CYCLOADDITION REACTIONS OF TRIMETHYLSILYL-KETENE WITH 8-AZAHEPTAFULVENES AND 6-AMINO-1-AZAFULVENES

Kiyo Takaoka, Toyouko Aoyama,* and Takayuki Shioiri*

Faculty of Pharmaceutical Sciences, Nagoya City University
Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan

Abstract- Trimethylsilylketene smoothly reacts with 8-azaheptafulvenes to give 3,3a-dihydro-3-trimethylsilyl-1-azaazulen-2(1H)-ones, the [8+2] cycloadducts, in excellent yields. Furthermore, trimethylsilylketene also undergoes the [6+2] cycloaddition reaction with 6-amino-1-azafulvenes to afford 1H-pyrrolizin-3(2H)-ones.

Heterocumulenes have been reported to react with 8-azaheptafulvenes1 and 6-amino-1-azafulvenes2 to give the corresponding [8+2]- and [6+2] cycloadducts, respectively. For example, ketenes such as phenylketene, diphenylketene, and chloroketene react with 8-azaheptafulvenes to give 3,3a-dihydro-1-azaazulen-2(1H)-ones.1a,c Reaction of ketenes with 6-amino-1-azafulvenes also proceeds to afford 2,3-dihydro-1H-pyrrolizin-3-ones.2b To our knowledge, however, there is no report dealing with reaction of silyketenes, an electron-rich ketene, with azafulvene derivatives.

We have already revealed that silyketenes can be effectively used as heterodienophiles for the [4+2] cycloaddition reaction with electron-rich 1,3-dienes or o-quinodimethanes3 and as dienophiles for the [4+2] cycloaddition reaction with acyl isocyanates.4 Our continued interest in the reactivities of silyketenes5 has led us to investigate the reaction of trimethylsilylketene (TMSCH=C=O) with 8-azaheptafulvenes and 6-amino-1-azafulvenes.

We have found that TMSCH=C=O smoothly reacts with 8-(p-methylphenyl)-8-azaheptafulvene (1a) in refluxing chloroform to give 3,3a-dihydro-3-trimethylsilyl-1-azaazulen-2(1H)-one (2a), the [8+2] cycloadduct, in high yield together with a small amount of the desilylated product (3a), as shown in Table (Run 1). The stereochemistry of C-3 and C-3a positions of 2a was determined to be trans by Noe experiments and coupling constants (J = 4 Hz)1a between C-3 and C-3a protons on its 1H NMR spectra. Under similar reaction conditions, 8-(p-bromophenyl)- (1b) and 8-(p-methoxyphenyl)-8-azaheptafulvene (1c) also gave the corresponding 1-azaazulen-2(1H)-ones (2b,c) in excellent yields, respectively (Runs 4,5). Both benzene and ethyl acetate can be used as a reaction solvent (Runs 2,3). In contrast to the results with 8-azaheptafulvenes, the reaction of TMSCH=C=O with tropones was completely inactive.6

* Dedicated to Prof. Shô Itô on the occasion of his 77th birthday.
Table. Reaction of Trimethylsilylketene with 8-Azaheptafulvenes (1)

\[
\begin{array}{cccc}
\text{Run} & \text{Ar} & \text{Solvent} & \text{Yield}\%(\text{2}) & \text{Yield}\%(\text{3}) \\
1 & p-\text{MeC}_6\text{H}_4 \text{ (a)} & \text{CHCl}_3 & 86 & 10 \\
2 & p-\text{MeC}_6\text{H}_4 \text{ (a)} & \text{benzene} & 86 & 6 \\
3 & p-\text{MeC}_6\text{H}_4 \text{ (a)} & \text{AcOEt} & 85 & 8 \\
4 & p-\text{BrC}_6\text{H}_4 \text{ (b)} & \text{CHCl}_3 & 85 & 5 \\
5 & p-\text{MeOCC}_6\text{H}_4 \text{ (c)} & \text{CHCl}_3 & 72 & 7 \\
\end{array}
\]

The trimethylsilyl group of 2a was easily removed by treatment with tetrabutylammonium fluoride (TBAF) to give the compound (3a) which was dehydrogenated with chemical manganese dioxide (CMD)\(^7\) to afford 1-(p-methylphenyl)-1-azaazulen-2(1H)-one (4), as shown in Scheme 1.

The mechanism of the formation of 2 may be as shown in Scheme 2. In analogy with the reaction of ketenes with 1,\(^1\)c nucleophilic attack of the nitrogen atom of 1 to the central carbon of TMSCH=C=O gives the betaine intermediate (5) which cyclizes to give the [8+2] cycloadduct (2).
Tropone tosylhydrazone (1d) has also been reported to undergo [8+2] cycloaddition reaction with ketenes, but the reaction with TMSCH=C=O afforded a mixture of N-trimethylsilylacetylhydrazone (6) and its desilylated product (7), and no cycloadduct was obtained (Scheme 3).

