ABOUT THE FACTORS WHICH GOVERN THE RING-OPENING OF α-LACTAMS WITH BENZYLAMINE: I. THE RELATIVE STABILITY OF THE α-LACTAM AND THE SUBSTITUENT ON NITROGEN

István Lengyel,* Victor Cesare, Sihao Chen, and Tony Taldone

Department of Chemistry, St. John’s University, Jamaica, New York 11439, USA email: cesarev@stjohns.edu

Abstract—Eight α-lactams (aziridinones) of varying stability, one of them previously unreported, were synthesized and reacted with benzylamine. Three of the α-lactams, 1-(1-adamantyl)-3,3-dimethylaziridinone (2j), 3,3-dimethyl-1-triphenylmethylaziridinone (2m), and 3-phenyl-1-triphenylmethylaziridinone (2o) gave α-benzylaminoamides (3j, 3m, 3o) as products, indicating C3-N bond cleavage. Four α-lactams, 1,3-di-tert-butylaziridinone (2g), 1-tert-butyl-3-triphenylmethylaziridinone (2i), 1-(1-adamantyl)-3-tert-butylaziridinone (2k), and 1-(1-adamantyl)-3-triphenylmethylaziridinone (2l) yielded N-benzylamides (4g, 4i, 4k, 4l), resulting from C2-N bond cleavage. 3-(1-Adamantyl)-1-triphenylmethylaziridinone (2n) gave a mixture of both types of adduct (3n, 4n). Based on these experimental results, two important factors which govern the ring-opening of α-lactams are the relative stability of the α-lactam and the substituent on nitrogen.

INTRODUCTION

A great deal of effort has been expended in trying to unravel the factors that govern the regioselectivity in nucleophilic ring-opening of stable α-lactams (aziridinones),$^{1-4}$ as well as α-lactam intermediates5,6 generated in situ. However, no single theory has emerged to date that would satisfactorily explain all the experimental results.

For example,7 the reaction of 1-tert-butyl-3,3-dimethylaziridinone (2a) with benzylamine gave the α-benzylamino-N-tert-butylamide (3a), as the only product, in good yield (Scheme 1), indicating a ring opening by cleavage of the C3-N bond. It should be noted that this is the general ring-opening of α-lactams with protic non-ionic nucleophiles such as water, alcohols, thiols, and amines,1,2 although some exceptions have been observed.$^{1-4}$

Scheme 1. The reaction of 1-tert-butyl-3,3-dimethylaziridinone (2a) with benzylamine.
In 1997, Shimazu et al. reported\(^8\) that four \(\alpha\)-lactams (2b-e) substituted at C\(_3\) and/or the nitrogen by the bulky \(\alpha,\alpha\)-dimethylbenzyl group, as well as 3-\(\text{tert}\)-butyl-1-triphenylmethylaziridinone (2f), gave \(N\)-benzylamides (4b-f) with benzylamine, resulting from C\(_2\)-N bond cleavage (Scheme 2).

Scheme 2. The reaction of \(\alpha\)-lactams (2b-e) with benzylamine.

![Chemical structure](image)

<table>
<thead>
<tr>
<th>(\alpha)-Lactam</th>
<th>Product</th>
<th>R(_1)</th>
<th>R(_2)</th>
<th>R(_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2b</td>
<td>4b</td>
<td>Dmb</td>
<td>H</td>
<td>(t\text{-}C_4\text{H}_9)</td>
</tr>
<tr>
<td>2c</td>
<td>4c</td>
<td>Dmb</td>
<td>H</td>
<td>Ad</td>
</tr>
<tr>
<td>2d</td>
<td>4d</td>
<td>(t\text{-}C_4\text{H}_9)</td>
<td>H</td>
<td>Dmb</td>
</tr>
<tr>
<td>2e</td>
<td>4e</td>
<td>Dmb</td>
<td>H</td>
<td>Dmb</td>
</tr>
</tbody>
</table>

*Ad denotes 1-adamantyl, \(C_{10}H_{15}\)-
Dmb denotes \(\alpha,\alpha\)-dimethylbenzyl, \(C_6H_5C(CH_3)_2\)-

In contradiction to the latter report, we have demonstrated\(^9\) that the product of the reaction of 3-\(\text{tert}\)-butyl-1-triphenylmethylaziridinone (2f) with benzylamine is rather the \(\alpha\)-benzylamino-\(N\)-tritylamide (3f) (Scheme 3).

Scheme 3. The reaction of 3-\(\text{tert}\)-butyl-1-triphenylmethylaziridinone (2f) with benzylamine.

![Chemical structure](image)

In 1998, Talaty et al. reported\(^10\) that 1,3-di-\(\text{tert}\)-butylaziridinone (2g)\(^11\) with benzylamine in boiling toluene gave the \(N\)-benzylamide adduct (4g) in 92% yield (Scheme 4), while 3-(1-adamantyl)-1-\(\text{tert}\)-butylaziridinone (2h)\(^12\) gave a 1:4.88 mixture of the \(\alpha\)-benzylaminoamide (3h) and \(N\)-benzylamide (4h), respectively (Scheme 5), in 89% overall yield.
Scheme 4. The reaction of 1,3-di-tert-butylaziridinone (2g) with benzylamine.

\[
\begin{array}{c}
t-C_4H_9-\text{CH}\text{C}_\text{N} \quad \text{PhCH}_2\text{NH}_2 \\
t\text{C}_4H_9-t \\
\end{array}
\xrightarrow{\text{Boiling toluene}}
\begin{array}{c}
t-C_4H_9-\text{CH}-\text{C}_\text{N}-\text{CH}_2\text{Ph} \\
t\text{C}_4H_9-t \\
\end{array}
\]

Scheme 5. The reaction of 3-(1-adamantyl)-1-tert-butylaziridinone (2h) with benzylamine.

\[
\begin{array}{c}
\text{Ad}\text{-CH}\text{C}_\text{N} \quad \text{PhCH}_2\text{NH}_2 \\
\text{Ad}\text{-C}_4H_9-t \\
\end{array}
\xrightarrow{\text{Boiling toluene}}
\begin{array}{c}
\text{Ad}\text{-CH}-\text{C}_\text{N}-\text{CH}_2\text{Ph} \\
\text{Ad}\text{-C}_4H_9-t \\
\end{array}
\]

However, no important structure-proving spectral data for these products (3h, 4g-h) were given. Lastly, in a recent report13 it was revealed that the reaction of a bis-\(\alpha\)-lactam, cis-1, 1′(\(p\)-menth-1,8-ylene)bis(3-tert-butyl-2-aziridinone) (5) with benzylamine also leads to the bis-\(N\), \(N\)′-benzylamide type product (6) (Scheme 6).

Scheme 6. The reaction of cis-1, 1′(\(p\)-menth-1,8-ylene)bis(3-tert-butyl-2-aziridinone) (5) with benzylamine.

In summary, before this investigation, nine \(\alpha\)-lactams (2a-h, 5) have been reacted with benzylamine, with results that strike one as conflicting, contradictory, and confusing. Sometimes C\textsubscript{2}-N bond cleavage occurs, while other times the C\textsubscript{3}-N bond is cleaved.

RESULTS AND DISCUSSION

The present investigation was undertaken with the purpose to:
(a) gain an understanding of the causes why some α-lactams with benzylamine yield α-benzylaminoamides (3) while others give N-benzylamides (4),

(b) elucidate the structural parameters that determine which product will form.

