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The present article reviews the recent developments in the physics of quantum
hydrodynamics and quantum turbulence in superfluid helium and atomic Bose-
Einstein condensates. Quantum turbulence (QT) was discovered in superfluid 4He in
the 1950s, and the research has tended toward a new direction since the mid 1990s.
QT is comprised of quantized vortices that are definite topological defects, being
expected to yield a model of turbulence that is much simpler than the classical model.
The general introduction of the issue and a brief review on classical turbulence are
followed by a description of the dynamics of quantized vortices. The first modern
topic is a vortex lattice formation in a rotating Bose-Einstein condensate. The second
describes the modern trends on quantum turbulence in superfluid helium, addressing
the energy spectrum of QT, the possible dissipation mechanism at very low
temperatures, temperature-dependent transition to QT, QT created by vibrating
structures, and visualization of QT. The last topic is QT in atomic Bose-Einstein
condensates.
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1. INTRODUCTION
Nature is filled with fluid flow, from small scales to large scales. Our daily life on a human scale
constantly experiences currents of air, water, and the like. The earth sustains the ocean flows and
atmospheric circulation, leading to an abundance of life. In space, stars and galaxies flow, forming
many large-scale structures. Most flow in nature is actually turbulent. As the velocity increases, flow
generally changes from laminar to turbulent. For high-velocity or high Reynolds number flows, the
flow is generally turbulent. Turbulence has been investigated not only in basic science research, such
as physics and mathematics research, but also in applied sciences, such as fluid engineering and
aeronautics, while it is still not yet well understood. As Feynman said, turbulence is a problem “that is
common to many fields, that is very old, and that has not been solved.” [1] This is chiefly because
turbulence is a complicated dynamical phenomenon with strong nonlinearity that is quite different from
an equilibrium state.

“Turbulence” reminds one of some sketches by Leonardo da Vinci. He observed the turbulent
flow of water and drew pictures showing that turbulence has a structure comprised of vortices of
different sizes (Fig. 1). Vortices may be a key to understanding turbulence. However, vortices are not
well defined for a typical classical fluid, and the relationship between turbulence and vortices
remains unclear.

Independently of these studies in classical fluid dynamics, quantum fluids such as superfluid
helium and atomic Bose-Einstein condensates (BECs) have been investigated in the field of low
temperature physics. These systems are subject to severe quantum restrictions; the appearance of
order parameters makes the rotational motion exist only in the presence of quantized vortices. A
quantized vortex is a stable topological defect with quantized circulation. Such vortices give rise to
quantum turbulence (QT). Since quantized vortices are well defined as elements composing a
turbulent flow, QT is expected to be an easier system to study than classical turbulence (CT) and has
a simpler model of turbulence.

This article reviews recent developments in quantum hydrodynamics and QT in superfluid helium and
atomic BECs. In Sec. 2, basic concepts such as superfluidity, Bose-Einstein condensation, and quantized
vortices are briefly reviewed. Section 3 is devoted to statistical properties of CT, and the comparison
between CT and QT. Section 4 addresses the general description of dynamics of quantized vortices. In
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Sec.5 we discuss the dynamics of vortex lattice formation in a rotating BEC, addressing typical
phenomena of quantum hydrodynamics. Section 6 describes present important topics of QT in superfluid
helium, involving the energy spectrum of QT, the possible dissipation mechanism at very low
temperatures, temperature-dependent transition to QT, QT created by vibrating structures, and
visualization of QT. Applying these ideas, QT in atomic BECs is finally discussed in Sec. 7. Section 8 is
devoted to conclusions.

2. BOSE-EINSTEIN CONDENSATION, SUPERFLUIDITY, AND QUANTIZED VORTICES
This section reviews briefly the backgrounds of low temperature physics necessary for understanding
this article.

2.1 Bose-Einstein Condensation
Quantum mechanics, which has developed since the beginning of the 20th century, has changed
drastically our natural philosophy. Quantum mechanics is often thought to give the physical laws at
microscopic scales, but this understanding is not necessarily correct. Quantum mechanics actually
obeys the physical laws even at macroscopic scales. Such a field is quantum statistical mechanics.

The essence of quantum mechanics is the duality of particle-picture and wave-picture. Let’s consider
an ideal atomic gas. At relatively high temperatures, the statistics of the atoms obeys the classical
Maxwell-Boltzman distribution and each atom behaves like a particle. As the temperature is reduced,
however, the thermal de Broglie wavelength is increased to become comparable to the mean distance
between atoms. Then each atom becomes to behave like a wave, and the statistics changes to the
quantum Fermi-Dirac or Bose-Einstein distribution depending on whether the atom is a Fermion or a
Boson. If the atoms are Bosons and the system is cooled below a critical temperature TBEC, they cause
Bose-Einstein condensation in which these atoms occupy the same single-particle ground state[2]; the
critical temperature is given by 

(1)

where the relevant quantities are the particle mass m, the number density n, the Planck constant h = 2π h–,
and the Boltzman constant kB. Then matter-waves of atoms become coherent to make a macroscopic
wave function (the order parameter) Ψ(x, t) = |Ψ(x, t)|eiθ(x,t) extending over the whole volume of the
system, and the assemblage of these atoms is called a Bose-Einstein condensate (BEC). Thus quantum
mechanics appears at macroscopic scales through Bose-Einstein condensation.

Bose-Einstein condensation was theoretically predicted by Einstein in 1925. However, nobody knew
in those days a system in which Bose-Einstein condensation occurs actually.

2.2 Liquid Helium and Superfluidity
Independently of these studies in quantum statistical mechanics, the field of low temperature physics
has developed since the beginning of 20th century. Low temperature physics is generally believed to
start with the first liquefaction of 4He at 4.2K by Onnes in 1908. Subsequently, Onnes observed
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Fig. 1. Sketch of turbulence by da Vinci.



superconductivity in mercury in 1911. Onnes noticed the anomaly of heat capacity of liquid helium at
the λ point Tλ= 2.17 K too 1. In 1938 Kapitza et al. observed that liquid 4He becomes inviscid below
the λ point and called this striking phenomenon superfluidity [3].

London proposed theoretically in 1938 that the λ transition is caused by Bose-Einstein condensation
of 4He atoms. When TBEC of Eq. (1) is evaluated for the mass and density appropriate to liquid 4He at
saturated vapor pressure, one obtains TBEC of approximately 3.13K, which is close to Tλ = 2.17 K2.

2.3 Two-Fluid Model and a Quantized Vortex
In order to explain various hydrodaynamic phenomena of superfluidity[3], Tisza and Landau

introduced the two-fluid model. According to the two-fluid model, the system consists of an inviscid

superfluid (density ρs) and a viscous normal fluid (density ρn) with two independent velocity fields vs

and vn. The mixing ratio of the two fluids depends on temperature. As the temperature is reduced below

the λ point, the ratio of the superfluid component increases, and the entire fluid becomes a superfluid

below approximately 1 K. The Bose-condensed system exhibits the macroscopic wave function Ψ(x, t) =

|Ψ(x, t)|eiθ(x,t) as an order parameter. The superfluid velocity field is given by vs = (h–/m)∇θ with boson

mass m, representing the potential flow. Since the macroscopic wave function should be single-valued

for the space coordinate x, the circulation . d� for an arbitrary closed loop in the fluid is

quantized by the quantum k = h/m. A vortex with such quantized circulation is called a quantized vortex.

Any rotational motion of a superfluid is sustained only by quantized vortices. A quantized vortex was

predicted by Feynman [4] and observed experimentally in helium by Vinen [5].
A quantized vortex is a topological defect characteristic of a Bose-Einstein condensate and is

different from a vortex in a classical viscous fluid. First, the circulation is quantized, which is contrary
to a classical vortex that can have any value of circulation. Second, a quantized vortex is a vortex of
inviscid superflow. Thus, it cannot decay by the viscous diffusion of vorticity that occurs in a classical
fluid. Third, the core of a quantized vortex is very thin, on the order of the coherence length, which is
only a few angstroms in superfluid 4He. Since the vortex core is very thin and does not decay by
diffusion, it is always possible to identify the position of a quantized vortex in the fluid. These
properties make a quantized vortex more stable and definite than a classical vortex.

