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ABSTRACT 
In this paper, we present a technique for visualizing a large-scale irregular volume dataset
that is generated from an LES-based CFD simulation. Since our computational mesh was
too large for a single computational node, it was divided into multiple regions; moreover, the
resulting file was comprised of various irregular volume datasets. In order to cope with
the multiple volume datasets, we extended our particle-based volume rendering (PBVR)
technique so to fit the distributed computing environment. We applied our distributed
PBVR technique to an LES-based CFD simulation, which explores dental fricative sound
sources in order to confirm the effectiveness of the technique.

Keywords: predictive simulation of dental fricative sounds, particle-based volume
rendering, large irregular-grid volume data.

1. INTRODUCTION
The sound source of dental fricatives is regarded as a downstream obstacle in the oral airflow field in which
turbulence is dominant. In contrast, a vowel’s sound is derived from vibrations of the vocal cords as a result
of air flowing past them [1, 2]. In oral therapies that treat speech disorders, the modification of oral
morphological features takes place as a consequence of changing the spatial positioning of the jaw. This
includes maxillofacial orthodontic therapies [3], prosthetic treatments [4] and removable sports mouth guards.
Alterations in oral morphology may impact the characteristics of resonance as well as the magnitudes and
locations of sound sources. Computational fluid dynamics (CFD) is a powerful tool for conducting research
into and developing tools for the treatment of speech disorders. In particular, dental fricatives involve a
different method of sound production from that of the vowel. CFD can be used to confirm that the sound
associated with a dental fricative is due to a downstream obstacle in the oral airflow field.

In order to construct the morphological geometries of an oral cavity, multiple image slices of various
soft tissues, such as lips and the tongue, and hard tissues, including teeth, were acquired using a Cone
Beam CT (CBCT) scanner (Figure 1 (a)). The resulting isosurfaces were subsequently extracted from
a volume dataset defined as a set of slices. The surfaces were converted to a Non-Uniform Rational
B-Spline (NURBS) surface. First, computational mesh cells were constructed as a hexahedron using a
grid generation system. Thereafter, each mesh cell was subdivided into 8 or 27 cells, because it was
necessary to adequately represent the narrow (1–3 mm) space that exists between the upper and lower
teeth when a dental fricative is pronounced [5, 6]. Since the resulting mesh was composed of 72 million
hexahedral cells, which is too large for a single computational node, it was divided into multiple regions
so that a distributed LES-based CFD calculation could be performed. Thus, the simulation results are
actually comprised of multiple sets of results.

The obstacle sound source can be explained in terms of the impact of turbulence on the obstacle’s
surface [7]. The sound source is located somewhere on the surface, and if the shape of surface is altered,
the distribution of the source should change commensurately. It is well known that the sound generated
from the interaction between the surface and the vortexes is louder than the one derived from interactions
among vortexes themselves in the flow field. Compressible Navier-Stokes equations that are derived
using the Direct Navier-Stokes (DNS) method can predict broadband noise. However, researchers have
found that it is necessary to use an impracticably large number of meshes, as consistent with the Reynolds
Number value, and an extremely fine grid. Since acoustic problems are highly time-dependent,
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Reynolds-averaged (time-averaged) Navier-Stokes (RANS) equations are inadequate for time series
analyses because they are generally time independent. The Large Eddy Simulation (LES) method is
appropriate for addressing these problems. The LES method uses a Sub-Grid Scale (SGS) model to
consider vortex affects for smaller grids. Because the LES uses a time-independent and space-averaged
model, it is appropriate for analyzing time-dependent vortexes. However, to ensure LES accuracy, the
mesh size normal to the boundary surface must be as small as possible in the turbulence boundary layer.
Therefore, the LES calculation generates a rather large-scale irregular volume dataset.

Researchers have conventionally used surface-based visualization techniques to understand the
velocity and pressure of dental fricative sound on a sectional slice or boundary geometry (Figures 1 (b)
and (c)). Although visualization results can provide useful information, these results are limited to two-
dimensional space. Before an adequate surface is determined, it is often necessary to grasp the spatial
distribution of related physical quantities. Although a volume rendering technique is desirable for such
purposes, it is difficult for a conventional volume rendering technique to account for a large-scale
irregular volume dataset, since the technique requires the dataset to be stored in a single computational
node in order to calculate the visibility of mesh cells at each viewpoint. It is apparent that such
requirements are impractical for our study, since the computational space had to be divided into
multiple regions so that a distributed computational resource could be utilized. Thus, Particle-based
Volume Rendering (PBVR) is a good candidate for large-scale irregular volume rendering, since it
requires no visibility sorting and is well suited to cell-by-cell processing, which does not require an
entire dataset to be stored in a single memory space.

