1H-INDAZOLES AS SYNTHETIC AUXILIARIES FOR THE SYNTHESIS OF SECONDARY AROMATIC AMINES

Raffaele Saladinoa, Claudia Crestinib, and Rosario Nicolettib

aDipartimento Agrochimico Agrobiologico Università degli studi di Viterbo "la Tuscia", via San Camillo de Lellis, 01100 Viterbo, Italy
bDipartimento di Chimica Università degli studi di Roma “La Sapienza”, p.le Aldo Moro 5, 00185 Roma, Italy

Abstract- Methodology of alkylation of aromatic amines using 1H-indazoles as synthetic auxiliaries is reported.

There are few general procedures for the efficient and selective monoalkylation of primary amines,1 since the direct alkylation affords very often mixtures. The preparation and subsequent reduction of the corresponding Schiff bases2 is a frequently followed procedure: the temporary protection of one of the nitrogen positions is another possible approach.

A method for the selective monoalkylation of primary amines by using benzotriazole as synthetic auxiliary has been recently proposed.3 It seems likely that the high acidity of benzotriazole (pka 8.20)3b plays an important role in some steps of the synthetic pathway.

For instance, the last step is the nucleophilic displacement of the benzotriazole moiety by hydrides or Grignard reagents, and the above mentioned acidity of benzotriazole should make the conjugate base of the latter a good leaving group.

In order to assess the properties which must be associated to a synthetic auxiliary in such reactions, we took in consideration the indazole, the C(3) isoster of benzotriazole which is definitely less acidic than the latter (pka 13.8).4 1H-indazoles and aldehydes react readily to give 1-hydroxyalkyl-1H-indazoles which are suitable starting materials for the preparation of Mannich bases,5 chelating agents,6 and aminoacids:7 the easy preparation of these 1-hydroxyalkyl derivatives prompted us to study indazole and some indazole derivatives as synthetic auxiliaries in the alkylation of primary amines. Results of this study are reported here.

1-Hydroxymethyl-1H-indazole (2a), 3-methyl-1-hydroxymethyl-1H-indazole (2b), 3-carboxymethyl-
1-hydroxymethyl-1H-indazole (2c) (Table 1, entry 1), prepared from the corresponding indazoles (1a-c) using a modified procedure described by Burckhalter for the synthesis of 1-hydroxymethyl-1H-benzotriazole,9 and 1-hydroxyethyl-1H-indazole (2d) prepared from 1a using a procedure described by Lopez,10 were reacted with several aromatic amines and heteroaromatic amine to give the corresponding aminals (3a-m) in good yields (Scheme, Table 1, entry 2).

Since 1-hydroxypropyl-1H-indazole is described to be unstable at room temperature,10 we avoided the isolation of the hydroxypropyl derivatives and we obtained the aminal (3n) in good yield, allowing to react directly indazole (1a), propionaldehyde and aniline at 25°C in ethanol (Scheme, Table, entry 2). The aminals (3a-f) and (3m-n) were smoothly converted into the corresponding N-alkylamines (4a-c) and (4e-f) by reduction with LiAlH₄ in ether at room temperature in only five minutes (Scheme, Table 1, entry 3). The procedure is quite simple and clean, the yields are excellent, and indazoles (1a-b) which are produced along with 4 in the reaction could be recovered in large-scale reactions. This procedure can be extended also to heteroaromatic amines, as in the case of benzotriazole.
N-Alkylation at the amino group of 2-aminopyridine is very difficult to achieve, due to preferential reaction at the pyridine nitrogen atom to give a quaternary salt. We obtained the alkylation of 2-aminopyridine only at the amino group: in fact NaBH₄ reduction of 3i and LiAlH₄ reduction of 3l afforded the N-2-methylaminopyridine (4d) in good yield. In order to evaluate the electronic effect of C-3 substituent on the different ability of indazoles to act as leaving groups, we allowed to react the aminals (3b, 3e and 3g) under mild reductive conditions (NaBH₄, dry THF). The compound (3g) reacted completely to give 4b in 4 h at room temperature; 3b reacted after 12 h and 3e was reduced to 4b in 30% yield only after 10 h at reflux. This data show that the indazole ring increases dramatically its properties of leaving group with C-3 electron-withdrawing substituents, while C-3 electron donor substituents lower it.
In order to evaluate the further synthetic potentiality of the aminals (3) we have studied the reactivity of compound (3e) with several Grignard reagents; methylmagnesium bromide, vinylmagnesium bromide and allylmagnesium bromide. Under these conditions the 3-methylindazole acts as a leaving group and is displaced by the Grignard nucleophile. The reaction carried out in dry ether gives in good yield N-ethyltoluidine (4f) (Scheme, Table 1, entry 3) and the N-alkenyltoluidines (5 and 6) in which the terminal double bond is available for transformation into other useful functionalities (Scheme, Table 1, entry 4). It is interesting to note that indazole aminals (3a-n) react with LiAlH4 and Grignard reagents (in the case of 3e) easier than benzotriazole derivatives. Moreover, carboxymethylindazole aminal (3g) reacts faster than benzotriazole derivatives also in the NaBH4 reduction. The data collected show that 1H-indazoles are suitable auxiliaries in the selective alkylation of primary amines. In spite of the lower acidity of indazole as compared to that of benzotriazole, indazoles can be readily displaced from aminals in some instances easier than the benzotriazoles.