2.4 Early Studies on Superfluid Tubrulence
Early experimental studies on superfluid turbulence focused primarily on thermal counterflow, in
which the normal fluid and superfluid flow in opposite directions. The flow is driven by an injected
heat current, and it was found that the superflow becomes dissipative when the relative velocity
between the two fluids exceeds a critical value [6]. Feynman proposed that this is a superfluid turbulent
state consisting of a tangle of quantized vortices [4]. Vinen later confirmed Feynman’s findings
experimentally by showing that the dissipation comes from the mutual friction between vortices and
the normal flow [7, 8, 9, 10]. Subsequently, several experimental studies have examined superfluid
turbulence (ST) in thermal counterflow systems and have revealed a variety of physical
phenomenon[11]. Since the dynamics of quantized vortices is nonlinear and non-local, it has not been
easy to understand vortex dynamics observations quantitatively. Schwarz clarified the picture of ST
consisting of tangled vortices by a numerical simulation of the quantized vortex filament model in the
thermal counterflow [12, 13]. However, since the thermal counterflow has no analogy to conventional
fluid dynamics, this study was not helpful in clarifying the relationship between ST and classical
turbulence (CT). Superfluid turbulence is often called quantum turbulence (QT), which emphasizes the
fact that it is comprised of quantized vortices.

3. CLASSICAL TURBULENCE AND QUANTUM TURBULENCE
Before considering QT, we briefly review classical fluid dynamics and the statistical properties of 
CT [14], then compare CT and QT.

T = v∫
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1Since the curve of the temperature dependence of the heat capacity resembles a Greek letter λ, the critical temperature 2.17K is called the λ point

or the λ temperature. The superfluid transition of liquid 4He at 2.17 K is called the λ transition.
2Landau criticized London for this idea. Liquid helium has weak interatomic interaction, and is not an ideal Bose gas. Hence the application of Eq. (1)

is not exactly correct The inelastic neutron scattering experiments in 1980s observed the presence of the BEC below the λ point, and it is now understood

that the λ transition is caused by Bose-Einstein condensation. However, the interaction depresses the condensates compared to the case of an ideal gas.



3.1 Statistical Properties of Classical Turbulence
Classical viscous fluid dynamics is described by the Navier–Stokes equation:

(2)

where v(x, t) is the velocity of the fluid, P(x, t) is the pressure, ρ is the density of the fluid, and v is the
kinematic viscosity. The flow of this fluid can be characterized by the ratio of the second term of the
left-hand side of Eq. (2), hereinafter referred to as the inertial term, to the second term of the right-hand
side, hereinafter called the viscous term. This ratio is the Reynolds number R = υ–D/v, where υ– and D
are the characteristic velocity of the flow and the characteristic scale, respectively. When υ– increases to
allow the Reynolds number to exceed a critical value, the system changes from a laminar state to a
turbulent state, in which the flow is highly complicated and contains many eddies.

Such turbulent flow is known to show characteristic statistical behavior [15, 16]. We assume a
steady state of fully developed turbulence of an incompressible classical fluid. The energy is injected
into the fluid at a rate of ε, the scale of which is comparable to the system size D in the energy-
containing range. In the inertial range, this energy is transferred to smaller scales without being
dissipated. In this range, the system is locally homogeneous and isotropic, which leads to the statistics
of the energy spectrum known as the Kolmogorov law:

E(k) = C ε2/3 k–5/3. (3)

Here, the energy spectrum E(k) is defined as E = ∫ dkE(k), where E is the kinetic energy per unit mass
and k is the wavenumber from the Fourier transformation of the velocity field. The spectrum of Eq. (3)
is easily derived by assuming that E(k) is locally determined by only the energy flux ε and k. The energy
transferred to smaller scales in the energy-dissipative range is dissipated at the Kolmogorov
wavenumber kK = (∈/ν3)1/4 through the viscosity of the fluid with dissipation rate ε in Eq. (3), which
is equal to the energy flux Π in the inertial range. The Kolmogorov constant C is a dimensionless
parameter of order unity. The Kolmogorov spectrum is confirmed experimentally and numerically in
turbulence at high Reynolds numbers. The inertial range is thought to be sustained by the self-similar
Richardson cascade in which large eddies are broken up into smaller eddies through many vortex
reconnections. In CT, however, the Richardson cascade is not completely understood because it is
impossible to definitely identify each eddy. The Kolmogorov spectrum is based on the assumption that
the turbulence is homogeneous and isotropic. However, actual turbulence is not necessarily
homogeneous or isotropic, and so the energy spectrum deviates from the Kolmogorov form. This
phenomenon is called intermittency, and is an important problem in modern fluid dynamics [14].
Intermittency is closely related to the coherent structure, which may be represented by vortices.
Research into QT could also shed light on this issue.

3.2 Classical Turbulence and Quantum Turbulence
Comparing QT and CT reveals definite differences. Turbulence in a classical viscous fluid appears to
be comprised of vortices, as pointed out by da Vinci. However, these vortices are unstable, repeatedly
appearing and disappearing. Moreover, the circulation is not conserved and is not identical for each
vortex. Quantum turbulence consists of a tangle of quantized vortices that have the same conserved
circulation. Looking back at the history of science, reductionism, which tries to understand the nature
of complex things by reducing them to the interactions of their parts, has played an extremely important
role. The success of solid state physics owes much to reductionism. In contrast, conventional fluid
physics is not reducible to elements, and thus does not enjoy the benefits of reductionism. However,
quantum turbulence is different, being reduced to quantized vortices. Thus reductionism is applicable
to quantum turbulence. Consequently, QT should lead to a simpler model of turbulence than CT.

3.3 Research Trends of Quantum Hydrodynamics
Based on these considerations, research into quantum hydrodynamics has opened up new directions
since the mid 1990s. One new direction has occurred in the field of low temperature physics by
studying superfluid helium. It started with the attempt to understand the relationship between QT and
CT [17, 18]. Recent experimental and numerical studies support a Kolmogorov spectrum in QT.
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Following these studies, QT research on superfluid helium has moved to important topics such as the
dissipation process at very low temperatures, QT created by vibrating structures, and visualization of
QT [19, 20, 21]. Another new direction is the realization of Bose-Einstein condensation in trapped
atomic gases in 1995, which has stimulated intense experimental and theoretical activity [2]. As proof
of the existence of superfluidity, quantized vortices have been created and observed in atomic BECs,
and numerous efforts have been devoted to a number of fascinating problems [22]. Atomic BECs have
several advantages over superfluid helium. The most important is that modern optical techniques enable
one to directly control condensates and visualize quantized vortices. A series of experiments on BECs
clearly show the properties of quantum hydrodynamics [23, 24, 25].

4. DYNAMICS OF QUANTIZED VORTICES
Quantum hydrodynamics is reduced to the dynamics of quantized vortices as elements, which is addressed
in this section. As described in Section 2, most experimental studies on superfluid turbulence have
examined thermal counterflow. However, the nonlinear and non-local dynamics of vortices have delayed
progress in the microscopic understanding of the vortex tangle. Schwarz overcame these difficulties 
[12, 13] by developing a direct numerical simulation of vortex dynamics connected with dynamical
scaling analysis, enabling the calculation of physical quantities such as the vortex line density, anisotropic
parameters, and mutual friction force. The observable quantities obtained by Schwarz agree well with
some typical experimental results.

Two formulations are generally available for studying the dynamics of quantized vortices. One is the
vortex filament model and the other is the Gross-Pitaevskii (GP) model. We will briefly review these
two formulations.

4.1 Vortex Filament Model
As described in Section 2, a quantized vortex has quantized circulation. The vortex core is extremely
thin, usually much smaller than other characteristic scales in vortex motion. The vortex core is
supposed to be hollow, there are no direct observations in helium though. These properties allow a
quantized vortex to be represented as a vortex filament. In classical fluid dynamics [26], the vortex
filament model is a convenient idealization. However, the vortex filament model is accurate and
realistic for a quantized vortex in superfluid helium.