In order to achieve these goals, the reaction conditions, such as solvent (THF) and temperature (rt), as well as the amount of the nucleophilic reagent (benzylamine), unless otherwise indicated, were set constant for all of the α-lactam ring-opening reactions reported in this study. Only the reacting α-lactam was varied.

1. Synthesis of the α-lactams.

Eight aziridinones (2g, i-o, Table 1), one (2o) of them new (previously unreported), were synthesized. Table 1. The eight aziridinones synthesized for this investigation*.

<table>
<thead>
<tr>
<th>CH<sub>t</sub>-C<sub>4</sub>H<sub>9</sub> CO N<sub>C<sub>4</sub>H<sub>9</sub>-t</sub></th>
<th>Ph<sub>3</sub>C—CH—C=O</th>
<th>CH<sub>3</sub>—C—C=O</th>
<th>t-C<sub>4</sub>H<sub>9</sub>—CH—C=O</th>
</tr>
</thead>
<tbody>
<tr>
<td>2g</td>
<td>2i</td>
<td>2j</td>
<td>2k</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ph<sub>3</sub>C—CH—C=O</th>
<th>CH<sub>3</sub>—C—C=O</th>
<th>Ad—CH—C=O</th>
<th>Ph—CH—C=O</th>
</tr>
</thead>
<tbody>
<tr>
<td>2l</td>
<td>2m</td>
<td>2n</td>
<td>2o</td>
</tr>
</tbody>
</table>

*Ad denotes 1-adamantyl.

1,3-Di-<i>tert</i>-butylaziridinone¹¹ (2g) and 1-(1-adamantyl)-3-<i>tert</i>-butylaziridinone¹⁴ (2k) were synthesized by the phase-transfer catalysis (PTC) method introduced by Scrimin <i>et al.</i>¹⁵ (Scheme 7).

Scheme 7. The PTC synthesis of α-lactams (2g and 2k).

1-(1-Adamantyl)-3,3-dimethylaziridinone¹⁶ (2j) was synthesized by 1,3-dehydrobromination of N-(1-adamantyl)-2-bromo-2-methylpropanamide (1j) with sodium <i>tert</i>-butoxide (NaOt_{C₄H₉}), using the slight but important modification introduced by Simig <i>et al.</i>¹⁷ (Scheme 8). The same procedure was used in the preparation of 3,3-dimethyl-1-triphenylmethylaziridinone (2m)¹⁸ and 3-phenyl-1-triphenylmethylaziridinone (2o).
Scheme 8. Synthesis of α-lactams (2j, 2m, 2o).

The synthesis, physical and spectral properties, limits of thermal stability and some reactions of 1-tert-butyl-3-triphenylmethylaziridinone (2i), 1-(1-adamantyl)-3-triphenylmethylaziridinone (2l), and 3-(1-adamantyl)-1-triphenylmethylaziridinone (2n) are reported elsewhere.

2. Reaction of the α-lactams with benzylamine.

Benzylamine, with a pK_b of 4.64, is a good nucleophile, which reacts even with the most stable α-lactams at room temperature. The reaction time varies from a few min to 120 h. Three of the α-lactams, 1-(1-adamantyl)-3,3-dimethylaziridinone (2j), 3,3-dimethyl-1-triphenylmethylaziridinone (2m), and 3-phenyl-1-triphenylmethylaziridinone (2o) gave α-benzylaminoamides (3j, 3m, 3o) resulting from cleavage of the C3-N bond (Scheme 9).

Scheme 9. The reaction of α-lactams (2j, 2m, and 2o) with benzylamine.

Four α-lactams, namely 1,3-di-tert-butylaziridinone (2g), 1-tert-butyl-3-triphenylmethylaziridinone (2i), 1-(1-adamantyl)-3-tert-butylaziridinone (2k), and 1-(1-adamantyl)-3-triphenylmethylaziridinone (2l) yielded α-alkylamino-N-benzylamides (4g, i, k, l) resulting from cleavage of the C2-N bond.
(Scheme 10) and one, 3-(1-adamantyl)-1-triphenylmethylaziridinone (2n) gave a mixture of both type of products (3n and 4n), with the predicted α-benzylaminoamide predominating (Scheme 11).

Scheme 10. The reaction of α-lactams (2g, 2i, 2k, and 2l) with benzylamine.

![Scheme 10](image)

<table>
<thead>
<tr>
<th>α-Lactam</th>
<th>Product</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>2g</td>
<td>4g</td>
<td>t-C₄H₉</td>
<td>H</td>
<td>t-C₄H₉</td>
</tr>
<tr>
<td>2i</td>
<td>4i</td>
<td>Ph₃C</td>
<td>H</td>
<td>t-C₄H₉</td>
</tr>
<tr>
<td>2k</td>
<td>4k</td>
<td>t-C₄H₉</td>
<td>H</td>
<td>Ad</td>
</tr>
<tr>
<td>2l</td>
<td>4l</td>
<td>Ph₃C</td>
<td>H</td>
<td>Ad</td>
</tr>
</tbody>
</table>

Scheme 11. The reaction of α-lactam (2n) with benzylamine.

![Scheme 11](image)

The reactions with benzylamine were carried out on pure samples of α-lactams, except 2j, 2m and 2o. The latter three proved difficult to purify and, therefore, were generated in ether solution at 0°C *in situ*, and reacted directly with benzylamine without isolation. These three α-lactams had an extent of purity of about 80 %, as calculated from the ratio of the α-lactam (1840 cm⁻¹) *versus* α-bromo amide (1685 cm⁻¹) carbonyl bands in the IR spectra.

All benzylamine reaction products obtained in this study have been fully characterized by mp, TLC Rₐ value, IR, ¹H-NMR, ¹³C-NMR, MS, and elemental analysis. The reaction times, isolated yields (of pure products), mps, and IR carbonyl bands are listed in Tables 2 and 3.
Table 2. Reaction times, isolated yields of pure products, mps and IR carbonyl bands of the α-benzylaminoamide type products.

<table>
<thead>
<tr>
<th>Product</th>
<th>Time (h)</th>
<th>% Yield</th>
<th>mp (°C)</th>
<th>IR (CCl₄; cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3j</td>
<td>2</td>
<td>84.5*</td>
<td>100-102</td>
<td>1678</td>
</tr>
<tr>
<td>3m</td>
<td>12</td>
<td>74.3*</td>
<td>156-157</td>
<td>1690</td>
</tr>
<tr>
<td>3o</td>
<td>2</td>
<td>52.6*</td>
<td>119-121</td>
<td>1696</td>
</tr>
</tbody>
</table>

*based on α-bromo amide as starting material

Table 3. Reaction times, isolated yields of pure products, mps, and IR carbonyl bands of the N-benzylamide type products.

<table>
<thead>
<tr>
<th>Product</th>
<th>Time (h)</th>
<th>% Yield</th>
<th>mp (°C)</th>
<th>IR (CCl₄; cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4g</td>
<td>120</td>
<td>98</td>
<td>90-91</td>
<td>1674</td>
</tr>
<tr>
<td>4i</td>
<td>120</td>
<td>84.6</td>
<td>151-154</td>
<td>1671</td>
</tr>
<tr>
<td>4k</td>
<td>72</td>
<td>83.8</td>
<td>132-134</td>
<td>1673</td>
</tr>
<tr>
<td>4l</td>
<td>22</td>
<td>99</td>
<td>164-165</td>
<td>1669</td>
</tr>
</tbody>
</table>

The two types of adducts (3 and 4) that can result from the reaction of α-lactams with benzylamine are not only structural isomers, they are also very closely related, both being α-N-alkylaminoamides. As a result, they are difficult to distinguish without having both structural isomers at hand. Therefore, it is essential to obtain and study all spectral data, and compare it with those available in the literature, before making a structure assignment.

