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Abstract.

In this paper we present the results of a genuinely multi-dimensional relaxed upwind
scheme for an arbitrary system of conservation laws in two space dimensions. A new
discrete velocity Boltzmann equation is proposed, which is an improvement over the
previously introduced models in terms of the isotropic coverage of the multi-dimensional
domain by the foot of the characteristic. A finite volume method has been developed in
which the fluxes at the cell interfaces are evaluated in a genuinely multi-dimensional
way, in contrast to the traditional dimension by dimension treatment. Second order
accuracy of the scheme is achieved by using standard MUSCL type reconstructions and
TVD Runge-Kutta time discretizations. The results of several numerical experiments on
the compressible Euler equations are presented which confirm the robustness and correct
multi-dimensional behaviour of the new scheme.
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1. INTRODUCTION

Finite volume methods have been popular for the numerical solution of hyperbolic conservation laws
in the last three decades. The finite volume methods have reached a state of maturity for one-
dimensional simulations. This development is mainly due to the intense focus of research devoted to
the development of upwind methods from 1970s. For multi-dimensional cases, however, the traditional
finite volume methods are typically based on a dimension-by-dimension treatment using one-
dimensional approximate Riemann solvers. As a result of this inherently one-dimensional treatment, the
discontinuities which are oblique to the coordinate directions are not resolved accurately. Developing
genuinely multi-dimensional algorithms has been a topic of intense research in the last decade and a
half. The reader is referred to [6,17,19] for some multi-dimensional schemes.

Kinetic (or Boltzmann) schemes and relaxation schemes give interesting alternatives to the classical
Riemann solver based schemes. Reviews of these methods are available in [7,9,14]. Of these methods,
relaxation schemes are the latest and are probably the simplest of all the upwind methods, as they are
based on linear convection equations with simple algebraic moment relations leading to conservation
laws. A relaxation system converts a nonlinear convection equation into linear convection equations
with stiff nonlinear source terms containing a relaxation parameter €. Relaxation systems have a strong
connection with classical Boltzmann equation of kinetic theory. The diagonal form of a relaxation
system for a conservation law can be viewed as a discrete velocity Boltzmann equation, see [1]. The so
called discrete kinetic schemes are numerical methods based on the discrete velocity Boltzmann
equation, see [1,3,16].

There has been numerous approaches in the literature to derive numerical approximations of
nonlinear conservation laws using relaxation systems. The numerical methods developed using a
relaxation system can be classified into two categories: relaxing schemes and relaxed schemes [11]. A
relaxing scheme can be obtained by discretizing a relaxation system and hence they contain the
parameter &€ explicitly. The presence of & introduces stiffness in the problem and it is a very
challenging task to obtain a high order numerical approximation, see [12,15] for more details. On the
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contrary, a relaxed scheme is the limit of a relaxing scheme as the relaxation parameter € goes to 0.
Hence, a relaxed scheme is independent of € and is a stable discretization of the given conservation
law,[11]. We refer the reader to [18] for some high resolution relaxed schemes.

The goal of this paper is to develop a genuinely multi-dimensional relaxed scheme for two-
dimensional hyperbolic systems using a discrete velocity Boltzmann equation. In [2] the authors have
introduced a new discrete Boltzmann equation in which the foot of the characteristic traverses all
quadrants in an isotropic way. Using the isotropy of this relaxation system, we design a high resolution
relaxed upwind scheme in a finite volume framework. The scheme achieves second order accuracy by
using MUSCL type reconstructions. Like upwind schemes, the reconstructed piecewise polynomials
used by our scheme also make use of nonlinear limiters which guarantee the overall non-oscillatory
nature of the approximate solution. One remarkable feature of the relaxed schemes is that they avoid
the solution of complex Riemann problems or characteristic decompositions which are essential for
high resolution upwind schemes. This advantage is particularly important in multidimensional
problems, where there is no exact Riemann solvers.

