SYNTHESIS OF DERIVATIVES OF 3,4-DIHYDRO-6H,8H-PYRIMIDO[4,5-c][1,2]OXAZIN-7-ONE

P. Kong Thoo Lin and D.M. Brown

MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, England

Abstract — In model experiments seeking a pyrimidine which had the hydrogen-bonding potential of both thymine and cytosine synthetic routes to the bicyclic 3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-7-one 2 ring system have been investigated. 1-Methyl-5-(2-bromoethyl)uracil 3 was converted to the 5-(2-phthalimido-oxyethyl) derivative 9 and then to the corresponding 4-triazolo derivative 10. Ammonia in dioxan afforded 6-methyl-3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-7-one 11. The ring closure of 4-oxyimino-5-(2-chloroethyl)pyrimid-2-ones was also investigated, yielding 1,6-dimethyl- and 1-benzyl-6-methylpyrimido[4,5-c][1,2]oxazin-7-one, but not the parent structure 12. Much earlier work has demonstrated that bases N4'-hydroxy- and N4'-methoxycytosine when introduced into DNA can base-pair with both adenine (A) and guanine (G) and can lead to replication errors and mutagenic changes 1,2. In explanation it is held that this is due to the fact that their tautomeric constants are around 10-30 (favouring the imino form) compared with the normal bases whose K_a values are 10^4-10^5; they can therefore hydrogen-bond either in the imino- or amino- form 3,4. In experiments designed to investigate this degeneracy oligodeoxynucleotides were constructed carrying an N4'-methoxycytosine (mo4c) residue. Melting profiles of duplexes with their oligomer complements showed that an mo4c residue when hydrogen-bonded to either A or G gave duplexes of comparable stability 5, although additional mo4c residues led to a progressive depression of the T_m value 6. Others have given evidence that the favoured conformer of mo4c is syn- la whereas hydrogen bonding with A or G requires the anti- lb conformation. The drastic reduction in T_m in a duplex containing N4'-methoxy-5-methylcytosine gave credence to this view, steric hindrance, in this instance further stabilising the syn- conformer 5.

Here we describe synthetic routes to the novel pyrimido-oxazin-7-one 2 ring system in which the oxy-amino function is held in an orientation corresponding to the anti- conformer lb. Experiments directed to the synthesis and properties of oligonucleotides containing the base 2 are in progress.
5-(2-Hydroxyethyl)uracil8 was converted to the 5-(2-chloroethyl)uracil9 by treatment with triphenylphosphine and tetrachloromethane9 and using tetrabromomethane, the corresponding 5-(2-bromoethyl)uracil9 was obtained. Each on silylation and treatment with methyl iodide gave the \textit{l}-methyl derivative 2 (X=Cl,Br). The chloro derivative reacted quantitatively with phosphoryl triazolide10 affording the 4-triazolopyrimid-2-one 4 and the latter with hydroxylamine hydrochloride in pyridine gave N4-hydroxycytosine 5. This compound proved to be unexpectedly stable to a variety of basic reagents and we were unable to induce it to ring close. However when 4 was treated at room temperature in pyridine with N-methylhydroxylamine hydrochloride, displacement of the triazolo group and ring closure occurred to give the pyrimido-oxazin-7-one 6 (R=Me). We surmise that base catalysed ring closure of 5 is inhibited by the preferential formation of the N3(\textit{s})-anion 7. By use of N-benzylhydroxylamine, 6 (R=CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}) was also obtained, although in much poorer yield. In initial experiments to remove the benzyl protecting group, palladium-catalysed hydrogen transfer led to rapid reduction by monitoring the mobility of the product on tlc. This was confirmed by examining the 1H-nmr spectrum of the isolated product which showed a doublet at \textgreek{6} 4.52 (J=5.4 Hz) (which gave a singlet on shaking with D\textsubscript{2}O) coupled with a triplet at \textgreek{6} 7.80 (J=5.4Hz) (which disappeared on shaking with D\textsubscript{2}O) indicating the presence of a -CH\textsubscript{2}-N-H group. Therefore the N-O bond cleavage had evidently occurred to afford \textit{l}-methyl-N4-benzyl-5-(2-hydroxyethyl)cytosine 8.