Next, the reaction of TMSCH=C=O with 6-amino-1-azafulvenes was investigated. TMSCH=C=O also reacted with 6-pyrrolidino-1-azafulvene (9) generated by thermal decomposition of dipyrido[1,2-a:1’,2’-d]pyrazine (8) to give 1-pyrrolidino-1H-pyrrolizin-3(2H)-one (11) in excellent yield which was formed by desilylation of the first produced [6+2] cycloadduct (10) with water (Scheme 4). Although the reaction of ketenes with 1-azafulvenes giving 1H-pyrrolizin-3(2H)-ones has been reported, the yields are low to moderate.

In conclusion, trimethylsilylketene (TMSCH=C=O) smoothly reacts with 8-azaheptafulvenes and 6-amino-1-azafulvenes to give the corresponding 3,3a-dihydro-1-azaazulen-2(1H)-one and 2,3-dihydro-1H-pyrrolizin-3-ones in excellent yields, respectively. The synthetic reactions developed here will open a new possibility for the use of trimethylsilylketene as a building block for heterocycles.

EXPERIMENTAL

General: Melting points were determined on a YAMATO MP-21 apparatus and a YAMATO micro melting point apparatus (hot plate). All melting points were uncorrected. IR spectra were measured on a SHIMADZU FTIR-8100 spectrophotometer. NMR spectra were measured on a JEOL EX-270 spectrometer referred to tetramethylsilane (TMS) or CHCl₃ as an internal standard in CDCl₃. MS spectra
were obtained on a JEOL JMS-SX 102A spectrometer. Flash column chromatography was performed on silica gel (Silica Gel 60 particle size 40-63 µm, MERCK).

Preparation of 1-azaazulen-2(1H)-ones (2 and 3)

General procedure: A mixture of 1⁹ (0.5 mmol) and TMSCH=C=O in CHCl₃ (5 mL) was stirred at reflux for 12 h under argon. After concentration *in vacuo*, the residue was purified by flash column chromatography on silica gel to give 2 and 3.

3,3a-Dihydro-1-((p-methylphenyl)-3-trimethylsilyl-1-azaazulen-2(1H)-one (2a) and 3,3a-dihydro-1-(p-methylphenyl)-1-azaazulen-2(1H)-one (3a)

Prepared from 1a (98 mg, 0.5 mmol) and TMSCH=C=O (77 mg, 0.68 mmol). Pale yellow crystals 2a (133 mg, 86%) and pale yellow crystals 3a (12 mg, 10%), purified by flash column chromatography on silica gel (hexane : AcOEt = 5:1 to 3:1).

Compound (2a): mp 128-130°C (hexane). IR ν_{max} nujol cm⁻¹: 1705, 1634, 1250, 860, 843. ¹H NMR (CDCl₃) δ : 0.20 (9H, s), 2.37 (3H, s), 2.39 (1H, d, J = 3.96 Hz), 2.77-2.79 (1H, m), 5.09 (1H, dd, J = 3.96, 9.23 Hz), 5.34 (1H, d, J = 5.94 Hz), 6.12-6.26 (2H, m), 6.39-6.45 (1H, m), 7.08 (2H, d, J = 8.25 Hz), 7.24 (2H, d, J = 8.25 Hz). *Anal.* Calcd for C₁₉H₂₃NOSi : C 73.74, H 7.49, N 4.53. Found : C 73.58, H 7.48, N 4.42.

Compound (3a): mp 134-136°C. IR ν_{max} nujol cm⁻¹: 1723, 1632, 1516, 1370, 1252. ¹H NMR (CDCl₃) δ : 2.38 (1H, s), 2.77 (1H, dd, J = 4.29, 17.82 Hz), 3.00-3.04 (1H, m), 3.23 (1H, dd, J = 10.55, 17.82 Hz), 5.18 (1H, dd, J = 3.63, 8.91 Hz), 5.35 (1H, d, J = 5.61 Hz), 6.15-6.27 (2H, m), 6.35-6.42 (1H, m), 7.13 (2H, d, J = 8.25 Hz), 7.27 (2H, d, J = 8.25 Hz). *Anal.* Calcd for C₁₆H₁₅NO : C 80.98, H 6.37, N 5.93. Found : C 81.21, H 6.43, N 5.93.