The organisation of this paper is as follows. In section 2 we introduce relaxation systems for a
system of conservation laws in two space dimensions. The numerical discretization of the relaxation
system and the derivation of a semi-discrete relaxed scheme is presented in section 3. The results of
extensive numerical experiments are reported in section4. Finally, we close this paper with some
concluding remarks in section 5.

2. RELAXATION SYSTEMS FOR HYPERBOLIC CONSERVATION LAWS

In this section we introduce relaxation systems for a system of conservation laws in two space
dimensions. It is straight forward to extend the results to arbitrary space dimensions. Consider the
Cauchy problem

ug + g1(w)g + g2(u)y, =0, 2.1)

u(va/?O) = UO(xay)7 (2.2)

where u € Y C R™ (a convex open set) is unknown and g; maps U to R™. As in [1] we assume that
the system (2.1) is endowed with a family of strictly convex entropies. The discrete BGK models
constructed in [1] are of the form

i+ alk) - VS = < (Fe(w) = ) 03

for k € {1,2,~+ ,N}. Here f, = f(x,y,1) € R™is unknown, a(k) € R? is a constant vector with
components a].(k) (j=1,2), a(k) - V = a,(k)d , + a,(k)d p U= 22;1 fr and the so called Maxwellians

F: U — R™ satisfy the consistency relations

N

Fr(u) =u, Y a;(k)Fi(u) = gj(u) Yuel. (2.4)
k=1

I

Following Bouchut [4], we choose F(u) to be linear combinations of u and gj(u), i.e,
Fi(u) = agou + ag1g1(u) + akaga(u), 2.5)

where the coefficients o are to be chosen so that the consistency conditions (2.4) are satisfied. As in
[2], we take N = 4 and choose discrete velocities a(k) to be!

"Henceforth, we use only the choice (2.6) for the discrete velocities.
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(2.6)
a(3) = ()‘7)‘)7 CL(4) = (_>‘7)‘)
A simple calculation yields
u  gi(u)  g2(u) u  gi(u)  g2(u)
F =— - — F: = — —
) =775 oo P=7+73 AN o)
u  gi(u) | g2(u) u  gi(u) | g2(u) '
F = - F = — — .
s =3+ T Bl= T T
We now introduce two new variables v, and v, via 4
4
vi=> aj(k)fe, j=1,2 (2.8)
k=1
and let
Jr = Brou + Briv1 + Brave. (2.9)
Since Zézl fr = v and using (2.8) we can immediately arrive at
_uv_u v _v_ n v
h=7"mww 2 iTo o .10
_v . u v _v_n '
B=gtoto T Ty

Multiplying (2.3) successively by 1, a,(k), a,(k) and taking summation over & yields a Jin-Xin [11] type
relaxation model

up + V1, + vy =0, (2.11)
2 1

v+ X g = = (g1(u) —v1), (2.12)
2 1

voy + AN uy = - (g2(u) — va). (2.13)

Note that in the limit € — 0, (2.12)-(2.13) formally gives

v1 = g1(u), v2 = ga(u) (2.14)

and from (2.11) the original conservation law (2.1) can be recovered.

The parameter \ appearing in (2.12)-(2.13) has to be chosen according to some stability condition.
There are several approaches in the literature to study the stability of relaxation systems. We refer the
reader to [4,5] for more details. In our calculations we have used the entropy extension condition of
Bouchut [4], i.e,

o (Fi(u)) C [0,00[, V&, (2.15)

where o (F')(u)) denotes the spectrum of F(u).
It is to be remarked that the particular choice (2.6) of discrete velocities a(k) admits the following nice
feature, which we call isotropy. The characteristic curves of (2.3) through any point P(z, y, ¢ + At) fall

Volume 1- Number 4 - 2009



204 A Genuinely Multi-Dimensional Relaxed Upwind Scheme for Nonlinear
Hyperbolic Problems

evenly in all the four quadrants around the point Q(z, ¥, t), see figure 1.
Note that isotropy is a special property of our relaxation system. This feature enables us to design a
genuinely multi-dimensional finite volume scheme for (2.3).