An unequivocal distinction between the two structural alternatives can be made by a combination of MS, NMR, and to a lesser extent, IR. For example, Figure 1 and Table 4 demonstrate how one can distinguish between two structural isomers on the basis of their MS, NMR, and IR.

Figure 1. Distinguishing between the two structural isomers on the basis of MS.

```
3f
\[
\begin{array}{c}
\text{t-C₄H₉} - \text{CH} - \text{C} - \text{NH} - \text{CPh₃} \\
\text{PhCH₂} - \text{NH} \\
\text{286}
\end{array}
\]

4l
\[
\begin{array}{c}
\text{t-C₄H₉} - \text{CH} - \text{C} - \text{NH} - \text{CH₂Ph} \\
\text{Ph₃C} - \text{NH} \\
\text{134}
\end{array}
\]

7 (unknown)
```
Table 4. Distinguishing between the two structural isomers on the basis of spectral data.

<table>
<thead>
<tr>
<th>3f (from ref. 9)</th>
<th>7 (predicted from results of this study)</th>
</tr>
</thead>
<tbody>
<tr>
<td>176 MS of immonium ion</td>
<td>328</td>
</tr>
<tr>
<td>3.57, dd, 1H and 3.71, dd, 1H</td>
<td>1H-NMR of benzylic protons ~ 4.15, dd, 1H and 4.35, dd, 1H</td>
</tr>
<tr>
<td>53.73</td>
<td>13C-NMR of benzylic carbon ~ 43</td>
</tr>
<tr>
<td>1690 cm(^{-1})</td>
<td>IR of amide carbonyl 1674 cm(^{-1})</td>
</tr>
</tbody>
</table>

The most powerful and reliable corroboration (evidence) for a structure is derivable from the mass spectrum. It is known\(^7,9,13\) that \(\alpha\)-N-alkylaminoamides fragment upon electron impact into abundant resonance-stabilized immonium type ions which are unique for each structure. For example, it was such an ion at m/z 148 which served decisively in assigning the \(\alpha\)-benzylamino-\(N\)-\(t\)-butylamide structure (3a) to the product of 1-\(t\)-butyl-3,3-dimethylaziridinone with benzylamine.\(^7\) An ion of this MS cannot be derived from the alternative structure. The same type of immonium ions are also present in high abundance in the MS spectra of the products of other \(\alpha\)-lactams with benzylamine, e.g., for 4g at m/z 142 (Scheme 12).

Scheme 12. Resonance-stabilized structure-proving fragment ions in the mass spectra of 3a and 4g.

NMR spectra also contain valuable information, on the basis of which a distinction between the two isomeric structures can be made. Thus, the benzylic methylene protons of \(\alpha\)-benzylaminoamides (3) have their signal in the \(^1\)H-NMR at \(\delta\) 3.5-3.9, while that of \(N\)-benzylamides (4) usually appears in the range \(\delta\) 4.0-4.5. Our \(^1\)H-NMR spectral assignment of the benzylic protons of isomers (3) and (4) is in agreement with D’Angeli et al.,\(^19\) who reported that the benzylic protons of 2-benzylamino-\(N\)-\(t\)-butylpropanamide (type 3 product) appear at \(\delta\) 3.72, while those of its isomer, \(N\)-benzyl-2-\(t\)-butylaminopropanamide (type 4 product), are at \(\delta\) 4.43. In the \(^13\)C-NMR spectrum, the benzylic carbon signal of \(\alpha\)-benzylaminoamides (3) is exhibited in the \(\delta\) 47-54 range, while that of \(N\)-benzylamides (4) appears at approximately \(\delta\) 43.

Finally, the wavenumber of the amide carbonyl band in the infrared spectrum is also a useful indicator of which product is present. The \(\alpha\)-benzylaminoamide (3) type products have an IR carbonyl band (in
CCl₄ solution) between 1680 and 1696 cm⁻¹, while the carbonyl band (CCl₄) of N-benzylamides (4) appears at 1669-1674 cm⁻¹.

Including the present study, there are now sixteen α-lactams, which have been reacted with benzylamine. The relevant spectroscopic data of the products of these reactions are assembled in Tables 5 and 6. Contemplating and comparing the structure of these sixteen α-lactams and reflecting upon the data in Tables 5 and 6, some general trends emerge:

(a) α-lactams of low thermal stability and high chemical reactivity give α-benzylaminoamides (3),
(b) the thermally and chemically more stable α-lactams give N-benzylamides (4),
(c) N-tritylsubstituted α-lactams give α-benzylaminoamides (3), irrespective of relative stability or reactivity,
(d) there is a correlation between the rate of the reaction at rt and the product: the fastest reactions lead to α-benzylaminoamides (3).

Even though the above correlations have been deduced entirely empirically, they enable us to predict with a high degree of confidence for any α-lactam, reported or unreported, with any substitution pattern, which product it will give with benzylamine. Thus, the stability and substituents are critical factors in influencing the regioselectivity in nucleophilic ring-opening reactions of α-lactams.

EXPERIMENTAL

Melting points are uncorrected and were measured on a Thomas-Hoover® capillary melting point apparatus. TLC was performed with Analtech® silica gel glass backed plates (250 microns) and recorded as a function of Rf values. Flash chromatographic separations were performed using silica gel (JT Baker®, 40 µm) as the stationary phase. IR spectra were recorded on a Perkin Elmer® Fourier Transform (FT-IR) Spectrum 1000 Spectrophotometer. NMR spectra (¹H and ¹³C) were obtained on a 400 MHz Bruker Spectrometer with tetramethylsilane as the internal standard. Microanalyses were performed by Atlantic Microlab, Inc. (Norcross, Georgia). MS spectra were recorded on a Hewlett Packard® G1800A GCD System or a Finnigan LCQ quadrupole ion trap spectrometer at Scripps Research Institute (La Jolla, California).

