SYNTHESSES AND FLASH VACUUM PYROLYSES OF HIGHLY FUNCTIONALIZED α-N-HYDROXY AMINO ACIDS

Nai Zhong Huang and Marvin J. Miller*
Department of Chemistry, University of Notre Dame, Notre Dame, IN 46556 USA
and
Frank W. Fowler
Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794 USA

Abstract—Flash vacuum pyrolysis (FVP) of N-acetoxy-N-vinyacetylmethionine sulfoxide and N-acetyl-N-hexadienoylglycine produced dihydropyridones, presumably by cycloaddition reactions of intermediate imines.

Pyrolysis of O-acylhydroxylamine and hydroxamic acid derivatives provides direct access to a number of imines and azadienes which may be used in heterocycloaddition reactions. Fowler and coworkers reported the generation of N-acyl-1-azadienes by the thermal elimination of acetic acid from O-acetylhydroxamic acids.1 When appropriately substituted, these reactive intermediates underwent intramolecular Diels-Alder reactions to produce bicyclic γ-lactams (1→3). Weinreb and coworkers have used similar strategy in their development and use of imino Diels-Alder routes for alkaloid syntheses (4→6).2 The facile generation of γ-lactams 3 and 6 prompted us to consider the use of related chemistry for the preparation of structurally similar carbacephalosporin nuclei 9 and 123 despite their enhanced reactivity and anticipated strained transition states 8 and 11. Herein we describe the syntheses two highly functionalized N-hydroxy amino acid derivatives 7 (R=tBu) and 10 (R=Me), which upon pyrolyses were anticipated to form intermediates 8 and 11. The ultimate isolable products were 2-pyridone derivatives.

![Reaction Scheme](image)

1

--- 1821 ---
The choice of 7 as a precursor of 8 was based on Fowler's precedent for pyrolytic generation of imines from O-acylhydroxamates, and Rapoport's thermal conversion of methionine sulfoxides to vinylglycine derivatives. Thus, the first requirement was the conversion of L-methionine to N-hydroxy-L-methionine. Towards this end, L-methionine was treated with sodium nitrate and 3N \(\text{H}_2\text{SO}_4 \), the usual amino acid diazotization conditions, in the presence of excess KBr to afford the \(\alpha \)-bromo carboxylic acid 14 in 62% yield. Conversion of 14 to the t-butyl ester 15 was accomplished in 63% yield by treatment with t-butyl acetate (solvent) and catalytic perchloric acid in a sealed flask at room temperature for 60h. The reaction of hydroxylamine with bromide 15 required the use of a large excess of hydroxylamine (800 mole %) in refluxing methanol.

The desired N-hydroxy amino acid 18 was then isolated in 50% yield along with 11% of its isomer 17. While the details related to the formation of isomer 17 have yet to be elucidated, formation of an intermediate sulfonium ion (16) would be consistent. In fact, both of the isomers could be obtained from the same intermediate. If so, the desired product may have been formed with net retention of configuration. These and other details of this interesting reaction are being considered. Careful reaction of hydroxylamine 18 with vinyl acetyl chloride in pyridine gave the hydroxamate 19 in 84% yield without conjugation of the double bond. Subsequent acylation with acetyl chloride in pyridine gave the O-acetyl hydroxamate 20 in 82% yield. Oxidation of 20 with \(\text{NaIO}_4 \) gave the desired substrate, sulfoxide 7, in quantitative yield.
Flash vacuum pyrolysis of 7 was performed in Professor Fowler's laboratory at Stony Brook. Below 300°C no reaction occurred. NMR, IR and chromatographic analysis of crude pyrolysis products during a progression from 300°C to 450°C indicated that elimination of sulfenic acid and acetic acid proceeded as desired, but an additional loss of the t-butyl ester was competitive. Of the several products formed, no carbacephalosporin was detected. Only a low yield (11%) of the dihydropyridone 23 was obtained. Formation of 23 may proceed through diene 21 produced from the desired eliminations and concomitant decarboalkoxylation. Thermal cyclization of the enol form 22 would produce the observed product 23. These results prompted the study of a less highly functionalized substrate.

Preparation of the alternate substrate 10 was accomplished as shown in Scheme 2. Dimethyl tartrate was oxidatively cleaved with periodic acid to give methyl glyoxylate (25) in 80% yield. Oxime 26 was obtained in 83% yield by reaction of 25 with 100 mole% each of NH₂OH·HCl and NaHCO₃ in water, followed by extraction. The reduction of 26 with sodium cyanoborohydride in the presence of 3,5-hexadienoic anhydride gave the N-acylated N-hydroxyglycine methyl ester (27) in low (16%) yield because of apparent competitive polymerization of the hexadienoic anhydride. O-Acetylation with acetyl chloride in pyridine produced the desired substrate 10 in 86% yield. Submission of 10 to flash vacuum pyrolysis also did not produce 12, but a mixture of two dihydropyridones 29 and 30 in 10% yield as the only isolable products. Presumably 29 and 30 formed from alternate reactions of the desired intermediate 11 (Scheme 2).
Although the intramolecular aza Diels-Alder cyclization provides an efficient strategy for the preparation of the carbacephalosporin nucleus, the reduction of this strategy to practice will have to solve the problems encountered in this communication. However, further optimization may result in useful methodology for the preparation of substituted dihydropyridones and other heterocycles.12

ACKNOWLEDGEMENTS

We gratefully acknowledge the National Institutes of Health and Eli Lilly and Company for support of this research.

