A FACILE SYNTHESIS OF HIGHLY FUNCTIONALIZED UNSYMMETRICAL HETEROBIARYLS UTILIZING THE INTRAMOLECULAR ULLMANN COUPLING REACTION DIRECTED BY SALICYL ALCOHOL AS A TEMPLATE

Masami Takahashi, Tooru Kuroda, Tsuyoshi Ogiku, Hiroshi Ohmizu, Kazuhiko Kondo, and Tameo Iwasaki*

Department of Synthetic Chemistry, Research Laboratory of Applied Biochemistry, Tanabe Seiyaku Co., Ltd., 16-89 Kashima, Yodogawa, Osaka 532, Japan

Abstract-Heterobiaryls (4) were synthesized in good yields utilizing the intramolecular Ullmann coupling reaction directed by salicyl alcohol as a template. The regioselective cleavage of the two ester bonds of 4 gave the highly functionalized unsymmetrical heterobiaryls having substituents which are incompatible with organometallic reagents.

The highly functionalized unsymmetrical heterobiaryls are of considerable interest recently as useful intermediates in the synthesis of biologically active natural products such as tanshinone. The synthetic methods of heterobiaryls so far reported include those based on the transition metal-catalyzed cross coupling reaction of an aryl metal with an aryl halide and the intermolecular Ullmann coupling reaction. However, difficulties are frequently encountered in the transition metal-catalyzed cross coupling reactions between two aryls having substituents which are incompatible with the organometallic reagents. On the other hand, the intermolecular Ullmann coupling reaction gives rise to the undesired symmetrical biaryls. We recently reported that the template-directed intramolecular Ullmann coupling reaction is quite effective in the synthesis of a variety of diphenic acid derivatives. In connection with our synthetic studies in search of new compounds having intriguing biological activities, we now report a facile synthesis of highly functionalized unsymmetrical heterobiaryls utilizing the intramolecular Ullmann coupling reaction directed by salicyl alcohol as a template, followed by regioselective cleavage of the two ester bonds of 4.
Table 1. Yields of the Diacylations and the Ullmann Coupling Reactions

<table>
<thead>
<tr>
<th>entry</th>
<th>Ar^1 COCl</th>
<th>Ar^2 COCl</th>
<th>1 \rightarrow 3</th>
<th>product yield (%)*</th>
<th>3 \rightarrow 4</th>
<th>product yield (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ar^1 COCl</td>
<td>Ar^2 COCl</td>
<td>3ab</td>
<td>62</td>
<td>4ab</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>Ar^1 COCl</td>
<td>Ar^2 COCl</td>
<td>3ca</td>
<td>78</td>
<td>4ca</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>Ar^1 COCl</td>
<td>Ar^2 COCl</td>
<td>3cd</td>
<td>62</td>
<td>4cd</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>Ar^1 COCl</td>
<td>Ar^2 COCl</td>
<td>3ef</td>
<td>61</td>
<td>4ef</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>Ar^1 COCl</td>
<td>Ar^2 COCl</td>
<td>3gh</td>
<td>70</td>
<td>4gh</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>Ar^1 COCl</td>
<td>Ar^2 COCl</td>
<td>3ae</td>
<td>65</td>
<td>4ae</td>
<td>81</td>
</tr>
</tbody>
</table>

* isolated yield
The requisite diester (3) was prepared in a good yield in a one-pot procedure by the successive acylations of salicyl alcohol in dimethylacetamide at -30--20 °C by using two different aryl chlorides via the intramolecular rearrangement of the aryl group (Scheme 1).4 We first examined the intramolecular Ullmann coupling reaction of 3ab6 containing the 2-iodo-3,5-dichlorophenyl moiety and the 2-iodothiophene one, a reactive halide for the Ullmann coupling reaction. The dropwise addition of DMF (dimethylformamide) solution of 3ab to a refluxing DMF containing copper powder afforded the coupling product (4ab)7 in 78% yield (entry 1). The Ullmann coupling reaction of 3ca containing the 2-iodophenyl moiety having electron-donating substituents and the 2-iodothiophene one also proceeded in a good yield (entry 2). Even in the coupling reaction of the diester (3cd) having the 3-iodothiophene moiety that is less reactive than the 2-iodothiophene one for the Ullmann coupling reaction,8 the coupling product (4cd) was obtained in 67% yield. This intramolecular coupling reaction was nicely applied to the synthesis of 4ef and 4gh having the furan moieties (entries 4, 5). The coupling reaction of the diester (3ae) having two 2-iodoheteroaryl moieties also furnished the coupling product (4ae) in a good yield (entry 6).

We next examined the conversion of the two ester groups of the coupling products (4) into other functional groups different from one another (Scheme 2). Hydrogenolysis of 4gh using palladium on charcoal afforded the monoester (5) in 88% yield. On the other hand, treatment of 4ef with two molar equivalents of NaOMe in MeOH gave the monoester (6) in 76% yield. The reaction of 4ef with C6H13NH2 also gave the monoamide (7) in 91% yield. In these reactions, the nucleophiles probably attack on the carbonyl carbon of the phenyl ester moiety, resulting in the formation of the monocarboxylic acids by elimination of o-quinone methide.9
As described above, this new method involving the intramolecular Ullmann coupling reaction, followed by the regioselective cleavage of the two ester groups of the coupling products should find application in the synthesis of a variety of highly functionalized heterobiaryls having ester, nitro and amide groups which are incompatible with the organometallic reagents.

REFERENCES AND NOTES

6. mp 92–93 °C; ir (KBr) νmax 1754, 1724 cm⁻¹; ¹H nmr (CDCl₃) δ 5.36 (s, 2H), 7.25–7.75 (m, 8H); ms (m/z) 658 (M⁺); Anal. Calcd for C₁₉H₁₀O₄Cl₂I₂S: C, 34.63; H, 1.53. Found: C, 34.67; H, 1.50.

7. mp 171–172 °C; ir (KBr) νmax 1758, 1724 cm⁻¹; ¹H nmr (CDCl₃) δ 5.14 (d, J=12.1 Hz, 1H), 5.37 (d, J=12.1 Hz, 1H), 7.15–7.5 (m, 6H), 7.70 (d, J=2.2 Hz, 1H), 7.81 (d, J=2.2 Hz, 1H); ms (m/z) 404 (M⁺); Anal. Calcd for C₁₉H₁₀O₄Cl₂S: C, 56.30; H, 2.49; Cl, 17.50; S, 7.91. Found: C, 56.19; H, 2.39; Cl, 17.48; S, 7.65.

9. o-Quinonemethide was isolated as o-methoxymethylphenol or o-hexylaminomethylphenol which would be formed by the Micheal addition of the nucleophile to o-quinonemethide; see: A. B. Turner, *Quart. Rev.*, 1964, 18, 347.

Received, 3rd July, 1992