EXPERIMENTAL

Nmr spectra were recorded on a varian XL 300 (300 MHz) spectrometer and are reported in δ values. Melting points were obtained on a Reichert Kofler apparatus and are uncorrected. Microanalyses were performed by C. Erba 1106 analyzer. Infrared spectra were recorded on a Perkin Elmer 298 spectrophotometer using KBr plates. Mass spectra were recorded on a Kratos MS80 spectrometer. All solvents were ACS reagent grade and were redistilled and dried according to standard procedure. Chromatographic purifications were performed on columns packed with Merck silica gel 60, 230-400 mesh for flash technique.

General procedure for the synthesis of 1-hydroxymethyl-1H-indazoles (2a-c)

To a suspension of 25 mmol of the appropriate 1-hydroxymethyl-1H-indazole (2a-c) in 10 ml of acetic acid and 10 ml of water, was added with stirring 35% formalin (2 ml, 25 mmol). After 2 h the mixture was diluted with water; the precipitate was filtered off, washed with cold water, and recrystallized from water.

2a: 87%; mp 114-115°C; ir (v, cm⁻¹) (KBr) 3490, 3220, 1640, 1510; ¹Hnmr (δ, ppm) (CDCl₃) 5.85 (s, 2H, CH₂), 7.52 (m, 5H); ms+El (m/z, M⁺) 148; Anal. Calcd for C₆H₆N₂O: C 64.85, H 5.44, N 18.91. Found: C 64.63, H 6.10, N 17.26.

2b: 85%; mp 105-106°C; ir (v, cm⁻¹) (KBr) 3220, 1640, 1510; ¹Hnmr (δ, ppm) (CDCl₃) 2.47 (s, 3H, CH₃), 5.77 (s, 2H, CH₂), 7.47 (m, 4H); ms+El (m/z, M⁺) 162; Anal. Calcd for C₇H₁₀N₂O: C 66.65, H 6.21, N 17.27. Found: C 66.34, H 6.17, N 17.22.

2c: 89%; mp 115-116°C; ir (v, cm⁻¹) (KBr) 3490, 1715, 1125; ¹Hnmr (δ, ppm) (CDCl₃) 4.05 (s, 3H, CH₃), 5.91 (s, 2H, CH₂), 7.72 (m, 4H); ms+El (m/z, M⁺) 206; Anal. Calcd for C₁₀H₁₀N₂O₃: C 58.25, H 4.89, N 13.59. Found : C 58.06, H 4.87, N 13.67.
General procedure for the synthesis of aminals (3a-m)

1-Hydroxymethyl-1H-indazole derivatives (2a-c) (10 mmol) and the amine (10 mmol) were dissolved in boiling ethanol (as little as possible) and kept at room temperature for 5 h; most of the product was precipitated. The solid was filtered off, washed with n-hexane and purified by recrystallization from ether/hexane mixtures (Table 1):

3a: 76%; mp 82-84°C; ir (v, cm⁻¹) (CHCl₃) 3500, 3050, 1600, 1500; ¹Hnmr (δ, ppm) (CDCl₃) 5.75 (m, 2H, CH₂), 6.70-7.16 (m, 10H, CH); ms +El (m/z, M⁺) 223; Anal. Calcd for C₁₄H₁₃N₃: C 75.31, H 5.87, N 18.82. Found: C 75.23, H 5.96, N 18.77.

