REACTIONS OF 3-SUBSTITUTED 2-NITROSOIMINO-2,3-DIHYDROBENZOTHIAZOLES
WITH GRIGNARD REAGENTS AND ORGANOLITHIUMS

Motoyuki Hisaoka, Kiu-ya Akiba, and Naoki Inamoto

Department of Chemistry, Faculty of Science, The University of Tokyo,
Hongo, Bunkyo-ku, Tokyo, 113.

3-Substituted 2-nitrosoimino-2,3-dihydrobenzothiazoles (1) reacted with excess benzylmagnesium chloride to give 3-substituted 2,2-dibenzyl- (2), 2-N'-benzylidene-hydrazono- (2), 2-N',N'-dibenzylhydrazono-2,3-dihydrobenzothiazoles (4). Main reaction (formation of 2 and 4) occurred on the nitroso group of 1, which was shown to proceed via the same intermediate (A).

\[
\begin{array}{c}
\begin{array}{c}
\text{R} \quad 1 \\
\text{S} \quad 2 \\
\text{N} \quad 3 \\
\text{C} \quad 4 \\
\text{N} \quad \text{H} \\
\text{C} \quad \text{H} \\
\text{C} \quad \text{H} \\
\end{array}
\end{array}
\]

On the other hand, phenylmagnesium bromide reacted with to produce 2,2,3-triphenyl- (5b, 46%), 3-phenyl-2-N'-phenylhydrazono-2,3-dihydrobenzothiazoles (10b, 17%) and small amount of bis(N-phenyl-o-aminophenyl) disulfide (9b). Mesitylmagnesium bromide reacted with la to give 2-mesityl- (11a, 46%), 2-N'-mesitylhydrazono-3-methyl-2,3-dihydrobenzothiazoles (12a, 15%) and 3-methyl-2-benzothiazolone(12a, 10%). tert-Butylmagnesium chloride reacted with 1 to give similar products to mesitylmagnesium bromide. These reactions occurred mainly on C-2 of benzothiazoline ring.

The main reaction path of organolithiums (phenyl- and n-butyllithium) with 1 was the attack on the sulfur of benzothiazoline ring, different from that of the corresponding Grignard reagents.

1 reacted with excess phenyllithium to give mainly N,S-disubstituted o-aminothiophenols (21) and almost the same amount of benzophenone. A trace of 3-substituted 2,2-diphenyl-2,3-dihydrobenzothiazoles (8) were also obtained.

la reacted with excess benzylithium to afford 2a and 2a.

These apparent differences of reactivity of Grignard reagents and organolithiums with 1 are discussed in relation to the unique character of 1 and also to organometallics used.