In this paper, we propose a distributed implementation of PBVR for visualizing a large-scale
irregular volume dataset generated from a distributed CFD calculation. We apply the proposed
technique to CFD simulation results generated from modeling an oral airflow field in order to confirm
its effectiveness.

2. RELATED WORK
The development of techniques for rendering irregular volume datasets has remained a major challenge
for visualization scholars. Such datasets consist mainly of scalar data defined on collections of
irregularly-ordered cells with shapes that are not necessarily orthogonally cubic.
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The irregular volume rendering technique can be image-order or object-order algorithm. The
image-order algorithm requires the entire volume dataset to be stored in the main memory, including
cell adjacency information. This requirement might be a disadvantage when processing a large dataset.
The object-order algorithm may be promising, since its cell-by-cell approach can be easily implemented.
In general, a volume rendering technique utilizes a density emitter model in which the 3D scalar field
is characterized as a varying density emitter with a single level of scattering. This model was proposed
by Sabella [8] and is related to a particle system in which the particles are sufficiently small and of low
albedo. A conventional volume rendering technique models the density of particles, not the particles
themselves, which makes the visibility sorting of volume cells indispensable in the rendering
algorithm.

Since Shirley et al. [9] proposed a Projected Tetrahedra (PT) algorithm for generating a volume-
rendered image by using tetrahedral cells, many irregular volume rendering techniques based on the
object-order approach have been proposed. In Shirley et al.’s [9] algorithm, each tetrahedral cell is
projected onto the screen in the order of visibility, from back to front, to develop a semitransparent
image. The work of Williams [10] has also led to a considerable amount of research on visibility sorting
techniques. Currently, in irregular volume rendering, one of the major approaches is to relax the
processing requirement for visibility sorting or to develop a technique without sorting.

To address the former approach, Callahan et al. [11] have developed an integrated visibility sorting
technique known as Hardware-Assisted Visibility Sorting (HAVS), in which the centroids of the cell
faces are first sorted in order to roughly sort by visibility, and pixel fragments generated from rasterized
faces are used along with the k-buffer in order to increase accuracy. Although HAVS achieved 1.3 fps
for 1.4 million tetrahedra, it generates some artifacts when the k-buffer is not large enough. It is difficult
to determine the optimum value for k. The memory space for the sorting of cell faces is about twice as
much as of the number of tetrahedral cells.

Anderson et al. [12] proposed a point-based technique to render irregular volumes. They represented
a tetrahedral cell as a point primitive at the center, which was followed by the rendering and
compositing of the represented point primitives. Like HAVS, this technique requires the sorting of all
point primitives. Although this technique has achieved 5.3 fps for 1.4 million tetrahedra and 0.3 fps for
6.3 million tetrahedra, there may be artifacts in the rendered image when point primitives are rasterized
as screen-aligned squares.

Roettger et al. [13] have pointed out that the memory bandwidth required for visibility sorting
becomes its limiting factor, and thus, they proposed an algorithm that requires no visibility sorting for
cells of irregular volume. However, since their optical model considers only emissions, its application
is limited to the visualization of gaseous phenomena. Csebfalvi et al. proposed a sorting-free volume
rendering technique [14, 15] that can be categorized as an X-ray volume rendering approach. That is,
their optical model considers only absorption. Zhou et al. [16] proposed a sorting-free rendering
technique that is implemented with additional terms to help provide enhanced depth cues without
visibility sorting. Although it has achieved 20 fps for 17.6 million tetrahedra, their optical model does
not consider absorption effects.

To address these problems among current sort-free volume rendering techniques, we returned to the
density emitter model in order to present a basic framework for an approach called the PBVR
technique, which represents the 3D scalar fields as a set of particles and considers both emission and
absorption effects. Particle density is derived from a user-specified transfer function and is utilized to
estimate the number of particles to be generated in a given volume dataset. Since the particles can be
considered fully opaque, no visibility sorting processing is required during rendering processes, and
this is advantageous from a distributed processing perspective.