3b: 79%; mp 94-95°C; ir (v, cm⁻¹) (CHCl₃) 3450, 3050, 1610, 1520; ¹Hnmr (δ, ppm) (CDCl₃) 2.19 (s, 3H, CH₃), 5.73 (m, 2H, CH₂), 6.72-7.71 (m, 8H, CH), 7.99 (s, 1H, CH); ms +El (m/z, M⁺) 237; Anal. Calcd for C₁₅H₁₅N₃: C 75.92, H 6.37, N 17.70. Found: C 75.81, H 6.28, N 17.80.

3c: 82%; mp 69-70°C; ir (v, cm⁻¹) (CHCl₃) 3450, 3050, 1600, 1520; ¹Hnmr (δ, ppm) (CDCl₃) 3.27 (s, 3H, OCH₃), 5.70 (m, 2H, CH₂), 6.70-7.72 (m, 8H, CH), 8.0 (s, 1H, CH); ms +El (m/z, M⁺) 253; Anal. Calcd for C₁₅H₁₅N₃O: C 71.13, H 5.97, N 16.59. Found: C 71.21, H 5.83, N 16.68.

3d: 90%; mp 147-148°C; ir (v, cm⁻¹) (CHCl₃) 3450, 3050, 1600, 1500; ¹Hnmr (δ, ppm) (CDCl₃) 2.55 (s, 3H, CH₃), 5.67 (m, 2H, CH₂), 6.79-7.70 (m, 9H, CH); ms +El (m/z, M⁺) 273; Anal. Calcd for C₁₅H₁₅N₃: C 75.79, H 6.37, N 17.70. Found: C 75.83, H 6.25, N 17.75.

3e: 97%; mp 132-133°C; ir (v, cm⁻¹) (CHCl₃) 3450, 3050, 1600, 1500; ¹Hnmr (δ, ppm) (CDCl₃) 2.21 (s, 3H, CH₃), 2.60 (s, 3H, CH₃), 5.65 (m, 2H, CH₂), 6.73-7.64 (m, 8H, CH); ms +El (m/z, M⁺) 251; Anal. Calcd for C₁₆H₁₇N₃: C 76.46, H 6.82, N 16.72. Found: C 76.33, H 6.71, N 16.68.

3f: 88%; mp 114-115°C; ir (v, cm⁻¹) (CHCl₃) 3450, 3050, 1620, 1500; ¹Hnmr (δ, ppm) (CDCl₃) 2.54 (s, 3H, CH₃), 3.67 (s, 3H, CH₃), 5.61 (m, 2H, CH₂), 6.71-7.60 (m, 8H, CH); ms +El (m/z, M⁺) 267; Anal. Calcd for C₁₆H₁₇N₃O: C 71.89, H 6.41, N 15.72. Found: C 71.95, H 6.53, N 15.65.

3g: 87%; mp 128-130°C; ir (v, cm⁻¹) (CHCl₃) 3450, 3050, 1710; ¹Hnmr (δ, ppm) (CDCl₃) 2.18 (s, 3H, CH₃), 4.05 (s, 3H, OCH₃), 5.81 (m, 2H, CH₂), 6.68-8.15 (m, 8H, CH); ms +El (m/z, M⁺) 295; Anal. Calcd for C₁₇H₁₇N₃O₂: C 76.14, H 5.80, N 14.22. Found: C 76.25, H 5.85, N 14.26.

3h: 83%; mp 118-120°C; ir (v, cm⁻¹) (CHCl₃) 3450, 3050, 1710; ¹Hnmr (δ, ppm) (CDCl₃) 3.65 (s, 3H, OCH₃), 4.05 (s, 3H, OCH₃), 5.79 (m, 2H, CH₂), 6.80-8.20 (m, 8H, CH); ms +El (m/z, M⁺) 311; Anal. Calcd for C₁₇H₁₇N₃O₂: C 65.58, H 5.50, N 13.43. Found: C 65.45, H 5.47, N 13.50.

3i: 85%; mp 158-160°C; ir (v, cm⁻¹) (CHCl₃) 3450, 3050, 1720; ¹Hnmr (δ, ppm) (CDCl₃) 4.09 (s, 3H, OCH₃), 6.00 (m, 2H, CH₂), 7.23-8.22 (m, 7H, CH); ms +El (m/z, M⁺) 250; Anal. Calcd for C₁₅H₁₄N₄: C 71.98, H 5.64, N 22.38. Found: C 72.19, H 5.58, N 22.46.