The reagents tert-butylamine, tritylamine, benzylamine (freshly distilled before use), sodium methoxide, sodium tert-butoxide, thionyl chloride, 1-adamantanamine, α-bromophenylacetic acid, and the solvents, ether and tetrahydrofuran (THF) were obtained from Aldrich® (Milwaukee, WI). Ethyl acetate, methylene chloride, n-heptane, benzene and p-xylene were obtained from J.T. Baker® (Phillipsburg, NJ). n-Hexane was obtained from EM Science (Gibbstown, NJ).
Table 5. Spectroscopic data of the α-benzylaminoamide (3) type adducts.

\[
\begin{array}{cccccccc}
\text{Product} & \text{number} & \text{R}_1 & \text{R}_2 & \text{R}_3 & \text{IR (CCl}_4) (\text{C=O}) (\text{cm}^{-1}) & \text{^1H-NMR (benzyl CH}_2\text{ protons, } \delta) & \text{^13C-NMR (benzyl CH}_2\text{ carbon, } \delta) & \text{MS (structure proving ion, m/z)} & \text{Reference} \\
3a & CH_3 & CH_3 & \text{tert-butyl} & 1680 & 3.71, d, 2H & \text{N.R.}^{**} & 148 & 7 \\
3f & \text{tert-butyl} & H & \text{trityl} & 1690 & 3.57, dd, 1H 3.71, dd, 1H & 53.73 & 176 & 9 \\
3j & CH_3 & CH_3 & 1-adamantyl & 1678 & 3.50, s, 2H & & 47.47 & 148 & * \\
3m & CH_3 & CH_3 & \text{trityl} & 1690 & 3.62, d, 2H & & 47.43 & 148 & * \\
3n & 1-adamantyl & H & \text{trityl} & 1686 & 3.36, d, 1H 3.53, d, 1H & & 52.61 & 254 & * \\
3o & C_6H_5 & H & \text{trityl} & 1696 & 3.61, dd, 1H 3.68, dd, 1H & & 51.86 & 196 & * \\
\end{array}
\]

*: Reported in this paper, **N.R.: not reported.
<table>
<thead>
<tr>
<th>Product number</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(\text{IR} (\text{C}=\text{O})) (cm(^{-1}))</th>
<th>(\text{H}-\text{NMR}) (benzylic CH(_2) protons, (\delta))</th>
<th>(\text{13C-NMR}) (benzylic CH(_2) carbon, (\delta))</th>
<th>(\text{MS}) (structure proving ion, m/z)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4b</td>
<td>((\text{C}_6\text{H}_5)\text{C}(\text{CH}_3)\text{CH}_2\text{H})</td>
<td>\text{tert-butyl}</td>
<td>H</td>
<td>1655 (KBr)</td>
<td>4.30, q, 1H</td>
<td>N.R.**</td>
<td>N.R.**</td>
<td>8</td>
</tr>
<tr>
<td>4c</td>
<td>((\text{C}_6\text{H}_5)\text{C}(\text{CH}_3)\text{CH}_2\text{H})</td>
<td>\text{tert-butyl}</td>
<td>H</td>
<td>1650 (KBr)</td>
<td>4.45, q, 1H</td>
<td>N.R.**</td>
<td>N.R.**</td>
<td>8</td>
</tr>
<tr>
<td>4d</td>
<td>((\text{C}_6\text{H}_5)\text{C}(\text{CH}_3)\text{CH}_2\text{H})</td>
<td>\text{tert-butyl}</td>
<td>H</td>
<td>1640 (KBr)</td>
<td>4.48, dd, 1H</td>
<td>N.R.**</td>
<td>N.R.**</td>
<td>8</td>
</tr>
<tr>
<td>4e</td>
<td>((\text{C}_6\text{H}_5)\text{C}(\text{CH}_3)\text{CH}_2\text{H})</td>
<td>\text{(C}_6\text{H}_5)\text{C}(\text{CH}_3)\text{CH}_2\text{H})</td>
<td>H</td>
<td>1640 (KBr)</td>
<td>4.32-4.35, m, 2H</td>
<td>N.R.**</td>
<td>N.R.**</td>
<td>8</td>
</tr>
<tr>
<td>4f</td>
<td>((\text{C}_6\text{H}_5)\text{C}(\text{CH}_3)\text{CH}_2\text{H})</td>
<td>\text{trityl}</td>
<td>H</td>
<td>1674 (CCL(_4))</td>
<td>4.32, dd, 1H</td>
<td>42.34</td>
<td>328*</td>
<td></td>
</tr>
<tr>
<td>4g</td>
<td>((\text{C}_6\text{H}_5)\text{C}(\text{CH}_3)\text{CH}_2\text{H})</td>
<td>\text{tert-butyl}</td>
<td>H</td>
<td>1674 (CCL(_4))</td>
<td>4.32, dd, 1H</td>
<td>42.34</td>
<td>328*</td>
<td></td>
</tr>
<tr>
<td>4h</td>
<td>((\text{C}_6\text{H}_5)\text{C}(\text{CH}_3)\text{CH}_2\text{H})</td>
<td>\text{trityl}</td>
<td>H</td>
<td>1671 (CCL(_4))</td>
<td>4.33, d, 1H</td>
<td>43.79</td>
<td>406*</td>
<td></td>
</tr>
<tr>
<td>4i</td>
<td>((\text{C}_6\text{H}_5)\text{C}(\text{CH}_3)\text{CH}_2\text{H})</td>
<td>\text{trityl}</td>
<td>H</td>
<td>1671 (CCL(_4))</td>
<td>4.21, dd, 1H</td>
<td>43.51</td>
<td>406*</td>
<td></td>
</tr>
<tr>
<td>4k</td>
<td>((\text{C}_6\text{H}_5)\text{C}(\text{CH}_3)\text{CH}_2\text{H})</td>
<td>\text{trityl}</td>
<td>H</td>
<td>1674 (CCL(_4))</td>
<td>4.33, dd, 1H</td>
<td>43.51</td>
<td>406*</td>
<td></td>
</tr>
<tr>
<td>4l</td>
<td>((\text{C}_6\text{H}_5)\text{C}(\text{CH}_3)\text{CH}_2\text{H})</td>
<td>\text{trityl}</td>
<td>H</td>
<td>1674 (CCL(_4))</td>
<td>4.21, dd, 1H</td>
<td>43.51</td>
<td>406*</td>
<td></td>
</tr>
<tr>
<td>4m</td>
<td>((\text{C}_6\text{H}_5)\text{C}(\text{CH}_3)\text{CH}_2\text{H})</td>
<td>\text{trityl}</td>
<td>H</td>
<td>1674 (CCL(_4))</td>
<td>4.33, dd, 1H</td>
<td>43.51</td>
<td>406*</td>
<td></td>
</tr>
</tbody>
</table>

*: Reported in this paper; **N.R.: not reported.
I. The synthesis of α-lactams used in this study.

The general procedure of Scrimin et al.15 was used to synthesize 1,3-di-tert-butylaziridinone11 (2g) and 1-(1-adamantyl)-3-tert-butylaziridinone12 (2k). The synthesis of 1-tert-butyl-3-triphenylmethylaziridinone (2i), 1-(1-adamantyl)-3-triphenylmethylaziridinone (2l), 1-triphenylmethyl-3,3-dimethylaziridinone (2m), 3-(1-adamantyl)-1-triphenylmethylaziridinone (2n) are reported18 elsewhere. All physical properties and spectral data for these α-lactams are in agreement with the previously reported literature values. The general procedure of Sheehan and Lengyel7 was used to synthesize 1-(1-adamantyl)-3,3-dimethylaziridinone16 (2j) and it was used without purification.

\textit{N-Triphenylmethyl-2-bromo-2-phenylacetamide (1o).}

The general synthesis procedure of Lengyel and Aaronson20 was followed. To a solution of carbon tetrachloride (5 mL) and thionyl chloride (6.19 g, 0.052 mol), 2-bromophenylacetic acid (2.80 g, 0.013 mol) was added. The reaction mixture was heated to 65°C for 30 min. Carbon tetrachloride and thionyl chloride were removed under reduced pressure to yield crude 2-bromo-2-phenylacetyl chloride (3.04 g (100 %), a light yellow residue, which was used without further purification.