As an alternate method of ring closure the 5-(2-bromoethyl)uracil 3 (X=Br) was converted to the phthalimido-oxoethyl derivative 9 and then to the 4-triazolopyrimid-2-one 10. When the latter was treated with ammonia in anhydrous dioxan the desired 6-methylidydropyrimido-oxazin-7-one 11 was produced directly. Tlc experiments suggested that the initial displacement of the triazolo residue occurred to give the cytosine derivative; subsequent removal of the phthalimido group by ammonia11 then led via 12, to the expected displacement of the 4-amino group with ring formation.
Although we have not yet studied the tautomeric equilibrium in the 3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-7-one ring system, a uv spectral comparison of compound 11 with that of the N-1 methyl derivative 6 (R=CH₃) was obtained. In 95% ethanol, compounds 11 and 6 (R=CH₃) showed absorption maxima at 305.0 and 298.4 nm respectively. However in 0.1M HCl/95% ethanol their respective uv spectrum profiles was almost identical both showing a maximum absorption at 306.9 nm and thus implying that on protonation both compounds formed similar cations. The above evidence suggests the preponderance of compound 11 to be in the imino-tautomer form as in the case of N⁴-hydroxy- and N⁴-methoxycytosines.

EXPERIMENTAL

¹H-n.m.r. spectra were obtained with Varian HA100 and CFT-20 instruments with tetramethylsilane as internal standard. Unless otherwise stated values given on a δ scale refer to singlet absorption and integration values and signal assignment are in parentheses. For multiplet d = doublet, t = triplet, q = quartet and m = complex multiplet. Mass spectra were recorded with a Kratos MS30 instrument. Ultraviolet spectra were recorded on a Beckman DU-65 Spectrophotometer. Light absorption data refer to solutions in ethanol unless otherwise stated, inflections are given in parentheses. Tlc was carried out on precoated silica plates in dichloromethane-methanol, 90:10 (A) or 80:20 (B) and column chromatography was performed with Merck kieselgel 60H. Melting points were measured with a Kofler hot stage apparatus.

5-(2-Chloroethyl)uracil- A solution of 5-(2-hydroxyethyl)uracil (0.5 g, 3.2 mmol), triphenylphosphine (1.12 g, 4.32 mmol), anhydrous carbon tetrachloride (1.6 ml, 16 mmol) in anhydrous dimethylformamide (16 ml) was kept stirring at room temperature for 24 h. Evaporation of the deep yellow solution, in vacuo, and recrystallisation of the residue from methanol gave the product (0.41 g, 73%) as colourless crystals: mp 273-274°C; ¹H-nmr (CD₃)₂SO: 2.67(2H, t, J=7.1 Hz, CH₂), 3.67(2H, t, J=7.1 Hz, CH₂), 7.36 (1H, 6-H), 10.96 (2H, broad, N=).
Anal. Caled for C_{6}H_{7}N_{2}OCl: C, 41.3, H, 4.0, N, 16.1. Found: C, 41.5, H, 4.0, N, 16.0.

5-(2-Bromoethyl)uracil - This was synthesised as above but using carbon tetrabromide. The crude product was washed with methanol and crystallised from ethanol to give a colourless powder (42%): mp 255-260°C (decomp.); ¹H-nmr (CD_{3}SO): 2.71 (2H, t, J=7.0 Hz, CH_{2}), 3.56 (2H, t, J=7.0 Hz, CH_{2}), 7.36 (1H, d, J=5.5 Hz, 6-H), 10.81 (1H, d, J=4.0 Hz, N-H), 11.13 (1H, N-H).

Anal. Caled for C_{6}H_{7}N_{2}OBr: C, 58.6, H, 3.7, N, 15.2. Found: C, 58.6, H, 3.7, N, 15.2.

1-Methyl-5-(2-chloroethyl)uracil 3 (X=Cl) - To 5-(2-chloroethyl)uracil (150 mg, 0.86 mmol) was added hexamethyldisilazane (2.0 ml, 12 mmol) and triethylamine (30 ml) and the reaction mixture was left stirring for another 5 h. After evaporation of excess methanol, column chromatography in CHCl_{3}-CH_{2}OH (100:3) gave the product as colourless crystals (120 mg, 74%): mp 174-175°C; ¹H-nmr(CHCl_{3}): 2.74 (2H, t, J=6.1 Hz, CH_{2}), 3.38 (3H, CH_{3}), 3.71 (2H, t, J=6.1 Hz, CH_{2}), 7.10 (1H, 6-H), 9.44 (1H, broad, N-H).