3,3a-Dihydro-1-((p-bromophenyl)-3-trimethylsilyl-1-azaazulen-2(1H)-one (2b) and 3,3a-dihydro-1-(p-bromophenyl)-1-azaazulen-2(1H)-one (3b)

Prepared from 1b (130 mg, 0.5 mmol) and TMSCH=C=O (83 mg, 0.73 mmol). Orange crystals 2b (158 mg, 85%) and orange crystals 3b (8 mg, 5%), purified by flash column chromatography on silica gel (hexane : AcOEt = 5:1 to 3:1).

Compound (2b): mp 118 - 120°C (hexane). IR ν_{max} nujol cm⁻¹: 1705, 1628, 1611, 1538, 1250, 843. ¹H NMR (CDCl₃) δ : 0.20 (9H, s), 2.40 (1H, d, J = 3.96 Hz), 2.75-2.78 (1H, m), 5.09 (1H, dd, J = 3.96, 9.24 Hz), 5.39 (1H, d, J = 5.61 Hz), 6.13-6.18 (1H, m), 6.23-6.29 (1H, m), 6.40-6.46 (1H, m), 7.11 (2H, d, J = 8.58 Hz), 7.57 (2H, d, J = 8.58 Hz). *Anal.* Calcd for C₁₈H₂₀N0BrSi : C 53.75, H 5.38, N 3.74. Found : C 53.73, H 5.46, N 3.48.

Compound (3b): mp 137 - 140°C. IR ν_{max} nujol cm⁻¹: 1717, 1634, 1487, 1252, 1067. ¹H NMR (CDCl₃) δ : 2.78 (1H, dd, J = 4.63, 18.16 Hz), 2.99-3.03 (1H, m), 3.23 (1H, dd, J = 10.89, 18.16 Hz), 5.18 (1H, dd, J = 3.96, 9.24 Hz), 5.38 (1H, d, J = 6.27 Hz), 6.17-6.27 (2H, m), 6.29-6.44 (1H, m), 7.16 (2H, d, J = 8.58 Hz), 7.60 (2H, d, J = 8.58 Hz). HRMS Calcd for C₁₅H₁₂N0⁷⁹ Br : 301.0103. Found : 301.0080. HRMS Calcd for C₁₅H₁₂N0⁸¹Br : 303.0083. Found : 303.0082.
3,3a-Dihydro-1-(p-methoxyphenyl)-3-trimethylsilyl-1-azaazulen-2(1H)-one (2c) and 3,3a-dihydro-1-(p-methoxyphenyl)-1-azaazulen-2(1H)-one (3c)
Prepared from crude 1c (87 mg, 0.41 mmol) and TMSCH=C=O (70 mg, 0.61 mmol). A pale yellow oil 2c (96 mg, 72%) and pale orange crystals 3c (7 mg, 7%), purified by flash column chromatography on silica gel (hexane : AcOEt = 5:1 to 3:1).

Compound (2c): IR ν_{max}^{neat} cm⁻¹: 1713, 1632, 1514, 1248, 848. ¹H NMR (CDCl₃) δ : 0.20 (9H, s), 2.39 (1H, d, J = 3.96 Hz), 2.77-2.79 (1H, m), 3.82 (3H, s), 5.09 (1H, dd, J = 3.96, 9.24 Hz), 5.31 (1H, d, J = 6.59 Hz), 6.11-6.26 (2H, m), 6.39-6.45 (1H, m), 6.96 (2H, d, J = 8.91 Hz), 7.12 (2H, d, J = 8.91 Hz). HRMS Calcd for C₁₉H₂₃NO₂Si : 325.1499. Found : 325.1498.

Compound (3c): IR ν_{max}^{nujol} cm⁻¹: 1717, 1636, 1538, 1250, 1034. ¹H NMR (CDCl₃) δ : 2.77 (1H, dd, J = 4.29, 18.15 Hz), 3.01-3.05 (1H, m), 3.22 (1H, dd, J = 10.55, 17.81 Hz), 3.83 (3H, s), 5.17 (1H, dd, J = 3.63, 8.90 Hz), 5.34 (1H, d, J = 5.61 Hz), 6.15-6.27 (2H, m), 6.36-6.42 (1H, m), 6.98 (2H, d, J = 8.91 Hz), 7.17 (2H, d, J = 8.91 Hz). HRMS Calcd for C₁₆H₁₅NO₂ : 253.1104. Found : 253.1103.

3,3a-Dihydro-1-(p-methylphenyl)-1-azaazulen-2(1H)-one (3a)
The azaazulene (2a) (91 mg, 0.29 mmol) was dissolved in THF (1 mL) and tetrabutylammonium fluoride (184 mg, 0.58 mmol) was added. After being stirred at rt for 30 min, the mixture diluted with ether (50 mL) was washed with saturated brine (30 mL×3), dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane : AcOEt = 4 : 1) to give 3a (50 mg, 73%) as pale yellow crystals, which was identified by spectroscopic comparison with the authentic sample.