The vortex filament formulation represents a quantized vortex as a filament passing through the
fluid, having a definite direction corresponding to its vorticity. Except for the thin core region, the
superflow velocity field has a classically well-defined meaning and can be described by ideal fluid
dynamics. The velocity at a point r due to a filament is given by the Biot-Savart expression:

(4)

where κ is the quantum of circulation. The filament is represented by the parametric form s = s(ξ, t)
with the one-dimensional coordinate ξ along the filament. The vector s1 refers to a point on the
filament, and the integration is taken along the filament. Helmholtz’s theorem for a perfect fluid states
that the vortex moves with the superfluid velocity. Calculating the velocity vs at a point r = s on the
filament causes the integral to diverge as s1 → s. To avoid this divergence, we separate the velocity s

.

of the filament at the point s into two components [12]:

(5)

The first term is the localized induction field arising from a curved line element acting on itself, and �+
and �− are the lengths of the two adjacent line elements after discretization, separated by the point s.
The prime denotes differentiation with respect to the arc length ξ. The mutually perpendicular vectors
s′, s′′, and s′ × s′′ point along the tangent, the principal normal, and the binormal, respectively, at the
point s, and their respective magnitudes are 1, R–1, and R–1, with the local radius R of curvature. The
parameter a0 is the cutoff corresponding to the core radius. Thus, the first term represents the tendency
to move the local point s along the binormal direction with a velocity inversely proportional to R. The
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second term represents the non-local field obtained by integrating the integral of Eq. (4) along the rest
of the filament, except in the neighborhood of s.

Neglecting the non-local terms and replacing Eq. (5) by s
.

= β s′ × s′′ is referred to as the localized
induction approximation (LIA). Here, the coefficient β is defined by β = (κ/4π) ln (c 〈R〉/a0), where c
is a constant of order 1 and (�+�−)1/2 is replaced by the mean radius of curvature 〈R〉 along the length
of the filament. This approximation is believed to be effective for analyzing isotropic dense tangles due
to cancellations between non-local contributions.

A better understanding of vortices in a real system is obtained when boundaries are included in the
analysis. For this purpose, a boundary-induced velocity field vs, b is added to vs, so that the superflow
can satisfy the boundary condition of an inviscid flow, that is, that the normal component of the velocity
should disappear at the boundaries. To allow for another, presently unspecified, applied field, we
include vs, a. Hence, the total velocity s

.
0 of the vortex filament without dissipation is

(6)

At finite temperatures, it is necessary to take into account the mutual friction between the vortex core
and the normal flow vn. Including this term, the velocity of s is given by

s. = s.0 + αs′ × (vn – s.0) – α′ s′ × [s′× (vn– s.0)], (7)

where α and α′ are temperature-dependent friction coefficients [12], and s
.
0 is calculated from Eq. (6).

The numerical simulation method based on this model is described in detail elsewhere [12, 13, 27]. A
vortex filament is represented by a single string of points separated by a distance ∆ζ. The vortex
configuration at a given time determines the velocity field in the fluid, thus moving the vortex filaments
according to Eqs. (6) and (7). Vortex reconnection should be properly included when simulating vortex
dynamics. A numerical study of a classical fluid shows that the close interaction of two vortices leads to
their reconnection, chiefly because of the viscous diffusion of the vorticity. Schwarz assumed that two
vortex filaments reconnect when they come within a critical distance of one another and showed that
statistical quantities such as vortex line density were not sensitive to how the reconnections occur [12, 13].
Even after Schwarz’s study, it remained unclear as to whether quantized vortices can actually reconnect.
However, Koplik and Levine solved directly the GP equation to show that two closely quantized vortices
reconnect even in an inviscid superfluid [28]. More recent simulations have shown that reconnections are
accompanied by emissions of sound waves having wavelengths on the order of the healing length [29, 30].

Starting with several remnant vortices under thermal counterflow, Schwarz studied numerically how
these vortices developed into a statistical steady vortex tangle [13]. The tangle was self-sustained by
the competition between the excitation due to the applied flow and the dissipation through the mutual
friction. The numerical results were quantitatively consistent with typical experimental results. This
was a significant accomplishment for numerical research.

Here, we shall introduce some quantities that are characteristic of a vortex tangle. The line length
density L is defined as the total length of vortex cores in a unit volume. The mean spacing � between
vortices is given by � = L–1/2.

4.2 The Gross-Pitaevskii (GP) Model
In a weakly interacting Bose system, the macroscopic wave function Ψ(x, t) appears as the order
parameter of Bose-Einstein condensation, obeying the Gross-Pitaevskii (GP) equation [2]:

(8)

Here, g = 4πh--2m/a represents the strength of the interaction characterized by the s-wave scattering length
a, m is the mass of each particle, and µ is the chemical potential. Writing Ψ = |Ψ| exp(iθ), the squared
amplitude |Ψ|2 is the condensate density and the gradient of the phase θ gives the superfluid velocity vs =
(h--/m)∇θ, which is a frictionless flow of the condensate. This relation causes quantized vortices to appear
with quantized circulation. The only characteristic scale of the GP model is the coherence length defined
by , which gives the vortex core size. The GP model can explain not only the vortexξ = ( )/ 2mg Ψh
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dynamics but also phenomena related to vortex cores, such as reconnection and nucleation. However, the
GP equation is not applicable quantitatively to superfluid 4He, which is not a weakly interacting Bose
system. It is, however, applicable to Bose-Einstein condensation of a dilute atomic Bose gas [2].

5. QUANTIZED VORTICES IN A ROTATING BEC
This section describes the typical phenomenon of quantum hydrodynamics of atomic BECs, namely the
vortex lattice formation in a rotating BEC. What happens if we rotate a cylindrical vessel with a
classical viscous fluid inside? Even if the fluid is initially at rest, it starts to rotate and eventually
reaches a steady rotation with the same rotational speed as the vessel. In that case, one can say that the
system contains a vortex that mimics solid-body rotation.3 A rotation of arbitrary angular velocity can
be sustained by a single vortex. However, this does not occur in a quantum fluid. Because of
quantization of circulation, superfluids respond to rotation, not with a single vortex, but with a lattice
of quantized vortices. Feynman noted that in uniform rotation with angular velocity Ω the rot of the
superfluid velocity is the circulation per unit area, and since the rot is 2Ω, a lattice of quantized vortices
with number density n0 = rotυs/κ = 2Ω/κ (“Feynman’s rule”) arranges itself parallel to the rotation axis [4].
Such experiments were performed for superfluid 4He: Packard et al. visualized vortex lattices on the
rotational axis by trapping electrons along the cores [31, 32].

This idea has also been applied to atomic BECs. Several groups have observed vortex lattices in rotating
BECs [23, 24, 25, 33]. Among them, Madison et al. directly observed nonlinear processes such as vortex
nucleation and lattice formation in a rotating 87Rb BEC [25]. By sudden application of a rotation along the
trapping potential, an initially axisymmetric condensate undergoes a collective quadrupole oscillation to an
elliptically deformed condensate. This oscillation continues for a few hundred milliseconds with gradually
decreasing amplitude. Then the axial symmetry of the condensate is recovered and vortices enter the
condensate through its surface, eventually settling into a lattice configuration.

This observation has been reproduced by a simulation of the Gross-Pitaevskii (GP) equation for the
macroscopic wavefunction Ψ(x, t) = |Ψ (x, t)|eiθ (x, t ) in two-dimensional [34, 35] and three-dimensional
[36] spaces. The corresponding GP equation in a frame rotating with frequency Ω = Ωẑ is given by

(9)

Here Vex is a trapping potential, and Lz = −ih-- (x∂y − y∂x) is the angular momentum along the
rotational axis. The interparticle potential Vint is approximated by a short-range interaction Vint

~–
gδ(x − x′), where g = 4πh--2a/m is a coupling constant characterized by the s-wave scattering length
a. The term γ indicates phenomenological dissipation.4
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3Thin boundary layers of the Ekman and Stewartson types can appear in a rotating classical fluid, but we do not consider such complicated

structures here.
4We used γ = 0.03 in this simulation [34, 35]. The vortex state corresponds to the minimum of the free energy in a rotating frame. In order to take

the system from some high-energy vortex-free state to the minimum, we need some dissipation. The calculation without dissipation never forms

the vortex lattice. The value of γ is tuned so that the GP equation can explain some experiments observing the damping of the collective mode.

Fig. 2. Profile of (a) the condensate density and (b) the phase of the macroscopic
wavefunction when there is a quantized vortex in a trapped BEC [21]. The value of the

phase varies continuously from 0 (red) to 2π (blue).

