STEREOSPECIFIC SYNTHESIS OF (+)-HOMODEOXOARTEMISININ

Daniel A. Bustos, 1 Mankil Jung*,1,2 Hala N. ElSohly,1 and James D. McChesney1,3

1Research Institute of Pharmaceutical Sciences, 2Department of Medicinal Chemistry, and 3Department of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS 38677, U.S.A.

Abstract-The synthesis of (+)-homodeoxoartemisinin, 3, was achieved from artemisinic acid, 4, in eight steps.

Today, malaria infects up to 300 million people and kills up to 2 million each year.4 This shocking reality is due largely to the emergence of drug resistant strains of Plasmodium falciparum. Artemisinin (Qinghaosu, 1) isolated from Artemisia annua L. has recently been used in China as a new type of antimalarial drug with rapid action and low toxicity against chloroquine-resistant malaria.5,6 The combination of a novel chemical structure, a low yield from natural sources and urgency to develop a more ideal drug with enhanced antimalarial activity prompted us to search for a synthesis of new artemisinin-related compounds. Recently, we reported synthesis of (+)-deoxoartemisinin 2, a new and more active antimalarial agent devoid of the carbonyl function at C-12 while retaining the biologically active endoperoxide.7 Deoxoartemisinin, 2, shows several fold increased antimalarial activity in vitro against chloroquine-resistant malaria as compared to artemisinin.8 As nothing was known about the effect of size of ring D of artemisinin analogs on antimalarial activity, we elected to prepare the seven membered ring analog of deoxoartemisinin to evaluate the role of ring size for antimalarial activity. We report here a successful stereospecific conversion of artemisinic acid 4
Key: (a) LiBH₄, NiCl₂, CH₃OH, r.t., 1.5 h (b) DIBAL-H, CH₂Cl₂, -78°C, 2 h (c) LAH, NiCl₂, (C₂H₅)₂O, r.t., 1 h (d) PCC, CH₂Cl₂, r.t., 2 h (e) CH₃OCH₂P⁺Ph₃Cl, PhLi, (C₂H₅)₂O, r.t., 15 h (f) 37% HCl, THF, r.t., 15 min (g) LAH, (C₂H₅)₂O, r.t., 10 min (h) O₂, hv, methylene blue, CH₂Cl₂, -78°C, 2 h, then Dowex-resin (strongly acidic), hexane, r.t., 4 h.
into (+)-homodeoxoartemisinin 3.

Since artemisinic acid 4 obtained from Artemisia annua L. is approximately 8 to 10 times more abundant than artemisinin, 4 was chosen as a chiral starting material. Initial reduction of 5 (prepared from 4) by LiBH₄ in the presence of NiCl₂ in anhydrous methanol (r.t., 1.5 h) gave 6 in 95% yield, which was then exposed to a second reduction (DIBAL-H, methylene chloride, -78°C, 2 h) to afford the dihydroaldehydes, 7a and 7b, in a ratio of 5 to 1 (yield 67%) (Scheme 1). The (1R)-diasteromer, 7a, was also prepared from 8a. Thus, one-step double reduction of 5 by LAH and NiCl₂ in anhydrous ethyl ether (r.t., 1 h) afforded 8a and 8b with less stereoselectivity (8a:8b=2:1) in 51% yield. Alcohol 8a was separated from alcohol 8b by column chromatography (silica gel for tlc without gypsum). Oxidation of 8a by PCC in anhydrous methylene chloride (r.t., 2 h) gave (1R)-dihydroartemaldehyde 7a in 90% yield. Subsequent Wittig homologation of 7a by methoxymethyl-triphenylphosphonium chloride and phenyllithium in anhydrous ether (r.t., 15 h) afforded the vinyl methyl ether 9 in 90% yield (cis/trans=2/1). No epimerization at C-11 had occurred during this homologation. Treatment of the cis/trans mixture 9 with a few drops of 37% HCl (THF, r.t., 15 min) cleanly gave the homoaldehyde 10 in 70% yield. Further reduction of 10 into homoalcohol 11 was achieved by LAH in anhydrous ethyl ether (r.t., 10 min) (90% yield). Stereospecific photoxidative cyclization (oxygen, methylene blue and irradiation in methylene chloride at -78°C for 2 h) of 11, followed by in situ treatment with Dowex-resin (strongly acidic) afforded (+)-homodeoxoartemisinin 3₁₀ (21% yield) in one step and of natural configuration. The assignments of the ¹H-nmr and ¹³C-nmr signals were made on the basis of 2D-COSY and HETCOR spectra of (+)-homodeoxoartemisinin 3. The relative configuration at the new chiral centers, C-4, 5, 6 and 11 of 3 was unambiguously determined by utilization of the two dimensional nOe (NOESY) technique. The NOESY spectrum (Figure 1) showed interactions between 5-H (δ5.11, s), the 10-Hβ (δ1.42, m) and one of the 8-H protons (δ1.29, m) and one of the 13-H protons (δ3.52, m), demonstrating that the 5-H is β. No nOe enhancement was observed between 5-H and the 7-Hα (δ1.24, m) and between 5-H and 11-H (δ2.82, m), establishing that the 11-H is α. The strong deshielding of the 3-Hα observed (δ2.35, m) compared to the 3-Hβ (δ1.98, m) supports an assignment of the stereochemistry of C-4 and C-6₁₁b as depicted in 3.