1-(p-Methylphenyl)-1-azaazulene-2(1H)-one (4)
A mixture of 3a (71 mg, 0.3 mmol) and CMD (261 mg, 3 mmol) in benzene (3 mL) was stirred at rt for 12 h. The insoluble materials were filtered through the pad of celite, and washed with AcOEt. The combined organic solvent was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane : AcOEt = 1 : 2) to give 4 (62 mg, 88%) as red crystals, mp 117-119°C (AcOEt) (lit.,^{1e} 116-117°C). IR ν_{max}^{nujol} cm⁻¹: 1682, 1588, 1532, 1514, 1483, 1256, 1205. ¹H NMR (CDCl₃) δ : 2.44 (3H, s), 6.17 (1H, s), 6.74 (1H, d, J = 9.11 Hz), 6.81-7.06 (3H, m), 7.23 (2H, d, J = 8.24 Hz), 7.36 (2H, d, J = 8.24 Hz), 7.43 (1H, d, J = 11.21 Hz). Anal. Calcd for C₁₆H₁₃NO : C ; 81.68, H ; 5.57, N ; 5.95. Found : C ; 81.56, H ; 5.61, N ; 5.75.

Tropane N-trimethylsilylacetyl-p-tosylhydrazone (6) and tropane N-acetyl-p-tosylhydrazone (7)
A mixture of 1d¹⁰ (137 mg, 0.5 mmol) and TMSCH=C=O (79 mg, 0.69 mmol) in CHCl₃ (3 mL) was stirred at reflux for 12 h under argon. After concentration in vacuo, the residue was purified by flash column chromatography on silica gel (hexane : AcOEt = 3:1 to 2:1 to 1:1) to give 6 as a pale yellow oil (53 mg, 27%) and 7 as pale yellow crystals (22 mg, 14%).
Compound (6) : IR ν_{max} CHCl$_3$ cm$^{-1}$: 1680, 1639, 1360, 1252, 1169, 1086, 854. 1H NMR (CDCl$_3$) δ : -0.04 (9H, s), 2.04 (2H, s), 2.41 (3H, s), 6.62-6.84 (5H, m), 7.00-7.05 (1H, m), 7.29 (2H, d, J = 8.24 Hz), 7.91 (2H, d, J = 8.24 Hz). HRMS Calcd for C$_{18}$H$_{21}$N$_2$O$_3$SSi : 373.1042. Found : 373.1044.

Compound (7) : mp 147-149$^\circ$C (AcOEt-hexane). IR $\nu_{\text{max}}^\text{nujol}$ cm$^{-1}$: 1690, 1640, 1223, 1088, 1001. 1H NMR (CDCl$_3$) δ : 2.07 (3H, s), 2.43 (3H, s), 6.66-6.88 (4H, m), 7.05-7.10 (1H, m), 7.23-7.29 (1H, m), 7.32 (2H, d, J = 8.58 Hz), 7.93 (2H, d, J = 8.58 Hz). HRMS Calcd for C$_{16}$H$_{16}$N$_2$O$_3$: 316.0883. Found : 316.0883.

1-Pyrroloidino-1H-pyrrolizin-3(2H)-one (11).
A mixture of dipyrrolol[1,2-a: 1’, 2’-d]pyrazine (8)2a (74 mg, 0.25 mmol) and TMSCH=C=O (85 mg, 0.74 mmol) in CHCl$_3$ (5 mL) was stirred at reflux for 4 h. After concentration in vacuo, the residue was purified by flash column chromatography on silica gel (AcOEt) to give 11 (83 mg, 87%) as an orange oil. IR $\nu_{\text{max}}^\text{neat}$ cm$^{-1}$: 1759, 1624, 1566, 1464, 1397, 1294, 1277, 1088. 1H NMR (CDCl$_3$): 1.79-1.93 (4H, m), 2.55-2.59 (2H, m), 2.70-2.73 (2H, m), 2.99 (1H, dd, J = 2.97, 18.47 Hz), 3.21 (1H, dd, J = 7.26, 18.48 Hz), 4.20 (1H, dd, J = 2.97, 7.26 Hz), 6.14 (1H, d, J = 3.3 Hz), 6.47-6.57 (1H, m), 7.05 (1H, d, J = 2.31 Hz). Anal. Calcd for C$_{11}$H$_{14}$N$_2$O : C ; 69.45, H ; 7.42, N ; 14.72. Found: C; 69.32, H; 7.60, N; 14.48.

REFERENCES AND NOTES

9. 8-Aazaheptafulvenes (1) were prepared by the reported method, see K. Sanechika, S. Kajigaeshi, and S. Kanemasa, *Synthesis*, 1997, 202.