To a solution of triphenylmethylamine (3.71 g, 0.014 mol) and triethylamine (1.45 g, 0.014 mol) dissolved in methylene chloride (100 mL), crude 2-bromophenylacetyl chloride (3.04 g, 0.013 mol) in methylene chloride (20 mL) was added dropwise. The reaction mixture stirred for 70 h, and was then washed twice with 100 mL of distilled water, and once with 50 mL of 2N HCl. The solvent was removed under reduced pressure to obtain crude \textit{N-triphenylmethyl-2-bromo-2-phenylacetamide (1o)}, a light-yellow solid. The crude product was recrystallized from a mixture of 40 mL of \textit{n}-heptane and 15 mL of ethyl acetate to yield pure 1o, (3.93 g, 66.3 %), mp 160 -162°C. TLC (80 % \textit{n}-hexane: 20 % ethyl acetate) R\textsubscript{f} = 0.52. IR (CCl\textsubscript{4}): 3390 (N-H); 3058 and 3020 (aromatic C-H), 2927 and 2850 (aliphatic C-H), 1685 (amide C=O) cm-1. \textit{1H NMR (CDCl\textsubscript{3}):} \(\delta = 5.41\) (s, proton on the brominated carbon adjacent to the amide carbonyl, 1H); 7.31 (m, aromatic protons, 20H), 7.83 (br s, N-H proton, 1H). \textit{13C-NMR (CDCl\textsubscript{3}):} \(\delta = 52.53\) (brominated carbon adjacent to amide carbonyl), 71.00 (tertiary carbon of the trityl moiety), 127.40 (carbons in \textit{para} position of trityl moiety), 127.40 (carbons in \textit{para} position of trityl moiety), 128.25 (carbons in \textit{meta} position of trityl moiety), 128.54 (carbon in \textit{para} position on phenyl group adjacent to the brominated carbon), 128.66 (carbons in \textit{ortho} position of trityl moiety), 129.08 (carbons in \textit{meta} position on phenyl group adjacent to the brominated carbon), 129.20 (carbons in \textit{ortho} position on phenyl group adjacent to the brominated carbon), 137.24 (C1 carbon on phenyl group adjacent to the brominated carbon), 144.19 (C1 carbons of the trityl moiety), 165.90 (amide carbonyl). Anal. Calcd for C\textsubscript{27}H\textsubscript{22}NOBr: C 71.06, H 4.86, N 3.07, Br 17.51. Found: C 71.20, H 4.92, N 3.11, Br 17.50.

\textit{3-Phenyl-1-triphenylmethylaziridinone (2o).}

The general synthesis procedure of Sheehan and Lengyel7 was followed. To a suspension of \textit{N-
triphenylmethyl-2-bromo-2-phenylacetamide (1o) (1.00 g, 2.2 mmol) in ether (80 mL), sodium tert-butoxide (0.23 g, 2.42 mmol) in ether (10 mL) was added at 0°C. The reaction mixture stirred for 30 min and was then centrifuged at 2000 rpm for 3 min. The supernatant was decanted, and the workup procedure of Simig et al.17 was followed. n-Hexane (80 mL) was added to the supernatant. The ether was removed under reduced pressure and the remaining n-hexane solution was chilled to -70°C using a dry ice/acetone bath. The mixture was filtered to obtain a white solid of nearly pure 2o (0.52 g, 63%), which slowly decomposes at rt. IR (CCl₄): 3064 and 3034 (aromatic C-H); 2927 and 2956 (aliphatic C-H); 1843 (lactam C=O) cm⁻¹. ¹H-NMR (CDCl₃): δ = 3.47 (s, methine proton at C3 of aziridinone ring, 1H), 7.22-7.33 (m, aromatic protons, 20H). ¹³C-NMR (CDCl₃): δ = 48.37 (C3 carbon of the aziridinone ring), 78.69 (tertiary carbon of trityl moiety), 127.20 (carbon in para position of the phenyl ring), 127.81 (carbons in para position of the trityl moiety), 127.95 (carbons in meta position of the phenyl ring), 128.18 (carbons in meta position of the trityl moiety), 128.63 (carbons in ortho position of the phenyl ring), 128.80 (carbons in ortho position of the trityl moiety), 134.81 (C1 carbon of the phenyl ring), 142.19 (C1 carbon of the trityl moiety), 154.83 (lactam carbonyl).

II. Reaction of the α-lactams with benzylamine.

The general procedure of Shimazu et al.8 was followed for the reaction of α-lactams (2g, i-l, n, o) with benzylamine.

Reaction of 1,3-di-tert-butylaziridinone (2g) with benzylamine.

1,3-Di-tert-butylaziridinone (2g) (0.20 g, 1.18 mmol) was dissolved in THF (6 mL) and benzylamine (0.506 g, 4.72 mmol) was added. The reaction mixture stirred at rt for 5 days. Excess solvent was removed under reduced pressure to afford a solid of crude N-benzyl-2-tert-butylamino-3,3-dimethylbutanamide (4g). Flash chromatography using 80 % n-hexane: 20 % ethyl acetate as the eluent yielded 0.32 g (98.0 %) of pure 4g, mp 90-91°C. TLC (80 % n-hexane: 20 % ethyl acetate): Rₜ = 0.34. IR (CCl₄): 3450 (amide N-H); 3367 (amine N-H); 3087, 3067 and 3031 (aromatic C-H); 2963 and 2870 (aliphatic C-H); 1674 (amide C=O) cm⁻¹. ¹H-NMR (DMSO-d₆): δ = 0.85, (s, methyl protons of tert-butyl moiety, 9H), 0.95 (s, methyl protons of tert-butylamino moiety, 9H), 1.70 (br s, N-H proton of tert-butylamino moiety, exchanges for deuterium when heated in DMSO-d₆/D₂O, 1H), 2.82 (s, methine proton adjacent to carbonyl carbon, 1H), 4.25 (dd, J = 14.77, 5.72 Hz, benzylic proton of the benzylamide group, 1H), 4.29 (dd, J = 14.77, 5.96 Hz, the other benzylic proton of the benzylamide group, 1H), 7.21-7.50 (m, aromatic protons, 5H), 8.33 (t, J = 5.72 Hz, N-H proton of amide, exchanges for deuterium when heated in DMSO-d₆/D₂O, 1H). ¹³C-NMR (DMSO-d₆): δ = 26.81 (methyl carbons of tert-butyl moiety), 29.42 (methyl carbons of tert-butylamino moiety), 33.92 (quaternary carbon of
tert-butyl moiety), 42.34 (benzylic carbon of N-benzylamide), 50.07 (quaternary carbon of tert-butylamino moiety), 62.94 (methine carbon adjacent to carbonyl carbon), 126.79 (carbon in para position of phenyl ring), 127.73 (carbons in meta position of phenyl ring), 128.19 (carbons in ortho position of phenyl ring), 139.44 (C1 carbon of phenyl ring), 175.05 (amide carbonyl). GC/MS: m/z 276 (M+, C17H28N2O); 261 (M – CH3)+; 219 (M – C4H9)+; 142 ((CH3)3C-CH-NH-C(CH3)3 ↔ (CH3)3C-CH=NH-C(CH3)3)+; 86 (base peak, (CH3)3C-CH=NH2+). Anal. Calcd for C17H28N2O: C 73.83, H 10.21, N 10.13. Found: C 73.89, H 10.25, N 10.15.