Anal. Caled for C_{7}H_{9}NClO: C, 64.7, H, 4.8, N, 14.9. Found: C, 64.8, H, 4.7, N, 14.6; ms: Found, m/z 188.0360 (M^{+}, 7.5). Calecd for C_{7}H_{9}N_{2}ClO, 188.0352.

1-Methyl-5-(2-bromoethyl)uracil 3 (X=Br) was synthesised as above from 5-(2-bromoethyl)uracil. It gave colourless crystals (56%) from methanol: mp 184-185°C; ¹H-nmr(CHCl_{3}): 2.70 (2H, t, J=7.4 Hz, CH_{2}), 3.32 (3H, N-CH_{3}), 3.32 (2H, t, J=7.4 Hz, CH_{2}), 7.62 (1H, 6-H), 11.34 (1H, N-H).

Anal. Caled for C_{7}H_{9}N_{2}BrCl: C, 44.0, H, 3.9, N, 12.0. Found: C, 44.1, H, 4.5, N, 14.4; ms: Found, m/z 153.0666 (M^{+}-Br, 100). Calecd for C_{7}H_{9}N_{2}BrCl, 153.0664.

1-Methyl-4-triazolo-5-(2-chloroethyl)pyrimidine 4 - Phosphorus oxychloride (4 ml) was added to a suspension of triazole (12.8 g, 11 mmol) in dry acetonitrile (300 ml) at 0°C followed by addition of anhydrous triethylamine (30 ml) and the suspension was left stirring for 0.5 h. A solution of 3 (X=Cl) (2.06 g, 11 mmol) in acetonitrile (25 ml) was added slowly to the above suspension and the reaction mixture was left stirring for another 5 h. Excess solvent was removed under vacuum and saturated bicarbonate solution (100 ml) was added, followed by extraction with chloroform (3x 25 ml). Evaporation of the solvent yielded a crude which was purified by column chromatography to afford pale yellow crystals (1.75 g, 60%): mp 122-123°C; ¹H-nmr(CHCl_{3}): 3.31 (2H, t, J=6.0 Hz, CH_{2}), 3.65 (3H, N-CH_{3}), 3.82 (2H, t, J=6.0 Hz, CH_{2}), 7.76 (1H, 6-H), 8.10 (1H, triazole-H), 9.31 (1H, triazole-H).

Anal. Caled for C_{9}H_{10}NOCl: C, 45.1, H, 4.2, N, 29.2. Found: C, 44.7, H, 4.2, N, 29.4; ms: Found, m/z 239.0588 (M^{+}, 2.18). Calecd for C_{9}H_{10}NOCl, 239.0574.

1-Methyl-4-hydroxy-5-(2-chloroethyl)cytosine 5 - The above triazole compound (0.1 g; 0.42 mmol) and hydroxylamine hydrochloride (0.058 g; 0.82 mmol) were stirred in dry pyridine at room temperature for 12 h. Working up by washing a chloroform solution of the product with sodium bicarbonate solution and crystallisation from acetonitrile gave colourless needles (0.15 g, 90%): mp 148-149°C; ¹H-nmr(CH_{3}SO): 2.57 (2H, t, J= 7.0 Hz, CH_{2}), 3.08 (3H, N-CH_{3}), 3.73 (2H, t, J= 7.0 Hz, CH_{2}), 6.85 (1H, 6-H), 9.36 (1H, N-H), 10.05 (1H, N-OH).
Reaction of 5 under a variety of conditions with (a) triethylamine in acetonitrile, (b) saturated methanolic ammonia and (c) tetramethylguanidine in dimethylformamide all gave back starting material.