P(z,y,t + At)
/&

Figure 1. Feet of the characteristics covering the multi-dimensional domain in an isotropic way.

3. RELAXED UPWIND SCHEMES

A relaxation system provides a novel method for the numerical approximation of nonlinear systems of
conservation laws. The first numerical experiments using a relaxation system has been reported by Jin
and Xin [11]. These authors classify their schemes as relaxing schemes and relaxed schemes. A relaxing
scheme is discretization of a relaxation system and hence they contain the parameter € explicitly. For
instance a semi-discrete discretization of relaxation system of the type (2.11)-(2.13) give rise to a stiff
system of ordinary differential equations. It is well known that deriving a higher order approximation
of a stiff system is a very challenging task. On the other hand, a relaxed scheme is the limit of arelaxing
scheme as € — 0 and they give a stable discretization of the original conservation law. The goal of the
present work is to develop a genuinely multi-dimensional relaxed scheme using the isotropy of the
relaxation system (2.3) introduced in section 2.

Let © be our two-dimensional computational domain. We introduce a rectangular grid which for
simplicity is assumed to be uniform with mesh size h = Az = Ay in both the directions. Let us denote by
Q, the cell centred around the point (z,, ), i.e, Q. .—[x — 2,2, + h2] x [y, — h/2,y; + h/2]. Let At be
the time step and denote w, the point value of a functlon w at the (z, ]) -th mesh point at time "= nAt.
Finally letw; ( t) be the cell average of the function w taken over Q

1
w; j(t) = hg/Q w(z,y,t)dzdy. (3.1)

2%

Given the cell averages w”. at time level t", a piecewise linear reconstruction is done resulting in
1]

)= Pijla,y;w)l iz, y). (3.2)

Here Pi,j (%, y; w) is a vector valued linear polynomial given by

Pij(x,y;w) = wg'; +wi; (1:;51) + wz-yJ (y;y%) (3.3)

and 1; 1s the characteristic function of the cell Q . The quantities w{ W are respectively the discrete
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slopes in a-and y-directions. A possible computation of these slopes which results in an overall non-
oscillatory scheme is given by [10]

x — 1 — — —
wyi; = MM <9Awi+§7j, 3 (Aw, 1 .+Awi+%’j> ,OAW. 1 j> , 3.4

w%{j = MM (0Aw-

1 _ _ _
17]'4_%7 B (Awi,j—% + Awi,j—i—%) 70Awi7j—§> . (3.5)

Here A is a finite difference operator defined by AW, 1 = Wiyl — Wi the parameter 6 takes
1 , )

values in the interval [1,2] and MM denotes the general minmod function defined by

min,{z,}, if x, >0 Vp,
MM {xy,2,...} == { maxy{x,}, if z, <0 Vp, (3.6)
0, otherwise.

We solve the discrete kinetic equation (2.3) by a splitting method

fror +a(k)-Vafi =0, (convection step) (3.7
%’“ — LBy = f). (coliision step) (3.8)
€

Since Zizl fe = Zézl Fy(u) = u, summing over k on both sides of (3.8) to obtain

du
— =0. 3.9
& (3.9

Thus, u = u", where »" is an initial value for (3.9). Hence we conclude that the macroscopic conserved
variable u remains constant during the collision step in the splitting scheme (3.7)-(3.8). Multiplying
(3.8) by a].(k:) and summing over k yields

dvj 1

_ LN 3.10
i 6(gj(u) vj) . (3.10)

Since u = u" the equation (3.10) can be solved exactly. It is easy to verify that this solution in the limit
€ — 0 gives

v = gj(u”). (3.11)

Thus, v; relaxes to its equilibrium value gj(u*) instantaneously after every convection step. This is
analogous to the philosophy of kinetic schemes. Hence we need to solve only the linear convection
equations in (3.7) apart from enforcing the condition vj(.,t") = gj(u (.,t™), 7 =1, 2. Also note that the
relaxation parameter & has disappeared and accordingly all the stiffness related problems are removed.