(a) (b)



Figure 2 shows the profile of the condensate density |Ψ(x, t)|2 and the phase θ (x, t) when there is a
quantized vortex in a trapped BEC. The density has a hole representing the vortex core. The phase has
a branch cut between 0 and 2π, and the edge of the branch cut corresponds to the vortex core around
which the phase rotates by 2π as the superflow circulates. One can therefore clearly identify the vortex
both in the density and the phase.

A typical two-dimensional numerical simulation of Eq. (9) [34, 35] for the vortex lattice formation is
shown in Fig. 3, where the condensate density and the phase are displayed together. The trapping potential is

(10)

where ω = 2π × 219 Hz, and the parameters ∈x = 0.03 and ∈y = 0.09 describe small deviations from
axisymmetry corresponding to experiments [24, 25]. We first prepare an equilibrium condensate
trapped in a stationary potential; the size of the condensate cloud is determined by the Thomas-Fermi
radius RTF. When we apply a rotation with Ω = 0.7ω, the condensate becomes elliptic and performs a
quadrupole oscillation [Fig. 3(a)]. Then, the boundary surface of the condensate becomes unstable and
generates ripples that propagate along the surface [Fig. 3(b)]. As stated previously, it is possible to
identify quantized vortices in the phase profile also. As soon as the rotation starts, many vortices appear
in the low-density region outside of the condensate [Fig. 3(a)]. Since quantized vortices are excitations,
their nucleation increases the energy of the system. Because of the low density in the outskirts of the
condensate, however, their nucleation contributes little to the energy and angular momentum.5 Since
these vortices outside of the condensate are not observed in the density profile, they are called “ghost
vortices”. Their movement toward the Thomas-Fermi surface excites ripples [Fig. 3(b)]. It is not easy
for these ghost vortices to enter the condensate, because that would increase both the energy and
angular momentum. Only some vortices enter the condensate cloud to become “real vortices” wearing
the usual density profile of quantized vortices [Fig. 3(d)], eventually forming a vortex lattice [Fig. 3 (e)
and (f)]. The number of vortices forming a lattice is given by “Feynman’s rule” n0 = 2Ω/κ. The
numerical results agree quantitatively with these observations.

Note the essence of the dynamics. The initial state has no vortices in the absence of rotation. The
final state is a vortex lattice corresponding to rotational frequency Ω. In order to go from the initial to
the final state, the system makes use of as many excitations as possible, such as vortices, quadruple
oscillation, and surface waves. We refer the readers to Ref. 35 for details.
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5Actually the vortex-antivortex pairs are nucleated in the low-density region. Then the vortices parallel to the rotation are dragged into the Thomas-

Fermi surface, while the antivortices are repelled to the outskirts.

Fig. 3. Dynamics of vortex lattice formation in a rotating BEC [21]. The figure
simultaneously shows both the condensate density and phase. They are bird’s -eye

pictures of the distribution of the condensate density, and the color shows the phase
continuously from 0 (red) to 2π (blue). The graphs are at (a) t = 63 ms, (b) 305 ms, 
(c) 350 ms, (d) 410 ms, (e) 450 ms, and (f) 850 ms after the start of the rotation.
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6. MODERN RESEARCH TRENDS OF QUANTUM TURBULENCE IN SUPERFLUID HELIUM
Most older experimental studies on QT were devoted to thermal counterflow. Since this flow has no
classical analogue, these studies do not contribute greatly to the understanding of the relationship
between CT and QT. Since the mid 1990s, important experimental studies on QT that did not focus on
thermal counterflow have been published.

6.1 New Experiments on Energy Spectra
The first important contribution was made by Maurer and Tabeling [37], who confirmed experimentally
the Kolmogorov spectrum in superfluid 4He for the first time. A turbulent flow was produced in a
cylinder by driving two counter-rotating disks. The authors observed the local pressure fluctuations to
obtain the energy spectrum. The experiments were conducted at three different temperatures 2.3 K, 
2.08 K, and 1.4 K. Both above and below the λ point, the Kolmogorov spectrum was confirmed. The
observed behavior above the λ point is not surprising because the system is a classical viscous fluid.
However, it is not trivial to understand the Kolmogorov spectrum at two different temperatures below
the λ point.

The next significant step was a series of experiments on grid turbulence performed for superfluid 4He
above 1 K by the Oregon group [38, 39, 40, 41]. The flow through a grid is usually used to generate
turbulence in classical fluid dynamics [14]. At a sufficient distance behind the grid, the flow displays a
form of homogeneous isotropic turbulence. This method has also been applied to superfluid helium. In
the experiments by the Oregon group, the helium was contained in a channel with a square cross section,
through which a grid was pulled at a constant velocity. A pair of second-sound transducers was set into
the walls of the channel. When a vortex tangle appeared in a channel, it was detected by second-sound
attenuation [17]. The decay of the vorticity of the tangle created behind the towed grid was observed by
the pair of transducers. In combining the observations with the decay of the turbulence, the authors made
some assumptions. In fully developed turbulence, the energy dissipation rate can be shown to be given
as = ν〈ω 2〉, where 〈ω 2〉 is the mean square vorticity (rot v) in the flow [42]. The authors assumed that
a similar formula applies in superfluid helium above 1 K. They noted that the quantity κ2L2 would be a
measure of the mean square vorticity in the superfluid component. Hence, they assumed that in grid
turbulence the dissipation rate is given by = ν′κ2L2 with an effective kinematic viscosity ν′. In order
to combine this representation with the observations of second-sound attenuation for grid turbulence, the
authors furthermore assumed that a quasi-classical flow appears at length scales much greater than �. The
flow is thought to come from a mechanism coupling the superfluid and the normal fluid by mutual
friction, causing the fluid to behave like a one-component fluid [43]. By choosing suitable values of ν′
as a function of temperature [41], it was found that κL decays as t−3/2.

This characteristic decay L ∝ t−3/2 is quite important, because it is related to the Kolmogorov
spectrum. Thus, we herein present the simple argument given in a previous review article [17]. We
assume that a turbulent fluid obeys the Kolmogorov spectrum of Eq. (3) in the inertial range of D–1

< k < kd with D–1 < < kd. The total energy is approximately given by

(11)

If the turbulence decays slowly with time and the dissipation rate ε is assumed to be time-dependent,
we can write

(12)

The solution gives the time-dependence of ε:

ε = 27 C3 D2 (t + t0)
–3, (13)

where t0 is a constant. Combining Eq. (13) with the above formula of ε gives the decay of L:
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This behavior has been observed, and a quantitative comparison with observations at any
temperature gives ν′ as a function of temperature. The observation of the decay L ∼ t–3/2 indicates that
the Kolmogorov spectrum applies in turbulence, although it is not necessarily direct proof. Note that
this simple analysis is applicable only when the maximum length scale of the turbulent energy
saturates at the size of the channel. For the complete dynamics, a more complicated decay of vortices
has been observed and has been found to be consistent with the classical model of the Kolmogorov
spectrum [38, 39, 40]. This type of decay is also observed at very low temperatures in the turbulence
induced by an impulsive spin down for superfluid 4He [44] and in grid turbulence for the B phase of
superfluid 3He [45, 46]6.

6.2 Energy Spectra at Finite Temperatures
These observations lead us to inquire as to the nature of the velocity field that gives rise to the
observed energy spectrum. Vinen considered the situation theoretically [43] and proposed that it is
likely that the superfluid and normal fluid are coupled by mutual friction at scales larger than the
characteristic scale � of the vortex tangle. If so, the two fluids behave as a one-component fluid at
these scales, where mutual friction does not cause dissipation. Since the normal fluid is viscous,
the two coupled fluids can be turbulent and obey the Kolmogorov spectrum. The observation of
the energy spectrum by Maurer et al. and Stalp et al. should support the idea of the coupled
dynamics of two fluids. At small scales, the two fluids should be decoupled, so that both mutual
friction and normal fluid viscosity operate. What then happens to the energy spectrum? Although
theoretical consideration has been given to this problem [47], the answer remains controversial
and has not yet been clarified. While this is an important problem, it is not investigated in the
present article.

6.3 Modern Research Trends
The following three trends are currently the primary research areas in QT in superfluid helium. The first
is the energy spectra and the dissipation mechanism at zero temperature [48]. The second is QT created
by vibrating structures [49]. The third is visualization of QT [50]. The remainder of this section is
devoted to the review of these related topics.