Reaction of 1-tert-butyl-3-triphenylmethylaziridinone (2i) with benzylamine.

α-Lactam (2i) (0.10 g, 0.28 mmol) was dissolved in THF (3 mL) and a solution of benzylamine (0.12 g, 1.13 mmol, 4 equivalents) in THF (1 mL) was added. The reaction mixture stirred at rt for 5 days. Excess solvent and benzylamine were removed under reduced pressure to afford 0.13 g of crude N-benzyl-2-tert-butylamino-3,3,3-triphenylpropanamide (4i). Flash chromatography, using 80% n-hexane: 10% ethyl acetate as eluent, afforded 0.11 g (84.6%) of pure 4i, mp 151–154°C. TLC (80% n-hexane: 20% ethyl acetate) Rf = 0.48. IR (CCl4): 3389 (amide N-H); 3335 (amine N-H); 3062 and 3034 (aromatic C-H); 2969 and 2870 (aliphatic C-H); 1671 (amide carbonyl) cm⁻¹. ¹H-NMR (CDCl₃): δ = 0.97 (s, tert-butyl protons, 9H), 1.59 (s, proton on nitrogen of the tert-butylamino moiety, exchanges for deuterium in CDCl₃/D₂O, 1H), 3.33 (d, J = 14.34 Hz, benzylic proton of the benzylamide group, 1H), 4.12 (m, the other benzylic proton of the benzylamide moiety, 1H), 5.06 (s, proton on the carbon adjacent to the carbonyl carbon, 1H), 6.48 (br s, proton attached to the amide nitrogen, exchanges for deuterium in CDCl₃/CF₃COOD, 1H), 6.91–7.50 (m, aromatic protons of the trityl moiety and the phenyl ring of the benzylamide group, 20H). ¹³C-NMR (CDCl₃): δ = 29.83 (methyl carbons of the tert-butyl group), 43.79 (benzyl methylene carbon), 52.30 (quaternary carbon of the tert-butyl group), 62.01 (methylene carbon adjacent to the carbonyl carbon), 63.48 (quaternary carbon of the trityl moiety), 126.51 (carbon in para position of the benzylamide moiety), 127.35 (phenyl carbons in para position of the trityl moiety), 127.65 (carbons in meta position of the benzyl phenyl ring), 128.52 (phenyl carbons in meta position of the trityl moiety), 128.55 (carbons in ortho position of the benzyl phenyl ring), 130.94 (phenyl carbons in ortho position of the trityl moiety), 137.87 (C1 carbon in the benzyl phenyl ring), 144.43 (three C1 carbons in the trityl moiety) and 173.63 (carbonyl carbon of the amide). MS: m/z 463, (M + H)⁺, C₃₂H₃₅N₂O; 407, (M – 55)⁺; 328, [(C₆H₅)₃C-CH=NH-C(CH₃)₃]⁺; 272, (328 – C₆H₅)⁺; 257, (272 – NH)⁺; 243, [(C₆H₅)₃C]⁺, base peak. Anal. Calcd for C₃₂H₃₄N₂O: C 83.80; H 7.41; N 6.06. Found: C 82.79; H 7.50; N 6.02.

Reaction of 1-(1-adamantyl)-3,3-dimethylaziridinone (2j) with benzylamine.

Crude 1-(1-adamantyl)-3,3-dimethylaziridinone (2j) (0.34 g, 1.55 mmol) (estimated to be 80% pure by IR) was dissolved in THF (10 mL) and benzylamine (0.527 g, 4.92 mmol, 4 equivalents) was added.
The reaction mixture stirred at rt for 2 h. Excess solvent was removed under reduced pressure to afford crude N-(1-adamantyl)-2-benzylamino-2-methylpropanamide (3j). Flash chromatography using 70 % n-hexane: 30 % ethyl acetate as the eluent afforded 0.24 g of N-(1-adamantyl)-2-bromo-2-methylpropanamide (1j), mp 105-107°C which is the precursor to 1-(1-adamantyl)-3,3-dimethylaziridinone (2j), and 0.34 g (84.5 %) of pure N-(1-adamantyl)-2-benzylamino-2-methylpropanamide (3j), mp 100-102°C. TLC (70 % n-hexane: 30 % ethyl acetate): Rf = 0.40. IR (CCl4): 3356 (N-H); 3080 and 3030 (aromatic C-H); 2909 and 2851 (aliphatic C-H); 1678 (amide C=O) cm⁻¹. ¹H-NMR (DMSO-d₆): δ = 1.19 (s, methyl protons, 6H), 1.61 (s, methylene protons of adamantane moiety farther away from N, 6H), 1.90 (s, methylene protons of adamantane moiety closer to N, 6H), 2.00 (s, methine protons of adamantane moiety, 3H), 2.60 (br s, N-H proton of benzylamino moiety, exchanges for deuterium in DMSO-d₆/D₂O, 1H), 3.50 (br s, benzylic protons, 2H), 7.21-7.39 (m, aromatic protons of benzylamino moiety, 5H and N-H proton of the amide, exchanges for deuterium in hot DMSO-d₆/D₂O, 1H). ¹³C-NMR (DMSO-d₆): δ = 25.22, (methyl carbons), 28.80 (methine carbons of the adamantane moiety), 36.00 (methylene carbons of the adamantane moiety farther away from N), 41.00 (methylene carbons of the adamantane moiety closer to N), 47.47 (benzylic carbon), 49.91 (C1 carbon of the adamantane moiety), 58.81 (carbon adjacent to carbonyl carbon of amide), 126.61 (carbon in para position of phenyl ring), 127.92 (carbons in meta position of phenyl ring), 128.20 (carbons in ortho position of phenyl ring), 141.04 (C1 carbon of phenyl ring), 175.07 (amide carbonyl). MS: m/z 326 (M⁺, C₂₁H₃₀N₂O); 311 (M – CH₃)⁺; 148 (base peak, (CH₃)₂C=NH-CH₂-C₆H₅)+; 135 (C₁₀H₁₅)+; 91 (C₇H₇)+. Anal. Calcd for C₂₁H₃₀N₂O: C 77.26, H 9.26, N 8.58. Found: C 76.96, H 9.36, N 8.40.

Reaction of 1-(1-adamantyl)-3-tert-butylaziridinone (2k) with benzylamine.