Integrating (3.7) over the control volume €, i yields a semi-discrete scheme for the evolution of the
cell averages f,ﬂ.’j

Afe, _ Arirdg = Aoty Brigey = Brijy (3.12)
dt h h ’
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where

1 [Y+3
Akipl ;= h/ ar(k) fr(wy 1., t)dy (3.13)

Y1

and an analogous expression exists for By, il We now take summation over kon (3.12) to get a semi-
I3
discrete scheme for the cell averages u; of the macroscopic conserved variable u
da; Firti—Fii Gijrt = Yij-1

Jo_ p 2J 2 )
T N N , (3.14)

where

4
Firng =D Arirty

k=1
4

1
E/ Z +%7yat)dy’

vy o (3.15)
1 [Y%+}

= E/y 1 1($i+%>yat)dy‘
i=2

A similar expression can be derived for G, ;1. Therefore it can be concluded that if we use a p-th order
high resolution fluxin (3.14) and a p-th order SSP Runge-Kutta for time integration then we can achieve
an overall p-th order accurate scheme for the original conservation law (2.1).

We now turn to develop a genuinely multi-dimensional procedure for evaluating numerical fluxes
Fand G .As a first step, we approximate the flux integral in (3.15) using Simpson’s quadrature to get

1 [Y+3
-7:2'_;'_%’]‘ == E 7)1( H_layv )dyv
Yi-% (3.16)
1
(1)1 +4v1 +U ),
6
where we have denoted
o9 = v1(z0,y0,t), Q€ {NE,E,SE}. (3.17)
Note that using (2.8) we can obtain
o = A M YT - AR (3.18)

Therefore, we need to reconstruct the point values of fk,k € {1,2,3,4}at the quadrature node NE. This
is can be achieved by exploiting the upwind information based on the advection velocities of f, to yield

YE =Py (ene, yne; fi) - (3.19)

Analogously we can get

fVE = P ji(ene, yne; f2), (3.20)
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VE =P, j(anE ynE; f3)s (3.21)
M =Py j(ane, ynve; 1) (3.22)

In a similar way we can derive the interpolated values of f, at the quadrature nodes E and SE also. It is
to be remarked that this way the use of Simpson rule in the approximation of the flux integral (3.16)
takes into consideration the cross wind direction also. Finally the isotropy of our relaxation model helps
to incorporate the contribution from the cells €2, ik € {0,1},1 € {-1,0,1}in the evaluation of the flux
Fivt; through a right vertical edge. A floor plan of the quadrature nodes used in this genuinely multi-

dimensional flux evaluation procedure is given in figure 2. The expression for the flux ¢; ;.1 through

a top horizontal edge can be derived along the same lines.

(xiféﬁyjjté) (xi,‘ijr%) (xiJr%?ijr%)
NW N NE
(zi—%ayj) W e ($i+%7yj)
Y SW 3 SE
(%—%y‘j—%) (xivyj—%) (xi+%7yj—%)
T

Figure 2. Quadrature nodes used in the multi-dimensional flux evaluation.

To improve the temporal accuracy and to gain second order accuracy in time we use a TVD Runge-
Kutta scheme to numerically integrate the system of ODEs (3.14). Denoting the right hand side of
(3.14) by £L(u), the second order Runge-Kutta scheme update u through the following two stages

u(l) — un 4 At[,(u”), (3.23)
1 1 1
un-i-l _ iun + iu(l) + iAtﬁ(U(l)) (3.24)

4. NUMERICAL CASE STUDIES

We will now present the results of some numerical experiments with our scheme on systems of
nonlinear conservation laws in two space dimensions. As prototype of a system of conservation laws
we consider the Euler equations

P pu pu

pu n pu2 +p i p2uv 0,
pU puv pU°+p

E /, (E+pu ) (E+pv
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where the energy density E is given by E = ﬁ + %p(u2 +v?%), v = 1.4 being the gas constant.