3. OVERVIEW OF PBVR
First, we use a ray casting algorithm for volume rendering to discuss on the image quality of PBVR.
Using the volume ray casting algorithm, we subdivide the viewing ray into segments so that particle
luminosity and density in the k-th ray segment can be regarded as constants, i.e., ck and αk. Brightness
can be calculated as:
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In the density emitter model shown in Figure 2, the opacity is described as follows:

(2)

Here, ∆t indicates length, ρ’ describes the number of particles in a unit length, and ρ’∆t expresses
the number of particles in a ray segment. This model assumes that the number of particles follows a
Poisson distribution, and the expression therefore represents the possibility that the segment contains
some particles.

Note that the computational complexity of Equation 1 is O(n2). If we consider an intermediate
brightness value Bk in the interval [tk, tn], we obtain the following recurrence formula for the back-to-
front accumulation:

(3)

This shows that the computational complexity can be reduced to O(n) if the sampling points are
sorted according to visibility order. Most volume rendering techniques employ back-to-front
accumulation. Although visibility sorting has contributed to a performance improvement in the
brightness calculation, it can unfortunately become a bottleneck when a large irregular volume dataset
is rendered.

To develop a volume rendering technique that does not required visibility sorting, we represented a
3D scalar field as a set of emissive and opaque particles such that only depth comparison and no alpha
blending would be required during rendering calculations. This proved to be advantageous for
subsequent distributed processing. Particle density was derived from a user-specified transfer function
that converts a scalar data value to an opacity data value and describes the probability that a particle is
present at a given point in space.

Our particle-based volume rendering approach is comprised of three phases: particle generation,
particle projection, and sub-pixel processing. The first phase involves constructing a density field and
generating particles consistent with the density function. The second phase involves projecting particles
onto an image plane. The third phase involves dividing a single pixel into multiple sub-pixels so that a
particle is stored as precisely as possible and, in addition, calculating a final brightness value by
averaging sub-pixel values [17].

In the particle generation phase, we used a particle generation method based on the Metropolis
algorithm [18], which is an efficient Monte Carlo technique widely used in chemistry and physics.
Since the method uses a ratio of density at the current position versus that at the candidate position, our
original technique does not employ a density that represents a number of particles in a unit volume.
Instead, we employed a density metric that expresses the number of particles in a unit length, and we
approximated this value using opacity. The user must specify the total number of particles, but this also
makes it difficult to generate an image that is comparable to the volume ray casting.

To solve this problem, we introduced particle size explicitly into the particle model. Once we were
able to generate an image comparable to the volume ray casting image, it was easy to determine a
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minimum sub-pixel level for which a given criterion could be satisfied with respect to the difference
between the PBVR and volume ray casting images.

3.1. Particle Modeling
In order to use a density that represents the number of particles in a unit volume, in our particle model,
we replace ρ’ with πr2ρ, which is a projection area multiplied by the density of particles in a unit
volume. Opacity is then expressed as:

(4)

Here, r represents the radius of a particle.
In our particle model, we consider three attributes of particles: shape, size, and density. Particle

shape is assumed to be spherical, because its projection is defined as a view-independent shape, namely,
a circle. The size of the sphere is discretized using an integer number denoted by sub-pixel level, level,
so that sub-pixel processing can be facilitated. We define the radius by dividing the pixel side length
(1) by twice the level.

(5)

Particle density can be estimated from the radius, which is an opacity value in the user-specified
transfer function, and the ray segment length can be used for ray casting. From Equation 4, we have:

(6)

To generate an image equivalent to the volume ray casting result using PBVR, we use the above
relation to estimate the particle density function. From Equation 6, we see that the number of generated
particles quadruples for each doubling of the sub-pixel level.

By assuming a hardcore point process in the particle distribution, the density function ρ should have
a maximum ρmax. Since the volume of the enclosing cube that encloses the particle is 8r3,

(7)

Thus, the opacity value α has a maximum αmax. If the opacity value α is between αmax and 1.0, the
relevant density function ρ becomes a constant value, ρmax. Here, αmax = 1−exp(−πr2 ρmax ∆t). We can
calculate the particle density distribution from the opacity distribution that is derived from the user-
specified transfer function. Thus, the numbers of particles, N, in the entire volume and in a volume cell
are calculated as

(8)

When the number of particles in Equation 8 is not an integer, the final number of particles n is
determined as follows:

(9)

where R is a uniform random number in [0, 1].
Particles are generated at each tetrahedral cell. In the cell, the locations of the particles are calculated

stochastically in the local coordinate system, which may be one of a variety of types (e.g., barycentric).