1-(1-Adamantyl)-3-tert-butylaziridinone (2k) (0.25 g, 1.01 mmol) was dissolved in THF (6 mL) and benzylamine (0.433 g, 4.04 mmol, 4 equivalents) was added. The reaction mixture stirred at rt for 72 h. The solvent was removed under reduced pressure to afford a solid, crude N-benzyl-2-(1-adamantylamino)-3,3-dimethylbutanamide (4k). Flash chromatography, using 80 % n-hexane: 20 % ethyl acetate as the eluent, afforded 0.30 g (83.8 %) of pure 4k, mp 132-134°C. TLC (70 % n-hexane: 30 % ethyl acetate): Rf = 0.40. IR (CCl₄): 3446 (amide N-H); 3358 (amine N-H); 3031 (aromatic C-H); 2908 and 2851 (aliphatic C-H); 1673 (amide C=O) cm⁻¹. ¹H-NMR (DMSO-d₆): δ = 0.84 (s, methyl protons, 9H), 1.42-1.46 (m, methylene protons of the adamantane moiety 12H, and N-H proton of 1-adamantylamino moiety, exchanges for deuterium in DMSO-d₆/D₂O, 1H), 1.87-2.09 (m, methine protons of the adamantane moiety, 3H), 2.90 (s, methine proton adjacent to amide carbonyl, 1H), 4.22 (dd, J = 14.77, 5.63 Hz, benzylic proton on the benzylamide group, 1H), 4.32 (dd, J = 14.77, 6.11 Hz, the other benzylic proton, 1H), 7.14-7.48 (m, aromatic protons, 5H), 8.31(t, J = 6.11, 5.63 Hz, N-H
proton of amide, exchanges for deuterium in warm DMSO-d_6/D$_2$O, 1H). 13C-NMR (DMSO-d_6): $\delta = 26.85$ (methyl carbons of tert-butyl moiety), 28.99 (methine carbons of the adamantane moiety), 33.80 (quaternary carbon of tert-butyl moiety), 36.25 (methylene carbons of the adamantane moiety farther away from N), 42.26 (benzylic carbon of benzylamino moiety), 42.83 (methylene carbons of the adamantane moiety closer to N), 49.88 (C1 carbon of the adamantane moiety), 60.97 (methine carbon adjacent to carbonyl carbon of amide), 126.76 (carbon in para position of the phenyl ring), 127.72 (carbons in meta position of the phenyl ring), 128.14 (carbons in ortho position of the phenyl ring), 139.50 (C1 carbon of the phenyl ring), 174.99 (amide carbonyl). MS: m/z 354 (M$^+$, C$_{23}$H$_{34}$N$_2$O); 297 (M – C$_4$H$_9$)$^+$; 220 (base peak, (CH$_3$)$_3$-CH=NH-C$_{10}$H$_{15}$)$^+$; 135 (C$_{10}$H$_{15}$)$^+$; 107 (C$_6$H$_5$-CH$_2$-NH$_2$)$^+$; 91 (C$_7$H$_7$)$^+$. Anal. Calcd for C$_{23}$H$_{34}$N$_2$O: C 77.92, H 9.67, N 7.90. Found: C 77.94, H 9.78, N 7.85

Reaction of 1-(1-adamantyl)-3-triphenylmethylaziridinone (2l) with benzylamine.

1-(1-Adamantyl)-3-triphenylmethylaziridinone (2l) (0.10 g, 0.23 mmol) was dissolved in THF (3 mL) and benzylamine (0.099 g, 0.924 mmol, 4 equivalents) was added. The reaction mixture stirred at rt for 22 h. Excess solvent and benzylamine were removed under reduced pressure to afford a near quantitative yield of pure N-benzyl-2-(1-adamantylamino)-3,3,3-triphenylpropanamide (4l), mp 164–165°C. TLC (80% n-hexane: 20% ethyl acetate): $R_f = 0.56$. IR (CCl$_4$): 3386 (amide N-H); 3327 (amine N-H); 3062 and 3033 (aromatic C-H); 2908 and 2850 (aliphatic C-H); 1669 (amide C=O) cm$^{-1}$. 1H-NMR (CDCl$_3$): $\delta = 1.29$ (br s, N-H of 1-adamantylamino moiety, exchanges for deuterium in D$_2$O, 1H), 1.47 (t, J = 11.64 Hz, methylene protons of the adamantane moiety farther away from N, 6H), 1.58 (d, J = 11.98 Hz, methylene protons of the adamantane moiety closer to N, 6H), 1.95 (s, methine protons of the adamantane moiety, 3H), 3.32 (dd, J = 14.29, 3.82 Hz, benzylic proton of the benzylamido moiety, 1H), 4.21 (dd, J = 14.29, 7.15 Hz, the other benzylic proton of the benzylamido moiety, 1H), 5.26 (s, methine proton adjacent to the carbonyl carbon, 1H), 6.57 (t, J = 5.28 Hz, N-H proton of amide, exchanges for deuterium with TFD, 1H), 6.93–7.43 (m, aromatic protons of the trityl and benzyl moiety, 20H). 13C-NMR (DMSO-d_6): $\delta = 29.96$ (methine carbons of the adamantane moiety), 35.95 and 43.70 (methylene carbons of the adamantane moiety), 43.51 (benzylic methylene carbon), 52.01 (C1 carbon of the adamantane moiety), 60.77 (methine carbon adjacent to the carbonyl carbon), 62.63 (quaternary carbon of the trityl moiety), 126.72 (carbon in para position of the benzylamido moiety), 127.43 (carbons in para position of the trityl moiety), 127.68 (carbons in meta position of the benzylamido moiety), 128.49 (carbons in meta position of the trityl moiety), 128.81 (carbons in ortho position of the benzylamido moiety), 131.57 (carbons in ortho position of the trityl moiety), 139.25 (C1 carbon of the benzylamido moiety), 146.18 (C1 carbons of the trityl moiety), 174.46 (amide C=O). MS: m/z 541.2 (MH$^+$, (C$_{38}$H$_{41}$N$_2$O)$^+$); 406.2, (base peak, M – C$_6$H$_5$CH$_2$-NHC=O)$^+$. Anal. Calcd for C$_{38}$H$_{40}$N$_2$O: C 84.40, H 7.46, N 5.18. Found: C 84.19, H 7.45, N 5.20
Reaction of 3,3-dimethyl-1-triphenylmethylaziridinone (2m) with benzylamine.

3,3-Dimethyl-1-triphenylmethylaziridinone (2m) was generated in situ and reacted with benzylamine by the following procedure: to a solution of N-trityl-2-bromo-2-methylpropanamide (1m) (1.02 g, 0.0025 mol) in 50 mL of anhydrous ether cooled to 0°C, sodium tert-butoxide (0.264 g, 0.00275 mol) was added with stirring. After 30 min, freshly distilled benzylamine (0.80 g, 0.0075 mol, 3 equivalents) was added in one portion, and the reaction mixture stirred at 0°C for 90 min. It then stirred overnight at rt. The ether and excess benzylamine were removed under reduced pressure to yield a crude solid residue. The residue was taken up in 50 mL of ethyl acetate and washed with distilled water (3 x 20 mL). The organic layer was dried with Na₂SO₄ and solvent evaporated under reduced pressure to afford crude N-trityl-2-benzylamino-2-methylpropanamide (3m), which was flash chromatographed using 85 % n-hexane: 15 % ethyl acetate as eluent, to give 0.81 g (74.3%) of pure 3m, mp 156-157°C. TLC (80% n-hexane: 20% ethyl acetate) R_f = 0.30. IR (CCl₄) 3335 (amine N-H); 3092, 3062, 3025 (aromatic C-H); 2981, 2929 (aliphatic C-H); 1690 (amide C=O) cm⁻¹. ¹H-NMR (DMSO-d₆): δ = 1.25 (s, methyl protons, 6H), 2.95 (t, J = 8.04, 7.91 Hz, amine NH-proton, exchanges for deuterium in D₂O, 1H), 3.62 (d, J = 7.75 Hz, benzylic methylene protons, 2H), 7.05-7.30 (m, phenyl protons, 20H), 9.09 (s, amide NH-proton, exchanges for deuterium in D₂O, 1H). ¹³C-NMR (DMSO): δ = 24.78 (methyl carbons), 47.43 (methylene carbon), 59.02 (tertiary carbon attached to carbonyl carbon), 68.50 (tertiary carbon of the trityl moiety), 126.51 (para carbons of benzyl moiety), 126.57 (para carbons of trityl moiety), 127.62 (meta carbons of all the phenyl moieties), 127.98 (ortho carbons of benzyl moiety), 128.13 (ortho carbons of trityl moiety), 140.51 (C1 of the benzyl moiety), 144.74 (C1 of the trityl moiety), and 174.80 (carbonyl carbon). MS: chemical ionization m/z 435 (MH⁺, (C₃₀H₃₁N₂O)⁺); 243, ((C₈H₆)₂C⁺), 165 (base peak, C₁₃H₉⁺); electron impact m/z 419 (M-CH₃)⁺, 148 base peak [(CH₃)₂C=NHCH₂C₆H₅]⁺. Anal. Calcd for C₃₀H₃₀N₂O: C 82.91; H 6.96; N 6.45. Found: C 82.76; H 7.01; N 6.46.