The expression for the parameter X\ given by the stability condition (2.15) can be explicitly obtained as
A = max{|u| + |v| + V2a}

where a = \/yp/p 1is the sound speed and the maximum is taken over all mesh cells.

Test case 1: Experimental Order of Convergence. Despite the simplicity of the algorithm and operator
splitting approach, the relaxed upwind scheme gives second order convergence. In what follows we test
the order of convergence for a smooth solution. We consider a smooth periodic solution of the two
dimensional Euler equations

p(z,y,t) = 1.0+ 02sin (m(z +y — t(u +v))),
u(z,y,t) =v(x,y,t) = p(x,y,t) = 1.0.

The experimental order of convergence (EOC) can be calculated by systematically refining the mesh
and examining the behaviour of the global error. Since the exact solution is known, the order of
convergence in a certain norm |-l can be computed in the following way

[ wﬁefH)
TR T M

[lwpy — wrell

EOC = log, (

where N denotes the number of mesh points in both a- and y- directions, w denotes the approximate and
W, the exact solution. A suitable choice of norm Il is L? or L' . The computational domain [-1,1] x
[-1,1] is consecutively divided into 20 x 20, 40 x 40...., 320 x 320 cells. The final time was taken to be
t =1.0. The table 1 shows the experimental order of convergence computed in the L' and L? norms. We
have used density to compute the errors. From the table it is evident that the order of convergence is 2.

Table 1. L7 and L2 errors with experimental order of convergence for a
smooth periodic test case.

] N\ LT error \ EOC \ L? error \ EOC ‘
20 | 0.01801515 0.01993357
40 | 0.00332742 | 2.4367 | 0.00369252 | 2.4325
80 | 0.00071280 | 2.2228 | 0.00079185 | 2.2213
160 | 0.00016955 | 2.0717 | 0.00018834 | 2.0719
320 | 0.00004183 | 2.0192 | 0.00004647 | 2.0188

Test case 2: Cylindrical explosion problem. This test case is a two-dimensional Sod problem with a
circular discontinuity. The computational domain is the square [-1,1] x [-1,1] and the initial data read,

p=1, u =0, v=0, p=1, x| < 0.4,
p = 0.125, u =0, v =0, p=0.1, else.

The solution is computed at time ¢ = 0.2 on a 400 x 400 mesh with a CFL number 0.95 using the second
order accurate method. The solution exhibits a circular shock and a circular contact discontinuity
moving away from the centre of the circle and a circular rarefaction wave moving in the opposite
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direction. In this problem we have used absorbing boundary conditions by simple second order
extrapolation of the variables. The isolines of density, z-, y- components of velocity and pressure are
given in figure3. It is evident from figure3 that the scheme resolves circular shocks and contacts very
accurately, confirming its genuinely multi-dimensional nature.

x-velocity

y-axis

X—axis

pressure

y—axis

X—axis

Figure 3. Cylindrical explosion: Isolines of the solution calculated on a 400 x 400 mesh at time
t=0.2.

Test case 3: Two-dimensional Riemann problem. Next test case is a two-dimensional Riemann problem.
The computational domain [-1,1] x [-1,1] is divided into four quadrants. The initial data consist of
single constant states in each of these four quadrants. These constant values are chosen in such a way
that each pair of quadrants defines a one-dimensional Riemann problem.

We choose the initial values in such a way that two forward moving shocks and two standing slip
lines are produced. The initial data read,

(0,5313,0,0,0,0,0,4) ifz>0, y> 0,
ponop)— (L0-00.0.7276.10) if 2 >0, y<0,
PRI = 0,0,7276,0,0,1,0) if 2 <0, y> 0,
(

0,8,0,0,0,0,1,0) ifx <0, y<O,

The solution is computed at time ¢ = 0.52 with a CFL number 0.95 with both first order and second
order methods. The isolines of the density is given in figure 4. It is evident from the figure that the
second order method resolves the shocks and slip lines very accurately.