3.2. Evaluation of Fluctuation
Our technique may suffer from fluctuations due to randomness in particle location. To evaluate the
fluctuations with respect to the sub-pixel level, we calculated the brightness at a single pixel by
assuming that the particle density is constant and that the particle luminosity is constant. As explained
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above, opacity describes the probability that more than one particle exists in a certain ray segment. The
average brightness value of a sub-pixel is calculated as:

(12)

The variance is calculated as:

(13)

Thus, the deviation becomes the square root of the variance:

(14)

The total brightness is calculated by averaging all sub-pixel values in a single pixel. Thus, we
theoretically analyze the fluctuation of the total brightness.

First, we define a brightness value in the i-th sub-pixel as Bi. If the occurrence of every particle is
independent from each other at each sub-pixel, the average and variance of the brightness value of a
sub-pixel are identical:

(15)

The total brightness value is calculated by averaging brightness values across all the sub-pixels.

(16)

The variance in the total brightness can be calculated as follows:

Since the brightness values of sub-pixels are independent from one another, the covariance term
Cov(Bi,Bj) can be estimated as zero. This makes the variance decrease as the number of sub-pixels,
level2, increases. Therefore, the deviation in total brightness can be expressed as:
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(18)

If we assume no variation in particle density between sub-pixels within a single pixel, we can achieve
the same result by repeating the projection of the pixel-sized particle level × level times. This is
equivalent to ensemble averaging, which is often used in CFD turbulence calculations. Figure 3 shows
the deviation in total brightness at both the sub-pixel and the repetition levels. The repetition level is
equivalent to the square of the sub-pixel level. Two deviation distributions are therefore matched.

4. DISTRIBUTED PBVR
In this section, we describe a distributed implementation of PBVR that is useful for handling large-scale
irregular volume datasets efficiently. To allow for efficient handling, we developed a cell-by-cell
particle generation technique by estimating a particle density field from a given transfer function. Each
cell may be processed to generate particles that can be projected in an arbitrary order. This makes the
algorithm run efficiently in a distributed computing environment.

4.1. Datasets
In this paper, we apply the proposed technique to CFD simulation results from the oral airflow field. In
the simulation model, the oral cavity shape of the dental fricative was obtained by a Cone Beam CT
(CBCT) scanner that can take 512 slices of 512 × 512 pixels in 18 seconds. Using data derived from
image slices, the oral cavity can be extracted using two threshold CT values, and the required
hexahedral cells can be constructed for large-eddy CFD simulation. The resulting irregular volume
dataset is composed of 71 million hexahedral cells, and these are divided into the 16 datasets resulting
from the distributed CFD computation. To date, only surface-based visualization has been conducted,
since the currently-available volume rendering software cannot address multiple, large hexahedral
volume datasets. We applied our distributed particle volume rendering method to render these 16
datasets using a streaming-based technique.

4.2. System Configuration
We implemented the distributed PBVR using a PC cluster system (see Figure 4). Our system consists
of multiple processing PCs and a single-viewer PC. These PCs are networked using Gigabit Ethernet.
Our proposed system is comprised of four stages: file loading, particle generation, sub-pixel
transmission and image composition.

A. File loading
In our system, each irregular volume is composed of a cell connection, a node coordinate, and its
associated scalar information and irregular volumes. All results can be processed as a single large data
file or as multiple data files. In the former case, we constructed a mapping table from a cell identifier
to a PC identifier in advance. Thus, each volume cell is assigned to one PC for processing. In the latter
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case, we constructed a table that links a data file with a PC identifier. The mapping table is designed so
that each processing PC can load the partial irregular volume in its main memory.

B. Particle generation
Particle density is estimated at each cell of the loaded partial irregular volume based on a given
transfer function in each processing PC. Particles are then generated according to the estimated
density field.

C. Sub-pixel transmission
The generated particles are projected onto the frame buffer with a sub-pixel resolution in each
processing PC, and the stored particles in each frame buffer (active sub-pixels) are transmitted to a
global frame buffer in the viewer PC. For transmission, the sub-pixel is represented in terms of its color,
depth and identifier. A unique identifier is assigned to each sub-pixel location in the frame buffer. When
multiple identifiers appear consecutively in a horizontal direction, we employ run-length encoding for
increased efficiency. In run-length encoding, consecutive sub-pixel locations are represented using the
left-most identifier, while the number of sub-pixels is expressed by run-length.