Reaction of 3-(1-adamantyl)-1-triphenylmethylaziridinone (2n) with benzylamine.

3-(1-adamantyl)-1-triphenylmethylaziridinone (2n) (0.20 g, 0.46 mmol) was dissolved in THF (6 mL) and benzylamine (0.193 g, 1.80 mmol, 4 equivalents) was added. The reaction mixture stirred at rt for 48 h. Excess solvent and benzylamine were removed under reduced pressure to yield a crude mixture of N-trityl-2-benzylamino-2-(1-adamantyl)acetamide (3n) and N-benzyl-2-(1-adamantyl)-2-triphenylmethylaminoacetamide (4n). The mixture was flash chromatographed using 90 % n-hexane:10 % ethyl acetate as the eluent to afford 0.18 g (combined yield of 72%) of 3n and 4n, which was recrystallized from a mixture of 10 mL of n-heptane and 3 mL of ethyl acetate to give a mixture of N-triphenylmethyl-2-benzylamino-2-(1-adamantyl)acetamide (3n) and N-benzyl-2-(1-adamantyl)-2-triphenylmethylaminoacetamide (4n) (0.12 g, 50 %). The ratio of 3n to 4n was 66 % to 34 % based
on 1H-NMR data. TLC (90 % n-hexane: 10 % ethyl acetate): $R_f = 0.68$. IR (CCl$_4$): 3448 (amide N-H); 3340 (amine N-H); 3063 and 3031 (aromatic C-H); 2906 and 2850 (aliphatic C-H); 1686 (amide C=O) of 3n; 1674 (amide C=O) of 4n, cm$^{-1}$. 1H-NMR (DMSO-d$_6$): 3n: $\delta = 3.36$ (d, J = 13.88 Hz, benzyl protons of the benzylamino group, 1H), 3.53 (d, J = 13.84 Hz, benzyl proton of the benzylamino group, 1H). 4n: $\delta = 3.93$ (dd, J = 14.90, 6.14 Hz, benzyl proton of the benzylamido group, 1H), 4.00 (dd, J = 14.24, 7.11 Hz, benzyl proton of the benzylamido group, 1H). 13C-NMR (DMSO-d$_6$): 3n: $\delta = 52.61$ (benzylic methylene carbon). 4n: $\delta = 43.46$ (benzylic methylene carbon). MS: 3n: m/z 254 (C$_{10}$H$_{15}$CH=NHCH$_2$C$_6$H$_5$) +; 243, (base peak, (C$_6$H$_5$)$_3$C)$^+$; 165 (C$_{13}$H$_9$)+; 135 (C$_{10}$H$_{15}$)+; 91 (C$_6$H$_5$CH$_2$)+. MS: 4n: m/z 406 (C$_{10}$H$_{15}$CH=NHC(C$_6$H$_5$)$_3$) +; 243, (base peak, (C$_6$H$_5$)$_3$C)$^+$; 165 (C$_{13}$H$_9$)+; 135 (C$_{10}$H$_{15}$)+; 91 (C$_6$H$_5$CH$_2$)+. Anal. Calcd for C$_{38}$H$_{40}$N$_2$O: C 84.40, H 7.46, N 5.18. Found: C 84.14, H 7.54, N 5.13

Reaction of 1-triphenylmethyl-3-phenylaziridinone (2o) with benzylamine.

Crude 1-triphenylmethyl-3-phenylaziridinone (2o) (0.15 g, 0.399 mmol) was dissolved in THF (6 mL) and a solution of benzylamine (0.171 g, 1.60 mmol, 4 equivalents) in THF (2 mL) was added. The reaction mixture stirred at rt for 2 h. Excess solvent was removed under reduced pressure to afford a white solid, which was flash chromatographed using 80 % n-hexane: 20 % ethyl acetate as the eluent, to afford 0.05 g of N-triphenylmethyl-2-bromophenylacetamide (1o), the precursor to 1-triphenylmethyl-3-phenylaziridinone (2o) and 0.10 g (52.6 %) of pure N-triphenylmethyl-2-benzylamino-2-phenylacetamide (3o), mp 119-121°C. TLC (80 % n-hexane: 20 % ethyl acetate): $R_f = 0.40$. IR (CCl$_4$): 3419 (amide N-H); 3330 (amine N-H); 3088, 3064 and 3031 (aromatic C-H); 2927, 2957 and 2858 (aliphatic C-H); 1696 (amide C=O) cm$^{-1}$. 1H-NMR (DMSO-d$_6$): $\delta = 3.16$ (br m, N-H of the benzylamino group, exchanges for deuterium in DMSO-d$_6$/D$_2$O, 1H), 3.61 (dd, J = 13.75, 5.67 Hz, benzyl proton of the benzylamino group, 1H), 3.68 (dd, J = 13.75, 5.69 Hz, benzyl proton on the benzylamino group, 1H), 4.32 (d, J = 7.04 Hz, methine proton adjacent to amide carbonyl, 1H), 7.07-7.37 (m, aromatic protons, 25H), 9.04 (br s, N-H of amide, exchanges for deuterium in DMSO-d$_6$/D$_2$O, 1H). 13C-NMR (DMSO-d$_6$): $\delta = 50.97$ (benzylic methylene carbon), 65.40 (methine carbon adjacent to carbonyl carbon), 69.06 (tertiary carbon of trityl moiety adjacent to nitrogen), 126.57 (carbon in para position of the benzylamino moiety), 126.73 (carbon in para position of the phenyl ring), 127.26 (carbons in para position of the trityl moiety), 127.35 (carbons in meta position of the benzylamino moiety), 127.57 (carbons in meta position of the phenyl ring), 127.93 (carbons in meta position of the trityl moiety), 128.13 (carbons in ortho position of the benzylamino moiety), 128.16 (carbons in ortho position of the phenyl ring), 128.27 (carbons in ortho position of the trityl moiety), 139.74 (C1 carbon in the benzylamino moiety), 140.05 (C1 carbon of the phenyl ring), 144.62 (C1 carbons of the trityl moiety), 171.05 (amide carbonyl). MS: m/z 243, (C$_6$H$_5$)$_3$C)$^+$; 196 (base peak,
(C₆H₅CH=NHCH₂C₆H₅)+; 165 (C₁₃H₉)+; 91 (C₆H₅CH₂)+. Anal. Calcd for C₃₄H₃₀N₂O: C 84.62, H 6.27, N 5.80. Found: C 84.35, H 6.54, N 5.85.

REFERENCES