REFERENCES AND NOTES

12. Selected characterization data includes: 14, nmr (CDCl3) \(\delta 2.1\) (s, 3H), 2.3 (m, 2H), 2.6 (t, J = 6.2 Hz, 2H), and 4.5 (t, J = 6.5 Hz, 1H); ir (neat) 1700 cm\(^{-1}\); ms, m/z 215 (M\(^+\) + 2), 213 (M\(^+\)).

15. nmr (CDCl3) \(\delta 1.5\) (s, 9H), 2.2 (s, 3H), 2.2 - 2.4 (m, 2H), 2.7 (m, 2H), 4.5 (t, J = 6.1 Hz, 1H); ir (neat) 1720 cm\(^{-1}\). 16, nmr (CDCl3) \(\delta 1.44\) (s, 9H), 1.84 (m, 2H), 2.04 (s, 3H), 2.52 (t, J = 7.5 Hz, 2H) and 3.60 (dd, J = 7.4 and 7.4 Hz, 1H); ir (CDCl3) 1725 cm\(^{-1}\) (C=O); ms, exact mass calcd for CgH1gN03, 221.108, found 221.108.

19, nmr (CDCl3) \(\delta 1.50\) (s, 9H), 2.11 (s, 3H), 2.14 (m, 2H), 2.52 (t, J = 7.1 Hz, 2H), 3.34 (d, J = 6.4 Hz, 2H), 5.20 (m, 3H) and 5.98 (m, 1H); ir 1730, 1640 cm\(^{-1}\) (C=O); ms, exact mass calcd for CgH23N04S, 289.134, found 289.135.

20, nmr (CDCl3) \(\delta 1.5\) (s, 9H), 2.0 (s, 3H), 2.1 (m, 2H), 2.2 (s, 3H), 2.6 (t, J = 6.2 Hz, 2H), 3.2 (d, J = 6.4 Hz, 2H), 5.2 (m, 3H) and 6.0 (m, 1H); ir (CDCl3) 1790, 1730 cm\(^{-1}\) (C=O); ms, exact mass calcd for C15H25N05S, 331.145, found 331.145. 7, nmr (CDCl3) \(\delta 1.41\) (s, 9H), 2.18 (s, 3H), 2.45 (m, 2H), 2.55 (double singlets, 3H), 2.85 (m, 2H), 3.10 (m, 2H), 4.96 (dd, J = 11.2 and 4.2 Hz, 1H), 5.12 (d, J = 17.5 Hz, 1H), 5.17 (d, J = 11.2 Hz, 1H) and 5.88 (m, 1H); ir (CDCl3) 1790, 1730 cm\(^{-1}\) (C=O); ms, exact mass calcd for C15H25N06S, 347.140 found 347.140.

27, nmr (CDCl3) \(\delta 3.4\) (d, J = 6.5 Hz, 2H), 3.8 (s, 3H), 4.4 (s, 2H), 5.1 (dd, J = 16.4 and 9.5 Hz, 2H), 5.8 (m, 1H) and 6.2-6.4 (m, 2H); ir (CDCl3) 1745, 1640 cm\(^{-1}\) (C=O); ms, exact mass calcd for C9H13N04, 199.084 found 199.085.

10, nmr (CDCl3) \(\delta 2.20\) (s, 3H), 3.20 (d, J = 6.5 Hz, 2H), 3.72 (s, 3H), 4.20 (s, 2H), 5.12 (dd, J = 17.2 and 10.3 Hz, 2H) 5.97 (m, 1H) and 6.1-6.5 (m, 2 H); ir (CDCl3) 1795, 1750, 1683 cm\(^{-1}\) (C=O); ms, exact mass calcd for C11H15N05 241.095 found 241.096. 23, nmr (CDCl3) \(\delta 2.26\) (m, 4H), 5.06 (m, 2H), 5.70 (dd, J = 17.6 and 10.6 Hz, 1H) and 6.00 (t, J = 7.7 Hz, 1H). Irradiation at 6.26 resulted in the collapse of 6.0 from triplet to singlet; ir (CDCl3) 3520, 3400 cm\(^{-1}\) (NH), 1700 cm\(^{-1}\) (C=O); ms, m/z 123 (M\(^+\)); mixture of 29 and 30, ir (CDCl3) 3425 cm\(^{-1}\) (NH) 1740, 1670 cm\(^{-1}\) (C=O); ms, m/z 181 (M\(^+\)).

29, nmr (CDCl3) \(\delta 3.15\) (dd, J = 7.3 Hz, 1H), 3.67 (s, 3H), 4.63 (dd, J = 7.6 and 5.8 Hz, 1H), 5.10 (dd, J = 16.0 and 9.3 Hz, 2H), 5.7 (m, 2H) and 6.3 (dd, J = 16.0, 9.7 and 7.3 Hz, 1H) Irradiation at 6.47 region resulted in the collapse of 6.15 from double doublet to double doublet. Irradiation at 6.32 resulted in the collapse of 6.47 from double doublet to doublet. 30, nmr (CDCl3) \(\delta 3.0\) (d, J = 7.2 Hz, 2H), 3.7 (s, 3H), 5.1 (m, 2H), 5.7 (m, 1H), 6.0 (d, J = 7.0 Hz, 1H) and 6.1 (dd, J = 15 and 10.9 Hz, 1H) Irradiation at 6.57 resulted in the collapse of 6.30 from a doublet to a singlet.