The sub-pixels are transmitted as long as they are calculated. The transmission can be asynchronous,
since no visibility sorting is required for PBVR.

D. Image composition
The viewer PC receives the projected particles that are transmitted by the processing PCs. In the viewer
PC, a frame buffer is allocated at the appropriate sub-pixel level, and each sub-pixel is updated using
transmitted particles. The updating calculation is performed based on the Z-buffering algorithm. Since
each particle has been pre-filtered at the particle generation stage, the amount of calculations for
updates should be reduced.

5. EXPERIMENTAL RESULTS
In order to verify the effectiveness of our proposed technique, we used it to visualize the CFD
simulation results of an oral airflow field generated by a finite element method solver, FrontFlow/Blue
(Advance Soft Corporation). In this experiment, we used a viewer PC and eight processing PCs. The
viewer PC featured an Intel Core 2 Duo E6750 (2.66 GHz) CPU and 2.0 GB RAM. Two of the
processing PCs had Intel Core 2 Duo E4500 (2.2 GHz) CPU, and the remaining six featured Intel Core
2 Duo E6300 (1.86 GHz) CPUs and 2.0 GB RAM. Thus, the processing PCs had a total of 16 CPU cores.

5.1. Visualization Results
The CFD simulation results for exploring dental fricative sound can be rendered using our distributed
PBVR. During rendering, a transfer function was designed to reduce the number of particles and
enhance important regions. First, we set a simple, default linear relation from pressure and velocity to
opacity. For a repetition level of 100, the pressure volume generates over 1G particles, and the velocity
volume generates 36M particles. In the resulting image, the important region was occluded, and it was
difficult to realize an interactive visualization. Next, we improved the transfer function to reduce the
number of particles in order to realize the interactive frame rate. Using the improved transfer function,
the generated pressure and velocity volumes are 15M and 17M, respectively. In Figure 5, we can
easily see that there are multiple areas with high-pressure values that relate to sound sources. We can
also confirm a more precise distribution of the velocity magnitude of the flow field in the oral cavity
from Figure 6.

5.2. Performance Evaluation
Figure 7 (a) describes the emergence of a parallelization effect, because total processing time decreases
as the number of CPU cores among the processing PCs increases. The processing time becomes
23.09 seconds when 16 CPU cores are used. Figure 7 (b) shows that the processing time increases at
the image composition stage, although it decreases at the file loading and the particle projection stages,
at which points the number of CPU cores increases. The processing time decreases at the sub-pixel
transmission stage, as is consistent with an increase in the number of CPU cores. Since total processing
time is correlated with processing time at each CPU core, the total processing time also becomes larger.
To forecast performance when the number of CPU cores exceeds 16, we construct a performance model
based on our experimental results:
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(19)

In Equation 19, n represents the number of CPU cores among the processing PCs.

A. File loading
Since each CPU core among the processing PCs uniformly loads partial data from the CFD simulation
results (i.e., 16 datasets), the file loading time decreases as the number of CPU cores increases.
Therefore, the loading time, TA (n) [sec], can be expressed as follows:

(20)

B. Particle generation
In the particle generation stage, processing time is inversely proportional to the number of CPU cores,
since the number of volume cells that are processed in each processing PC decreases. Therefore, the
projection time, TB (n) [sec], can be expressed as follows:
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Figure 5. Visualization results for the pressure field using the proposed technique.

(a) (b)

Figure 6. Visualization results for the velocity magnitude using the proposed.



C. Sub-pixel transmission
This stage includes particle projection, run-length encoding and transmission. By assuming that the
processing times for  these procedures are Tproj [sec], Tenc [sec] and Ttrans [sec], respectively, the total
processing time in this stage, TC [sec], is as follows:

(22)T n T n T n T nC proj enc trans( ) ( ) ( ) ( )= + +
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We have measured the particle projection time for irregular volume in our experiment by utilizing
the number of generated particles. Figure 8 shows the obtained result. From this figure, we confirm that
the processing time increases proportionately as the number of generated particles increases. Since the
number of generated particles on a processing PC also decreases as the number of CPU cores increases,
the particle projection time, Tproj, can be expressed as follows:

(23)

where P is the overall amount of generated particles among the processing PCs, and tproj is the
projection time for a particle.