(+)-Homodeoxoartemisinin 3 is found to show approximately 20 times less in vitro antimalarial activity compared to artemisinin 1 against chloroquine-resistant malaria. Enlargement of the D-ring which would allow greater flexibility of the overall ring system including the biologically active endoperoxide decreases significantly the in vitro antimalarial activity. The increased flexibility of the polycyclic structure may lead to poorer receptor fit or more probably decreased reactivity of the endoperoxide.

In conclusion, (+)-homodeoxoartemisinin 3, a novel antimalarial agent, was synthesized in eight steps (overall yield, 7.6%) from artemisinic acid.
(Figure I) NOESY Spectra of (+)-Homodeoxoartemisinin 3
ACKNOWLEDGMENTS

The financial support of the Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi is gratefully acknowledged. We also thank CONICET (Argentina) for a fellowship (D.A.B.). We wish to thank Mr. Frank Wiggers for recording the NMR spectra. The in vitro antimalarial activity was determined by Dr. Wilbur K Milhous at Walter Reed Army Institute of Research, Washington, D.C.

REFERENCES

1. Research Institute of Pharmaceutical Sciences, University of Mississippi.
2. Department of Medicinal Chemistry, University of Mississippi.
3. Department of Pharmacognosy, University of Mississippi.
5. Qinghaosu Antimalaria Coordinating Research Group, Yaoxue Tongbao, 1979, 14, 49.
10. Compound 3: mp 86-87°C (hexane). [α]D25 = +65.8° (c 1.2, CHCl3), 1H-nmr (CDCl3, δ, ppm, 300MHz): 0.91 (3H, d, J=7.1 Hz, H2-C-14), 0.94 (3H, d, J=6.4Hz, H3-C-15), 1.41 (3H, s, H2-C-16), 1.98 (1H, 2dd, J=3.1, 4.7 and 14.6 Hz, H-3β), 2.35 (1H, 2dd, J=3.97, 13.4 and 14.6 Hz, H-3α), 2.82 (1H, m, H-11), 3.52 (1H, 2dd, J=6.76, 8.8 and 13.0 Hz, H-13β), 4.23 (1H, 2dd, J=4.3, 8.4 and 13.0 Hz, H-13α), 5.11 (1H, s, H-5), C13-nmr (CDCl3, δ, ppm, 75 MHz): 20.13 (C-14), 21.09 (C-15), 22.20 (C-8), 25.01 (C-2), 25.94 (C-16), 26.34 (C-11), 33.56 (C-9), 35.07 (C-12), 35.93 (C-3), 37.58 (C-10), 50.90 (C-7), 52.98 (C-1), 65.74 (C-13), 85.34 (C-6), 99.29 (C-5), 103.58 (C-4). ir (CHCl3, cm⁻¹): 2950, 2880, 1440, 1380, 1100, 1050, 930, 880, 840, 660, ms m/z: 163, 107, 95, 93, 91, 81, 79, 77, 69, 67, 55 (100%), 53. Anal. Calcd for C14H24O4: C, 68.08; H, 9.22; O, 22.7. Found: C, 68.45; H, 9.11; O, 23.43.

11. For NOESY experiments of artemisinin and its analogs, see

Received, 25th September, 1989