6.4 Energy spectra and Dissipation at Zero Temperature
What happens to QT at zero temperature is not so trivial. The first problem is determining the nature
of the energy spectrum of turbulence for the pure superfluid component [48]. If QT has a classical
analogue, the energy spectrum is expected to obey the Kolmogorov law and have an inertial range in
which the energy is transferred self-similarly from large to small scales. In QT at zero temperature,
any rotational motion should be carried by quantized vortices. Since quantized vortices are definite
topological defects, the cascade can be attributed directly to their dynamics, which is different from
the case for CT. In a classical case the Richardson cascade is only schematic. The second problem is
determining how the energy is transferred from large to small scales. There is no dissipative
mechanism at large scales. However, some dissipative mechanism should operate at small scales, as
described below. A vortex tangle has a characteristic scale �, which is defined by the mean spacing
between vortex lines. At scales greater than �, a Richardson cascade should transfer the energy
through the breakup of vortices. However, the Richardson cascade becomes ineffective at small
scales, especially below �. What mechanism cascades the energy instead of the Richardson cascade
at these scales? The third problem is understanding the dissipation in the system. The first possibility
is acoustic emission at vortex reconnections. In classical fluid dynamics, vortex reconnections cause
acoustic emission. In quantum fluids, numerical simulations of the GP model show acoustic emission
at every reconnection event [29]. However, this mechanism is thought to be unimportant because of
the very short coherence length. The second possible mechanism is the radiation of sound (phonons)
by the oscillatory motion of vortex cores. We will return to these mechanisms, as well as other
possibilities.
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6A 3He atom is a Fermion, another isotope of helium. Liquid 3He becomes superfluid below about 1mK through the BCS (Bardeen-Cooper -

Schrieffer) mechanism which works in usual superconductors. Superfluid 3He is anisotropic, yielding multicomponent order parameters.

Depending on pressure and temperature, the A and B phases appear, and another A1 phase is stabilized under a magnetic field.



6.4.1 Energy Spectra
No experimental studies have addressed this issue directly, although a few numerical studies have been
conducted. The first study was performed by Nore et al. using the GP model [51, 52]. They solved the
GP equation numerically starting from Taylor-Green vortices, and followed the time development. The
quantized vortices become tangled and the energy spectra of the incompressible kinetic energy seemed
to obey the Kolmogorov law for a short period, although the energy spectra eventually deviated from
the Kolmogorov law. The second study was performed by the vortex filament model[53], and the third
study was performed by the modified GP model [54, 55].

6.4.2 Energy Spectra by the Vortex Filament Model
Using the vortex filament model, Araki et al. generated a vortex tangle arising from Taylor-Green
vortices and obtained an energy spectrum consistent with the Kolmogorov law[53]. It would be
informative to describe how to obtain the energy spectra under the vortex filament model. The energy
spectrum is calculated by Fourier transform of the superfluid velocity vs(r), which is determined by the
configuration of quantized vortices. Thus, the energy spectrum can be calculated directly from the
configuration of the vortices. Using the Fourier transform vs(k) = (2π)−3 ∫ drvs(r) exp(–ik.r) and
Parseval’s theorem ∫ dk|vs(k)|2 = (2π)−3 ∫ dr|vs(r)|2, the kinetic energy of the superfluid velocity per unit
mass is

(15)

The vorticity ω(r) = rotvs(r) is represented in Fourier space as vs(k) = ik × ω(k)/|k|2, so that we have
E = ((2π)3/2) ∫dk|ω(k)|2/|k|2. The vorticity is concentrated on the vortex filament, represented by

(16)

which can be rewritten as

(17)

Using the definition of the energy spectrum E (k) from E = ∫ ∞
0 dkE(k), these relations yield

(18)

where dΩk = k2 sin θkdθkdφk is the volume element in spherical coordinates.
Starting from a Taylor-Green vortex and following the vortex motion under the full Biot-Savart law

without mutual friction, Araki et al. obtained a roughly homogeneous and isotropic vortex tangle [53].
This was a decaying turbulence, dissipated by the cutoff of the smallest vortices, the size of which is
comparable to the numerical space resolution. Initially, the energy spectrum has a large peak at the
largest scale, where the energy is concentrated. The spectrum changes as the vortices become
homogeneous and isotropic. The energy spectrum of the vortex tangle at some late stage was
quantitatively consistent with the Kolmogorov spectrum in thesmall k region. By monitoring the
development of the vortex size distribution, the decay of a tangle is found to be sustained by a
Richardson cascade process. These results support the quasi-classical picture of the inertial range in QT
at very low temperatures.

6.4.3 Energy Spectra by the GP Model
As the third trial, the Kolmogorov spectra were confirmed for both decaying [54] and steady [55] QT
by the modified GP model. The normalized GP equation is
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which determines the dynamics of the macroscopic wave function Φ(x, t) = ƒ(x, t) exp[iφ(x, t)]. The
condensate density is |Φ(x, t)|2 = ƒ(x, t)2, and the superfluid velocity v(x, t) is given by v(x, t) = 2∇φ
(x, t). The vorticity ω(x, t) = rotv(x, t) vanishes everywhere in a single-connected region of the fluid
and thus all rotational flow is carried by quantized vortices. In the core of each vortex, Φ(x, t) vanishes
so that the circulation around the core is quantized by 4π. The vortex core size is given by the healing
length .

Note that the hydrodynamics described by the GP model is compressible, which is different from 
the incompressible case of the vortex filament model. The total number of condensate particles is 
N = ∫ dx|Φ(x, t)|2 and the total energy is

(20)

which is represented by the sum of the interaction energy Eint(t), the quantum energy Eq(t), and the
kinetic energy Ekin(t) [51, 52]:

(21)

The kinetic energy is furthermore divided into a compressible part Ec
kin (t) due to compressible

excitations and an incompressible part E i
kin (t) due to vortices. If the Kolmogorov spectrum is observed,

the spectrum should be that for the incompressible kinetic energy E i
kin (t).

The failure to obtain the Kolmogorov law under the pure GP model [51, 52] would be attributable
to the following reasons. Note that the situation here is decaying turbulence. Although the total energy
E(t) was conserved, E i

kin(t) decreased with increasing Ec
kin(t). This was because many compressible

excitations were created through repeated vortex reconnections [29, 30] and disturbed the Richardson
cascade of quantized vortices even at large scales.

Kobayashi and Tsubota overcame the difficulties of Nore et al. and obtained the Kolmogorov spectra
in QT and clearly revealed the energy cascade [54, 55]. They performed numerical calculation for the
Fourier transformed GP equation with dissipation:

(22)

Here, Φ∼ 
(k, t) is the spatial Fourier component of Φ(x, t) and V is the system volume. The healing length

is given by ξ = 1/|Φ| . The dissipation should have the form γ~ (k) = γ0 θ (k – 2π/ξ) with the step
function θ, which dissipates only the excitations smaller than ξ. This form of dissipation can be justified
by the coupled analysis of the GP equation for the macroscopic wave function and the Bogoliubov-de
Gennes equations for thermal excitations [56].

First, Kobayashi et al. confirmed the Kolmogorov spectra for decaying turbulence [54]. To obtain a
turbulent state, they started the calculation from an initial configuration in which the density was
uniform and the phase of the wave function had a random spatial distribution. The initial wave function
was dynamically unstable and soon developed into fully developed turbulence with many quantized
vortex loops. The spectrum Ei

kin(k,t) of the incompressible kinetic energy was then found to obey the
Kolmogorov law.

A more elaborate analysis of steady QT was performed by introducing energy injection at large scales
as well as energy dissipation at small scales [55]. Energy injection at large scales was effected by moving
a random potential V(x, t). Numerically, Kobayashi et al. placed random numbers between 0 and V0 in
space-time (x, t) at intervals of X0 for space and T0 for time and connected them smoothly using a four-
dimensional spline interpolation. The moving random potential exhibited a Gaussian two-point
correlation:
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(23)

This moving random potential had a characteristic spatial scale of X0. Small vortex loops were first
nucleated by the random potential, growing to the scale of X0 by its motion subjected to Eq. (23). The
vortex loops were then cast into the Richardson cascade. If steady QT is obtained by the balance between
the energy injection and the dissipation, it should have an energy-containing range of k < 2π/X0, an
inertial range of 2π/X0 < k < 2π/ξ, and an energy-dissipative range of 2π/ξ < k.
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Fig. 4. Results of numerical simulation of the GP equation with energy injection at large
scales and energy dissipation at small scales. Time development of the total energy E(t),
the kinetic energy Ekin(t), the compressible kinetic energy Ec

kin(t), and the incompressible
kinetic energy Ei

kin(t) at (a) the initial stage 0 ≤ t ≤ 5 and (b) a later stage 25 ≤ t ≤ 30 [55].
The system is found to be statistically steady at the later stage.