Test case 4: Explosion in a box problem. In this example we consider a two-dimensional Riemann
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problem with solid boundaries. The setup consists of a square box of side length 2 units with reflecting
walls. Initially the density is unity everywhere and the velocities are zero. The pressure is equal to 1000
inside a square of side length 0.5 units at the centre of the box and 10 elsewhere. The computations are
done on a 400 x 400 mesh using the second order method. The isolines of density, velocity
components and pressure at times t = 0.03 and t = 0.1 are given in figures 5 and B.

density (first order)

0.5

y—axis
o

-0.5 0 05
x-axis

y—axis

density (second order)

X—axis

Figure 4. Two dimensional Riemann problem containing two shocks/two slip lines. Isolines of
density calculated on a 400 x 400 mesh at time ¢ = 0.52 with first order method (left) and

second order method (right).

density

y—axis

X—axis

y-velocity

0.5

y-axis
o

05 0 05
x-axis

x-velocity

0.5

05 0 05
X-axis

pressure

X—axis

Figure 5. Explosion in a box: Isolines of the solution calculated on a 400 x 400 mesh at time

t =0.03.
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density x—velocity

y—axis
y—axis

y—axis
y-axis

Figure B. Explosion in a box at time ¢ =0."1.

Test case 5: Interaction of two spherically symmetric fields. This problem was studied by Dreyer et.al
[8]. The initial values taken here are slightly different from that of [8]. The computational domain is
[-1,1] x [-1,1]. The initial data reads: p(x, y) = 4, p(z, y) = 4 for (z + 0.2)> + (y + 0.2)> < 0.6 and for
(z—0.2)> + (y—0.2)*> < 0.6. Otherwise p(z, y) = 1, p(z, y) = 1. The velocities are zero everywhere. We
have used outflow boundary conditions. The results of the second order scheme at time ¢ =0.45 are
given in figure 7.

Test case 6:Shock-bubble interaction problem. The simulations in this example shows the interaction
between a planar shock and various heterogenities. The motivation for this problem is the 3-D shock
bubble interaction studied by Langseth and LeVeque [13]. The problem setup is as follows. A bubble
of radius 0.2 lies at rest at (0.4,0.5) in the domain [0, 1.6] x [0,1]. The gas is at rest initially and has
unit density and pressure. The density inside the bubble is 0.1 while the velocities and pressure has
same values as outside. The incoming shock wave starts at = 0.1 and propagates in the positive -
direction. Behind the shock the density is 3.81, pressure is 10, 2-velocity is 2.85 and y-velocity is O.
The schlieren images of the density for different time from ¢ = 0.1 to ¢ = 0.4 is given in figure 8. We
have used reflecting boundary conditions on the top and bottom boundaries. The right boundary has
outflow boundary conditions whereas the left is inflow boundary.

5. CONCLUDING REMARKS

A novel genuinely multi-dimensional relaxed upwind scheme is presented, based on a multi-
dimensional relaxation system in which the foot of the characteristics traverses all quadrants in an
isotropic way. Second order accuracy of the scheme is achieved by using standard MUSCL type
reconstructions and TVD Runge-Kutta time discretizations. The numerical scheme is stable up to a
CFL number 1.0. The scheme is tested on some bench-mark problems for Euler equations in two
dimensions and the results demonstrate its efficiency in capturing the flow features accurately. The
extension of the present scheme to three dimensional problems is straight forward. The relaxed scheme
retains all the attractive features of central schemes such as neither Riemann solvers nor characteristic
decompositions are needed.
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Figure 7. Interaction of two spherically symmetric fields. The isolines of the solution computed
on a 400 x 400 mesh at time ¢t = 0.45.

xxxx

xxxx

ages of the density at different times

Figure 8. Shock-bubble interaction problem: schlieren im
from ¢ = 0.1to t = 0.4 calculated with second order scheme on a 640 x 400 mesh.
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