3j: 80%; mp 78-80°C; ir (v, cm⁻¹) (CHCl₃) 3450, 3050, 1600, 1510; ¹Hnmr (δ, ppm) (CDCl₃) 5.10 (m, 2H, CH₂), 6.60-7.60 (m, 7H, CH), 8.05 (s, 1H, CH); ms +El (m/z, M⁺) 224; Anal. Calcd for C₁₃H₁₂N₄: C 69.62, H 5.39, N 24.98. Found: C 69.48, H 5.35, N 25.12.

3m: 93%; mp 90-92°C; ir (v, cm⁻¹) (CHCl₃) 3450, 3050, 1600, 1510; ¹Hnmr (δ, ppm) (CDCl₃) 1.79 (d, J= 6.4 Hz, 3H, CH₃), 6.18 (m, 1H, CH₂), 6.55-7.72 (m, 8H, CH), 8.02 (s, 1H, CH); ms +El (m/z,
M+) 251; Anal. Calcd for C\textsubscript{16}H\textsubscript{17}N\textsubscript{3}: C 76.46, H 6.82, N 16.72. Found: C 76.32, H 6.80, N 16.65.

Procedure for the synthesis of aminal (3n)

Indazole (1a) (1.18 g, 10 mmol), propionaldehyde (0.58 g, 10 mmol) and aniline (0.93 g, 10 mmol) were reacted at room temperature for 5 h; most of the product was precipitated. The solid was filtered off, washed with n-hexane and purified by recrystallization from ether/hexane mixtures (Table 1):

| 3n: 2.33g, 93%; mp 108-110°C; ir (v, cm-1) (CHCl\textsubscript{3}) 3450, 3050, 1600, 1510; 1Hnmr (δ, ppm) (CDCl\textsubscript{3}) 0.83 (t, J= 7.0 Hz, 3H, CH\textsubscript{3}), 2.22 (q, J= 7.0 Hz, 2H, CH\textsubscript{2}), 5.95 (m, 1H, CH\textsubscript{2}), 6.66-7.75 (m, 9H, CH), 8.0 (s, 1H, CH); ms +El (m/z, M+) 251; Anal. Calcd for C\textsubscript{16}H\textsubscript{17}N\textsubscript{3}: C 76.46, H 6.82, N 16.72. Found: C 76.38, H 6.89, N 16.76. |

Reduction of aminals (3a-f) and (3l-n by) lithium aluminium hydride: general procedure

To a stirred suspension of lithium aluminium hydride (0.38 g, 10 mmol) in dry THF (10 ml), kept under nitrogen, was added the aminal (3a-f) and (3l-n) (10 mmol) in dry THF (10 ml). The solution was stirred for 5 min, poured into ice-water, neutralized with 2% HCl, and extracted with ether. The ethereal solution was washed with water, with 5% aqueous sodium carbonate, and then dried (MgSO\textsubscript{4}). Evaporation of the solvent afforded the amines of purity usually higher than 95% by 1Hnmr. The yields of the amines are reported in Table 1.

Reduction of aminals (3b, e, g and l) by sodium borohydride: general procedure

Aminals (3b, e, g and l) (10 mmol) and sodium borohydride (0.38 g, 10 mmol) were stirred and heated under reflux (if necessary) with dry THF (15 ml) until the reaction was complete. The mixture was poured into ice-water and extracted with ether. The ethereal solution was washed with water, with 5% aqueous sodium carbonate, and then dried (MgSO\textsubscript{4}). Evaporation of the solvent afforded the amines with a purity similar to that obtained by lithium aluminium hydride reduction.

Reaction of aminal (3e) with Grignard reagents: general procedure

To a Grignard reagent (15 mmol) in ether (10 ml) was added, dropwise, the aminal (3e) (2.51 g, 10 mmol). The mixture was stirred at 25°C for 30 min and then poured into ice-water. The ethereal solution was washed with water, with 5% aqueous sodium carbonate, and then dried (MgSO\textsubscript{4}). Evaporation of the solvent afforded the amines of purity usually higher than 95% by 1Hnmr. The yields of the amines are reported in Table 1.
ACKNOWLEDGEMENTS
Thanks are due to the Italian MURST for financial support.

REFERENCES AND NOTES

 1990, 123, 1443.

9. This procedure affords the desired products in higher yields than the previous procedure reported by
 Pozharskii in the synthesis of 1-hydroxymethyl-1H-indazoles.

Received, 8th October, 1993