A typical simulation of steady turbulence was performed for V0 = 50, X0 = 4, and T0 = 6.4 × 10−2.
The dynamics started from the uniform wave function. Figure 4 shows the time development of each
energy component. The moving random potential nucleates sound waves as well as vortices, but both
figures show that the incompressible kinetic energy E i

kin(t) due to vortices is dominant in the total
kinetic energy Ekin(t). The four energies are almost constant for t <~ 25, and steady QT was obtained.

Such a steady QT enables us to investigate the energy cascade. Here, we expect an energy flow in
wavenumber space similar to that in Fig. 5. The upper half of the diagram shows the kinetic energy
E i

kin(t) of quantized vortices, and the lower half shows the kinetic energy Ec
kin(t) of compressible

excitations. In the energy-containing range k < 2π/X0, the system receives incompressible kinetic
energy from the moving random potential. During the Richardson cascade process of quantized
vortices, the energy flows from small to large k in the inertial range 2π/X0 < k < 2π/ξ. In the energy-
dissipative range 2π/ξ < k, the incompressible kinetic energy transforms to compressible kinetic energy
through reconnections of vortices or the disappearance of small vortex loops. The moving random
potential also creates long-wavelength compressible sound waves, which are another source of
compressible kinetic energy and also produce an interaction with vortices. However, the effect of sound
waves is weak because Ei

kin(t) is much larger than Ec
kin(t), as shown in Fig. 4.

This cascade can be confirmed quantitatively by checking whether the energy dissipation rate ε of
Ei

kin (t) is comparable to the flux of energy Π(k, t) through the Richardson cascade in the inertial range.
Although the details are described in Reference 55, Π(k, t) is found to be approximately independent
of k and comparable to ε. As shown in Fig. 6 (b), the energy spectrum is quantitatively consistent with
the Kolmogorov law in the inertial range 2π/X0 < k < 2π/ξ, which is equivalent to 0.79 <~ k <~ 6.3. It is
interesting to focus on Richardson cascade. Richardson cascade is only conceptual in CT, while it is
genuine in QT in which vortices are identified definitely. Actually we observe lots of events of the
splitting of a vortex into smaller vortices in the turbulence state. The situation is more difficult to
understand in CT. This is one of the reasons why we believe that QT is simper than CT.



Kobayashi et al. studied the decay of QT under the same formulation [57]. After obtaining a steady
tangle, they switched off the motion of the random potential and found that L decayed as t –3/2.

6.4.4 The Kelvin-wave Cascade
The arguments in the last section were chiefly limited to the large scale, usually larger than the mean
spacing � of a vortex tangle, in which the Richardson cascade is effective for transferring the energy
from large to small scales. Here, we should consider what happens at smaller scales, for which the
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of diagram) and compressible kinetic energy Ec
kin(t) (lower half) in wavenumber space in the

steady turbulence by the GP equation[55]. The energy is injected in the energy-containing
range (k < 2π/X0) through the moving random potential V(x,t), leading to nucleation of

vortices in Ei
kin and formation of sound waves Ec

kin. In Ei
kin the energy is trasferred in the

inertial-range (2π/X0 < k < 2π/ξ) through the Richardson cascade of quantized vortices with
the energy flux ∏, then dissipated with the rate in the energy-dissipative range (2π/ξ < k)

by the dissipative term of γ. There may be some energy cascade in Ec
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weak interaction with Ei
kin, which is not clear currently.
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Fig. 6. A steady quantum turbulence obtained numerically by the GP equation. (a) A typical
vortex tangle. (b) Energy spectrum Ei

kin(k,t) for QT. The plotted points are from an ensemble
average of 50 randomly selected states at t > 25. The solid line is the Kolmogorov law [55].
The inertial range corresponds to 2π/X0 < k < 2π/ξ (see Fig.5), in which the spectrum obeys
the Kolmogorov law. The Kolmogorov constant C ∼ 0.55 is lower than the usual value C ∼

1.4, the reason of which is not known.



Richardson cascade should be less effective. The most probable scenario is the Kelvin-wave cascade.
A Kelvin-wave is a deformation of a vortex line into a helix with the deformation propagating as a wave
along the vortex line [58]. Kelvin-waves were first observed by making torsional oscillations in
uniformly rotating superfluid 4He [59, 60]. The approximate dispersion relation for a rectilinear vortex
is ωk = (κk2)/(4π)(ln(1/ka0)+c) with a constant c ~ 1. Note that this k is the wavenumber of an excited
Kelvin-wave and is different from the wavenumber used for the energy spectrum in the last subsection.
At a finite temperature, a significant fraction of normal fluid damps Kelvin-waves through mutual
friction. At very low temperatures, however, mutual friction does not occur, and the only possible
mechanism of dissipation is the radiation of phonons [61]. Phonon radiation becomes effective only
when the frequency becomes very high, typically on the order of GHz (k ~ 10−1 nm−1), so a mechanism
is required to transfer the energy to such high wavenumbers in order for Kelvin-waves to be damped.
An early numerical simulation based on the vortex filament model showed that Kelvin-waves are
unstable to the buildup of side bands [62]. This indicates the possibility that nonlinear interactions
between different Kelvin-wave numbers can transfer energy from small to large wavenumbers, namely
the Kelvin-wave cascade. This idea was first suggested by Svistunov [63] and was later developed and
confirmed through theoretical and numerical analyses by Kivotides et al. [64], Vinen et al. [65], and
Kozik and Svistunov [66, 67, 68].

6.4.5 Classical-quantum Crossover
An important trend is investigation of the nature of the transition between the Richardson and the
Kelvin-wave cascades. Turbulence at scales larger than the mean vortex spacing obeys the Kolmogorov
law with a Richardson cascade. In this regime, the nature of individual vortices is not relevant, and the
large-scale velocity field created collectively by the vortices mimics classical turbulent behavior. This
regime may therefore be called classical. In contrast, at length scales smaller than the mean vortex
spacing the energy is transferred along each vortex through a Kelvin-wave cascade; this regime has no
classical analog and can be called quantum. Several theoretical considerations of the classical-quantum
crossover have been proposed.

L’vov et al. theoretically discussed a bottleneck crossover between the two regions [69]. Their
investigation was based on the idea that a vortex tangle obeying the Kolmogorov spectrum is polarized
to some degree, and they viewed the vortex tangle as a set of vortex bundles. When they tried to connect
the energy spectra between two cascades, a serious mismatch occurred at the crossover scale between
the classical and quantum spectra. This mismatch prevented the energy flux from propagating fully
through the crossover region, which is referred to as the bottleneck effect. In order to remedy this
mismatch, L’vov et al. used warm cascade solutions [72] and proposed a thermal-equilibrium type
spectrum between the classical and quantum spectra. The analysis of L’vov et al. was based on the
assumption that the coarse-grained macroscopic picture of quantized vortices remains valid down to a
scale of �. Without this assumption, Kozik and Svistunov theoretically investigated the details of the
structure of the vortex bundle in the crossover region [70, 71]. Depending on the types of vortex
reconnections, the crossover range near � was further divided into three subranges, resolving the
mismatch between two cascades. However, this topic is not yet fixed, and remains controversial.

6.4.6 Possible Dissipation Mechanism at Zero Temperature
Here, we should investigate the possible dissipation mechanisms of QT at very low temperatures, in
which the normal fluid component is so negligible that mutual friction does not occur. In this case, there
is no dissipation at relatively large scales, and dissipation can only occur at small scales. Energy at large
scales should be transferred to smaller scales by a Richardson cascade and then a Kelvin-wave cascade
until the dissipation becomes effective. The description presented herein is only schematic. Please refer
to other papers for a more detailed discussion [43, 17].

