3-dimethyl-7-azalumazines (IIg-1) thus obtained with 10% alcoholic sodium hydroxide under the conditions described in Table, followed by acidification6 with acetic acid, precipitated the respective 3-substituted 5-methyl-(IIIa-f) and 3-substituted 5,7-dimethyl-5H-imidazo[4,5-e]az-

\begin{center}
\begin{tabular}{lll}
\hline
II & \hspace{1cm} & III \\
\hline
a; & R1 = H, & R2 = C\textsubscript{6}H\textsubscript{5} \\
b; & R1 = H, & R2 = 4-Cl-C\textsubscript{6}H\textsubscript{4} \\
c; & R1 = H, & R2 = 3,4-Cl\textsubscript{2}-C\textsubscript{6}H\textsubscript{3} \\
d; & R1 = H, & R2 = 3-CH\textsubscript{3}O-C\textsubscript{6}H\textsubscript{4} \\
e; & R1 = H, & R2 = 3,4-CH\textsubscript{2}O\textsubscript{2}-C\textsubscript{6}H\textsubscript{3} \\
f; & R1 = H, & R2 = 4-(CH\textsubscript{3})\textsubscript{2}N-C\textsubscript{6}H\textsubscript{4} \\
g; & R1 = CH\textsubscript{3}, & R2 = C\textsubscript{6}H\textsubscript{5} \\
h; & R1 = CH\textsubscript{3}, & R2 = 4-Cl-C\textsubscript{6}H\textsubscript{4} \\
i; & R1 = CH\textsubscript{3}, & R2 = 3,4-Cl\textsubscript{2}-C\textsubscript{6}H\textsubscript{3} \\
j; & R1 = CH\textsubscript{3}, & R2 = 4-CH\textsubscript{3}O-C\textsubscript{6}H\textsubscript{4} \\
k; & R1 = CH\textsubscript{3}, & R2 = 3,4-CH\textsubscript{2}O\textsubscript{2}-C\textsubscript{6}H\textsubscript{3} \\
l; & R1 = CH\textsubscript{3}, & R2 = 4-(CH\textsubscript{3})\textsubscript{2}N-C\textsubscript{6}H\textsubscript{4} \\
\hline
\end{tabular}
\end{center}

triazine-6(7H)-ones (IIIg-1)1 (see Table). The structures of compounds (IIIa-l) were derived on the basis of elemental analysis,
molecular weight determination and fragmentation study by mass spectrometry, IR (the presence of a carbonyl band at 1760 cm\(^{-1}\)) and NMR data, and by consideration of its probable mode of formation (Scheme). Furthermore, compounds (IIIa-f) were converted into the 5,7-dimethyl derivatives (IIIg-l) by methylation with methyl iodide and potassium carbonate in dimethylformamide for identification purpose.

Table 6-Azapurines Formation by Reaction of 7-Azapteridines with Alcoholic Sodium Hydroxide

<table>
<thead>
<tr>
<th>Starting material</th>
<th>Reaction condition</th>
<th>Product</th>
<th>(\text{Mp (°C)}^a)</th>
<th>Yield(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIa</td>
<td>reflux, 1 hr</td>
<td>IIIa</td>
<td>283</td>
<td>61</td>
</tr>
<tr>
<td>IIb</td>
<td>reflux, 1 hr</td>
<td>IIIb</td>
<td>266</td>
<td>49</td>
</tr>
<tr>
<td>IIc</td>
<td>reflux, 1 hr</td>
<td>IIIc</td>
<td>284</td>
<td>52</td>
</tr>
<tr>
<td>IID</td>
<td>reflux, 1 hr</td>
<td>IIId</td>
<td>292</td>
<td>37</td>
</tr>
<tr>
<td>IIe</td>
<td>reflux, 2 hr</td>
<td>IIIe</td>
<td>324</td>
<td>35</td>
</tr>
<tr>
<td>IIf</td>
<td>reflux, 2 hr</td>
<td>IIIf</td>
<td>281</td>
<td>50</td>
</tr>
<tr>
<td>IIg</td>
<td>60°, 10 min</td>
<td>IIIg</td>
<td>203</td>
<td>71</td>
</tr>
<tr>
<td>IIh</td>
<td>60°, 10 min</td>
<td>IIIh</td>
<td>251</td>
<td>65</td>
</tr>
<tr>
<td>IIIi</td>
<td>60°, 10 min</td>
<td>IIIi</td>
<td>247</td>
<td>55</td>
</tr>
<tr>
<td>IIIj</td>
<td>60°, 30 min</td>
<td>IIIj</td>
<td>255</td>
<td>58</td>
</tr>
<tr>
<td>IIIk</td>
<td>60°, 30 min</td>
<td>IIIk</td>
<td>330</td>
<td>51</td>
</tr>
<tr>
<td>IIIl</td>
<td>60°, 30 min</td>
<td>IIIl</td>
<td>290</td>
<td>87</td>
</tr>
</tbody>
</table>

a) These compounds were recrystallized from ethanol.
We suggest that these 6-azapurines are formed from 7-aza-pteridines by a benzylic acid type rearrangement, followed by decarboxylation and oxidation by air, as depicted in the following Scheme.

Scheme
REFERENCES AND NOTES

6. Evolution of carbon dioxide was observed here.

Received, 15th July, 1976