1,6-Dimethyl-3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-2-one 6 (R=CH₃) - Compound 4 (0.31 g, 1.29 mmol) was stirred with N-methylhydroxylamine hydrochloride (0.54 g, 6.47 mmol) in anhydrous pyridine (10 ml) for 12 h at room temperature. After removal of solvent the residue was worked up the usual way. The crude (0.20 g) after column chromatography and pyridine by column chromatography. Reducing of 5 (0.20 g) after column chromatography and recrystallisation from dioxan afforded the product as colourless needles (160 mg, 68%): m.p. 203.0 ± 0.4°C (Found: C, 41.0; H, 4.9; N, 20.5); calcd for C₇H₁₀N₃O₂Cl, m/z 203.0465 (M⁺, 7.44). Calcd for C₇H₁₀N₃O₂, 203.0461.

Reduction of 6 (R=CH₃) from 4 (0.36 g, 1.5 mmol) and N-benzylhydroxylamine hydrochloride (1.19 g, 7.5 mmol) in anhydrous pyridine (10 ml). The major product (54 mg, 13%) was isolated by column chromatography. In H-Nmr (CDCl₃): 2.73 (2H, t, J=5.5 Hz, CH₂), 3.47 (3H, N-CH₃), 3.51 (2H, t, J=6.3 Hz, CH₂), 4.14 (2H, t, J=5.7 Hz, CH₂), 7.06 (1H, 6-H); uv (0.1 M HCl/95% C₂H₅OH): λ max: 257.5, 306.9. Calcd: 3.26, 3.89; (95% C₂H₅OH) λ max: 250.6, 298.4; log ε: 3.43, 3.95.

Anal. Calcd for C₁₅H₁₃N₃O₂: C, 53.0; H, 4.1; N, 25.4. Found: C, 53.3; H, 4.0; N, 25.6; ms: Found, m/z 315.0855 (M⁺, 0.48). Calcd for C₁₅H₁₃N₃O₂, 315.0856.
0.95 mmol) in acetonitrile (10 ml). The reaction was completed in 4 h. Working up in the usual way gave a solid which was recrystallised from dioxan to give colourless needles (0.14 g, 42%): mp 255-256°C; 1H-nmr (CD$_3$)$_2$SO: 3.20 (ZH, t, J=6.6 Hz, CH$_2$), 3.51 (3H, CH$_3$), 4.28 (2H, t, J=6.6 Hz, CH$_2$), 7.87 (4 H, aromatic protons), 8.18 (1H, 6-H), 8.57 (1H, triazolo proton), 9.31 (1H, triazolo proton).

Anal. Calcd for C$_{17}$H$_{14}$N$_6$O$_4$: C, 55.7; H, 3.8; N, 23.0. Found: C, 55.5; H, 3.9 N, 23.2; ms: Found, m/z 366.1101 (M, 0.24). Calcd for C$_{17}$H$_{14}$N$_6$O$_4$, 366.1076.

6-Methy1-3,4-dihydro-6H,8H-pyrimid14,5-[1,2]oxazin-7-one - Compound 10 (166 mg, 0.47 mmol) was dissolved in hot anhydrous dioxan (3 ml) followed by addition of saturated dioxan/ammonia (4 ml). The sealed reaction bottle was kept at 70°C in an oil bath for 4 h. Cooling, evaporation of the solvent and chromatography gave colourless crystals of the product (47 mg, 60%): mp 252-253°C; 1H-nmr (CD$_3$)$_2$SO: 2.50 (2H, t, H=5.5 Hz, CH$_2$), 3.07 (3H, N-CH$_3$), 3.79 (2H, t, J=5.5 Hz, CH$_2$), 6.82 (1H, 6-H), 10.55 (1H, N-H); uv (0.1 M HCl/95% C$_2$H$_5$OH) λ_{max}: (263.2), 306.9; log ε: 3.35, 3.88; (95% C$_2$H$_5$OH) λ_{max}: (264.3); 305.0; log ε: 3.20, 3.75.

Anal. Calcd for C$_{7}$H$_{9}$N$_3$O$_2$: C, 50.3; H, 5.4; N, 25.1. Found: C, 50.4; H, 5.6; N, 22.2; ms: Found, m/z 167.0700 (M, 100). Calcd for C$_{7}$H$_{9}$N$_3$O$_2$, 167.0691.

ACKNOWLEDGEMENT The authors wish to thank Trinity College, Cambridge and Pharmacia LKB Biochrom Ltd. for financial support.

REFERENCES

Received, 28th April, 1989