Dissipation of QT at zero temperature was first proposed by Feynman [4]. Feynman suggested that
a large vortex loop should be broken up into smaller loops through repeated vortex reconnections,
which is essentially identical to the Richardson cascade. Feynman thought that the smallest vortex ring
having a radius comparable to the atomic scale must be a roton, although this belief is not currently
accepted universally. Later, Vinen considered the decay of superfluid turbulence in order to understand
his experimental results for thermal counterflow [7, 8], leading him to propose Vinen’s equation [9].
Although the experiments were performed at finite temperatures, the physics is important in order to
study the decay of QT, as described briefly herein. Vortices in turbulence are assumed to be
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approximately evenly spaced with a mean spacing of � = L−1/2. The energy of the vortices then spreads
from the vortices of wavenumber 1/� to a wide range of wavenumbers. The overall decay of the energy
is governed by the characteristic velocity νs = k/2 π� and the time constant �/νs of the vortices of size
�, giving

(24)

where χ is a dimensionless parameter that is generally dependent on temperature. Rewriting this
equation using L, we obtain

. (25)

This is called Vinen’s equation. The original Vinen’s equation also includes a term of vortex
amplification, which is not shown here. This equation describes the decay of L, the solution of which is

(26)

where L0 is L at t = 0. The thermal counterflow observations are well described by this solution, which
gives the values of χ as a function of temperature [9]. The decay at finite temperatures is due to mutual
friction. The value of χ at zero temperature is obtained by a numerical simulation of the vortex filament
model [27].

What causes the different types of decay of L ~ t−3/2 of Eq. (14) and L ~ t −1 of Eq. (27)? The different
types of decay originate from the different structures of vortex tangles in QT. When the energy
spectrum of a vortex tangle obeys the Kolmogorov law, the tangle is self-similar in the inertial range,
and most energy is in the largest vortex. The then decays as L ~ t–3/2, as described in Section 4.1. If a
vortex tangle is random and has little correlation, however, the only length scale is � = L–1/2, yielding
a decay of L ~ t–1, as described herein. Therefore, the observation of how L decays is helpful in
understanding the structure of vortex tangles in QT. The two kinds of decay are actually observed in
superfluid 4He at very low temperatures [73].

However, these studies do not explain what happens to QT at zero temperature at small scales. There
are several possibilities. The first is acoustic emission at vortex reconnections. In classical fluid
dynamics it is known that vortex reconnections cause acoustic emission. In quantum fluids, numerical
simulations of the GP model show that acoustic emission occurs at every reconnection [29, 30]. The
dissipated energy during each reconnection is approximately 3ξ times the vortex line energy per unit
length. We can estimate how L decays by this mechanism. The number of reconnection events per
volume per time is on the order of κ L5/2 [27]. Since each reconnection should reduce the vortex length
by the order of ξ, the decay of L can be described as dL/dt = −χ1ξκ L5/2 with a constant χ1 of order unity.
The solution is

(27)

In superfluid helium, especially 4He, ξ is so small that decay due to this mechanism should be
negligible.

The second possible mechanism is the radiation of sound (phonons) by the oscillatory motion of a
vortex core. The characteristic frequencies of vortex motion on a scale � are of order κ /�2, which is too
small to cause effective radiation [43]. In order to make the radiation effective, the vortices should form
small-scale structures, which would be realized by two consecutive processes. The first process is due
to vortex reconnections [63]. In a dense isotropic tangle, vortex reconnections occur repeatedly at a rate
of order κ /�5 per unit volume [27]. When two vortices approach one another, they twist so that they
become locally antiparallel, and reconnect [12]. They then separate leaving a local small-scale
structure. However, even such local structures created by single reconnection events are insufficient to
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cause effective acoustic radiation. The next process occurs due to a Kelvin-wave cascade described in
Section 7.2. The Kelvin-wave cascade could transfer the energy into the small scales in which the
radiation of sound becomes effective.

In actual experiments, we may have to consider the effects of vortex diffusion, even though these
effects are not due to dissipation. Using the vortex filament model, Tsubota et al. numerically studied
how an inhomogeneous vortex tangle diffuses [74]. The obtained diffusion of the line length density
L(x, t) was well described by

(28)

where χ is a dimensionless constant dependent on temperature. Without the second term on the right-
hand side, this is Vinen’s equation (25) [9]. The second term represents the diffusion of a vortex tangle.
The numerical results show that the diffusion constant D is approximately 0.1κ . The dimensional
argument indicates that D must be on the order of κ [74].

6.5 New Experiments on Quantum Turbulence
This subsection reviews briefly recent important experiments on QT, although additional research is
needed for all of these experiments.

6.5.1 Temperature-dependent transition to QT
Krusius et al. conducted a series of experimental studies on QT in superfluid 3He -B under rotation [75,
76, 77, 78, 79, 80] and observed the strong temperature-dependent transition of a few seed vortices to
turbulence. A seed vortex can develop into turbulence when the temperature is lower than the onset
temperature Ton, whereas the seed vortex does not lead to turbulence above Ton. The onset temperature
Ton is approximately 0.6Tc with the superfluid transition temperature Tc being independent of flow
velocity[78]. The key characteristics of using 3He -B for research on QT are as follows. First, the
normal fluid component is too viscous to become turbulent, which is very different from the case of
superfluid 4He. Secondly, monitoring the NMR absorption spectra enables us to count the number of
quantized vortices, which is not possible in 4He.

What the experiments revealed is the following. A seed vortex is injected into 3He-B in a cylindrical
vessel rotating with the angular velocity Ω. In the laboratory frame, the normal fluid component causes
solid body rotation, while the superfluid component remains at rest. When the temperature is higher
than Ton, the vortex just orientates along the rotational axis because of the mutual friction. If the
temperature is lower than Ton, however, the vortex becomes unstable, through several vortex
reconnections that occur chiefly near the boundary[79], splitting into lots of vortices, and eventually
reaching an equilibrium vortex lattice state. While the turbulent front propagates to the vortex-free
region, the front takes on the beautiful “twisted vortex state” [80]. The onset temperature is determined
by considering the dynamic mutual friction parameter ζ = (1 – α′)/α, where α and α′ are the mutual
friction coefficients appearing in Eq. (7) [75]. This parameter ζ works in this system like the Reynolds
number in a usual fluid.

6.5.2 Dissipation at Very Low Temperatures
Recently a few experimental studies on these topics have been conducted, showing the reduction of the
dissipation at low temperatures. Eltsov et al. studied the vortex front propagation into a region of
vortex-free flow in rotating superfluid 3He-B by NMR measurements following a series of
investigations [81]. The observed front velocity as a function of temperature shows the transition from
laminar through quasiclassical turbulent to quantum turbulent. The front velocity is related to the
effective dissipation, which exhibits a peculiar reduction at very low temperatures below approximately
0.25Tc with the critical temperature Tc. Eltsov et al. claim that this is attributable to the bottleneck
effect. Walmsley et al. made another observation of the effective viscosity of turbulence in superfluid
4He [44]. Turbulence was produced by an impulsive spin down from an angular velocity to rest for a
cube-shaped container, and the line length density was measured by scattering negative ions. The
observed effective kinematic viscosity showed the striking reduction at low temperatures below
approximately 0.8 K. In this case, the bottleneck effect may not be so significant. The authors believe
this may be due to another mechanism, namely, the difficulty in transferring energy through
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wavenumbers from the three-dimensional Richardson cascade to the one-dimensional Kelvin-wave
cascade.

6.5.3 Quantum turbulence created by vibrating structures
Recently, vibrating structures including discs, spheres, grids, and wires, have been used for research
into QT [49]. Despite differences between the structures, the experiments show surprisingly similar
behavior. When a classical viscous fluid steadily flows past a structure, the flow changes from laminar
to turbulence in the wake as the Reynolds number increases. The net drag force on the structure is often
expressed in terms of the drag coefficient CD as FD = 1/2CDρAυ2, where A is the projected area of the
structure onto a plane normal to the flow. For laminar viscous flow, the drag is approximately
proportional to υ so that CD ~ υ–1, while turbulent flow with high Reynolds number yields a drag
coefficient CD of order unity. This drastic reduction in the drag force is called the drag crisis, and is
closely related to the formation of the boundary layer [82]. A boundary layer in a high velocity gradient
produces eddies. However, such boundary layers do not appear in the superfluid component. Another
classical aspect is the effect of oscillations. The oscillatory case is more complicated than that of steady
flow because a second length scale appears in addition to the linear size of the structure, namely the
viscous penetration depth δ = where ω is the oscillation frequency of the structure [49].
Owing to the importance of the topic in marine engineering, a number of experimental studies have
been published on oscillatory classical flow past a cylinder. As laminar flow becomes unstable, the
drag coefficient CD reduces to a value of order unity. However, the values of CD oscillate within the
range 0.5 to 2.0, showing a more complicated transition to turbulence than in the case of steady flow.
Visual observations show that vortices are formed in the wake of the oscillating cylinder. A few
experimental studies have reported classical flow around an oscillating sphere. A typical experiment
shows that a single vortex ring is generated and shed during each half period of oscillation [83].