Encoding time depends on the number of particles that are projected onto the sub-pixels (i.e.,
the number of active sub-pixels). Figure 9 shows the relationship between encoding time and the
number of active sub-pixels in our experiment. Encoding time can be considered proportional to the
number of active sub-pixels in the graphs depicted in this figure. If we assume that the time necessary
to check whether a sub-pixel is active is Tcheck, that the number of active sub-pixels is a(n), and that
encoding time for an active sub-pixel is tenc, then the run-length encoding time Tenc can be expressed
as follows:

(24)

In order to evaluate transmission time for the encoded active sub-pixels, we measured the required
transmission time and the transmitted data size; the obtained results are shown in Figure 10. From this
figure, we confirm that transmission time increases proportionately as the transmitted data size
increases. Letting D(n) bytes be the total amount of the transmitted data and ttrans be transmission time
for one byte of data, we can represent transmission time, Ttrans, as follows:

T n a n t Tenc enc check( ) ( ) ·= +

T n
P

n
tproj proj( ) · ,=
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(25)

Based on Equations 23, 24 and 25, processing time for this stage, TC, is as follows:

(26)

D. Image composition
At this stage, the viewer PC receives data transmitted from the processing PCs and creates a copy in its
main memory. These copied fragments are then used to update the frame buffer. In our implementation,
the process is serialized at each CPU core. We measured the updating time during this stage; the results
are shown in Figure 11. From this figure, the total image compositing time, TD (n) [sec], can be
expressed as follows by letting tupdate be updating time for one byte of data and Tdisp be the processing
time for displaying the updated frame buffer:

(27)

Therefore, the performance model is:

(28)

We used the performance model presented in Equation 28 in order to verify the parallelization effect
of our proposed system. Based on experimental results with four CPU cores, we obtain TA(1) = 4TA(4)
= 9.80 [sec] and Tb(1) = 4TB(4) = 448.19 [sec]. We also measured the active sub-pixels and the
transmitted data size when utilizing different number of CPU cores in order to estimate a(n) and D(n);
the results are shown in Tables 1 and 2. From these results, the simple regression formulas for a(n) and
D(n) are as follows:

T n
T T

n

P

n
t a n t DA B

proj enc( )
( ) ( )

· ( ) · (= + − + +1 1
nn t t T Ttrans update check disp) · ( )+ + +

T n D n t TD update disp( ) ( ) ·= +

T n
P

n
t a n t D n tC proj enc trans( ) · ( ) · ( ) ·= − + + TTcheck

T n D n ttrans trans( ) ( ) ·=
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Table 1: Number of active sub-pixels

Num. of CPU cores 4 8 16

a(n) 1.44 × 105 0.73 × 105 0.39 × 105

Table 2: Total amount of transmitted data [bytes]

Num. of CPU cores 4 8 16

D(n) 7.05 × 106 7.28 × 105 8.06 × 106



(29)

(30)

As per Figures 8, 9, 10 and 11, we also use linear regression to find that tproj = 1.62 × 10−7, tenc =
2.37 × 10−7, ttrans = 8.36 × 10−8 and tupdate = 1.98 × 10−9.

Therefore, we estimate the performance model as follows:

(31)

where C = Tcheck + Tdisp + 0.57. The number of particles P described in Equation 28 was 7.36 × 105 in
our experiment.

If the parallelization effect holds in our system, the derivative with respect to the number of CPU
cores, n, should be negative:

(32)

The maximum n that satisfies the Equation 32 equals 249. This means that total performance time
decreases when the number of CPU cores exceeds 250, since the increase in processing time at the sub-
pixel transmission and image composition stages contributes more to the total performance than the
decrease impacts the file loading and particle projection stages. In the future, we hope to parallelize the
data transmission and image composition processes in the viewer PC.

6. CONCLUSIONS
We have developed a distributed implementation of PBVR for visualizing a large-scale irregular
volume dataset generated from a distributed CFD simulation. We first applied the developed technique
to the CFD simulation results, where such a large-scale dataset has, until now, never been visualized by
a volume rendering technique. Using the experimental results, we constructed a performance model as
a function of the number of CPU cores and found that the overall performance time improves as the
number of CPU cores increases up to 250. Using our proposed technique, we have also verified that the
pressure field has local maxima close to the frontal teeth in the oral cavity.

In future studies, we plan to develop a high-resolution rendering system using a tiled display wall
(TDW) and the distributed PBVR to visualize a large-scale volume dataset. In addition, we intend to
apply the GPU technique for accelerating the volume rendering process.
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