Typical behavior appeared in the pioneering observation of QT for an oscillating microsphere in
superfluid 4He by Ja

..
ger et al. [84]. The sphere they used had a radius of approximately 100 µm. It was

made from a strongly ferromagnetic material and was magnetically levitated in superfluid 4He. Its
response to an alternating drive was observed. At low drives, the velocity response υ was proportional
to the drive FD, taking the “laminar” form FD = λ(T)υ with a temperature-dependent coefficient λ(T).
At high drives, the response changed to the “turbulent” form FD = γ(T)(υ2 – υ0

2) above a critical
velocity υ0. At low temperatures, the transition from laminar to turbulent response was accompanied
by hysteresis. Subsequently, several groups have experimentally investigated the transition to
turbulence in superfluid 4He and 3He-B by using grids, wires, and tuning forks [49].

These experimental studies reported some common behaviors independent of the details of the
structures, including its type, shape, and surface roughness. The observed critical velocities were in the
range from 1 to 200 mm/s. Since the velocity was lower than the Landau critical velocity of
approximately 50 m/s [3], the transition to turbulence should come not from intrinsic nucleation of
vortices but from extension or amplification of remnant vortices.7 Such behavior is seen in the
numerical simulation using the vortex filament model [86]. Figure 7 shows how the remnant vortices
initially attached to a sphere develop into turbulence under an oscillating flow. Many unresolved
problems remain, such as the nature of the critical velocity and the origin of the hysteresis in the
transition between the laminar and turbulent response.

6.5.4 Visualization of QT
There has been little direct experimental information about flow in superfluid 4He because standard
flow visualization techniques are not applicable to it. However, the situation is changing [50]. For QT,
one can seed the fluid with tracer particles in order to visualize the flow field. Quantized vortices are
observable by appropriate optical techniques.

A significant contribution was made by Zhang and Van Sciver [87]. Using the particle image
velocimetry (PIV) technique with 1.7-µm-diameter polymer particles, they visualized a large-scale
turbulent flow both in front of and behind a cylinder in counterflowing superfluid 4He at finite
temperatures. In classical fluids, such turbulent structures are seen downstream of objects such as
cylinders, and the structures periodically detach to form a vortex sheet. In the case of 4He

2ν ω/
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when the liquid is cooled down through the λ point to the superfluid phase.



counterflow, however, the locations of the large-scale turbulent structures were relatively stable; they
did not detach and move downstream, although local fluctuations in the turbulence were evident.

Do the tracer particles follow the normal flow, the superflow, or a more complex flow?
Barenghi et al. studied this question theoretically and numerically to show that the situation changes

depending on the size and mass of the tracer particles [88, 89, 90].
Another important contribution was the visualization of quantized vortices by Bewley et al. [91]. In

their experiments, liquid helium was seeded with solid hydrogen particles smaller than 2.7 µm in
diameter at a temperature slightly above Tλ, following which the fluid was cooled to below Tλ. When
the temperature is above Tλ, a homogeneous cloud of the particles was seen that disperses throughout
the fluid. However, on passing through Tλ, the particles coalesced into web-like structures. Bewley 
et al. suggested that these structures represent decorated quantized vortex lines. They reported that the
vortex lines form connections rather than remaining separated, and were homogeneously distributed
throughout the fluid. The observed fork-like structures may indicate that several vortices are attached
to the same particle. Applying this technique to thermal counter flow, Paoletti et al. have directly
visualized the two-fluid behavior [92].

7. QUANTUM TURBULENCE IN ATOMIC BECs
The long history of research into superfluid helium has uncovered two main cooperative phenomena of
quantized vortices: vortex lattices under rotation and vortex tangles in QT. However, almost all studies
of quantized vortices in atomic BECs have been limited to vortex lattices. This section briefly discusses
QT in atomic BECs.
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(b)

(c)

Fig. 7. Evolution of a vortex line near a sphere of radius 100 µm in an oscillating superflow
of 150 mm/s at 200 Hz. [Ha

..
nninen, Tsubota, and Vinen, Phys. Rev. B 75 (2007) 064502,

reproduced with permission. Copyright 2007 by the American Physical Society.]



Kobayashi and Tsubota proposed an easy, powerful method to make a steady QT in a trapped BEC,
by using precession [93]. The dynamics of the wavefunction are described by the GP equation with
dissipation. First, one traps a BEC cloud in a weakly elliptical harmonic potential,

(29)

where the parameters δ1 and δ2 exhibit elliptical deformation in the xy- and zx-planes. Second, to
transform the BEC into a turbulent state, a rotation is applied along the z-axis followed by a rotation
along the x -axis, as shown in Fig. 8(a). The rotation vector is Ω(t) = (Ωx, Ωz sinΩxt, Ωzcos Ωxt) where
Ωz and Ωx are the frequencies of the first and second rotations, respectively. Consider the case where
the spinning and precessing rotational axes are perpendicular to each other. Then the two rotations do
not commute and cannot be represented by their sum. This form of precession is also used for
turbulence in water [94].

Starting from a stationary solution without rotation or elliptical deformation, Kobayashi et al.
numerically calculated the time development of the GP equation by turning on the rotation Ωx = Ωz = 0.6
and elliptical deformation δ1 = δ2 = 0.025. By monitoring the kinetic energy and anisotropic parameters,
the system eventually becomes statistically steady and isotropic. In the steady state, the spectrum 
Ei

kin(k, t) of the incompressible kinetic energy per unit mass is consistent with the Kolmogorov law 
[Fig. 8(b)]. The inertial range which sustains the Kolmogorov law is determined by the Thomas-Fermi
radius RTF and the coherence length ξ. The application of a combined precession around three axes
enables one to obtain more isotropic QT [95]. The velocity field in a BEC cloud can be observed by
Bragg spectroscopy [96], enabling one to obtain the energy spectrum.
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There are several advantages of studying QT in atomic BECs compared to in superfluid helium.
First, one can observe the vortex configuration, probably even the Richardson cascade process of
vortices. In fact one can directly study the relation between the real-space Richardson cascade and the
wavenumber-space cascade (the Kolmogorov spectrum). Second, one can control the transition to
turbulence by changing the rotational frequencies or other parameters. For example, rotation along one
axis forms a vortex lattice. If one applies another rotation, it may rotate the lattice if the frequency is
low. If the frequency is high, however, the second rotation can melt the lattice into a vortex tangle. That
would enable one to investigate in detail the entire transition to turbulence. Third, by changing the



shape of the trapping potential, one can study the effect of the anisotropy on turbulence; a typical
question is how the Kolmogorov spectrum is changed when the BEC becomes anisotropic. This issue
is related to the transition between 2D and 3D turbulence. Fourth, one can create rich QT in
multicomponent BECs by controlling the interaction parameters. Multicomponent BECs have been
extensively studied and found to create many kinds of vortex structures depending on the
intercomponent interaction [97]. By using such systems, we will be able to make multicomponent QT
coupled through the interaction.

8. CONCLUSIONS
In this article, we have reviewed recent research on quantum hydrodynamics and turbulence in
superfluid helium and atomic BECs. Quantum turbulence has been long studied in superfluid helium,
while it is realized experimentally in atomic BECs too very lately [98]. Research on QT is currently
one of the most important branches in low-temperature physics, attracting the attention of many
scientists. QT is comprised of quantized vortices as definite elements, which differs greatly from
conventional turbulence. Thus, investigation of QT may lead to a breakthrough in understanding one
of the great mysteries of nature since the era of da Vinci. There are many related topics not addressed
in this article, regarding which we refer the readers to other review articles [19, 20].
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