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ABSTRACT
The vortex structure of a separated flow over a backward-facing step controlled by a
synthetic jet is investigated by using an implicit large-eddy simulation with a high-order
compact difference scheme. The computation results show that mixing in the shear layer
is not enhanced, when the flow is controlled at the normalized frequency of 2.0 based on
the height of backward-facing step. In this case the separation length is similar to that in
the case without flow control because weak and short periodic vortices are induced by the
synthetic jet, and they weakly interact with the shear layer and diffuse in the recirculation
region. On the other hand, the separation length becomes 20% shorter when the flow is
controlled at F+

h = 0.2 than that in the case without flow control. Strong two-dimensional
vortices generated from the synthetic jet interact with the shear layer, which increases the
periodic component of the Reynolds stress within that layer. These vortices are deformed
into three-dimensional structures, which strengthen the nonperiodic component of the
Reynolds stress in the recirculation region.

1. INTRODUCTION
Flow separation appears in various applications in the fields of aeronautical and mechanical engineering,
and it has negative impacts on the performance of those applications. Therefore, the control of the
separated flow has been continuously and extensively investigated. Recently, active flow control using
microscale devices has received significant attention. One such flow control device is a “synthetic jet”
[1], which consists of an orifice connected to a cavity, whose bottom oscillates at a small amplitude and
produces a weak, periodic flow from the orifice. It has been reported that flow separation over an airfoil
can be controlled by a synthetic jet, which induces a weak and periodic flow from its orifice exit. An
advantage of using a synthetic jet over conventional flow control devices is its active flow-control
capability. Other advantages of synthetic jets include their light weight and compactness and the fact that
they do not require a pneumatic supply. Therefore, synthetic jets are considered suitable for a wide range
of aircrafts, especially unmanned air vehicles, microscale air vehicles, and rotorcraft.

However, the practical applications of synthetic jets have been limited to the control of low-speed
flows because of its relatively small output power. To control the high Mach-and-Reynolds-number and
high-dynamic-pressure flow with synthetic jets, it is necessary to understand the flow-control
mechanism of the jets and redesign the mechanism using a physics-based model instead of the current
trial-and-error experimental studies. Although it is important to understand the characteristics of a flow
induced by a synthetic jet device, these characteristics have not been clarified yet.

Most of the experiments on synthetic jets have demonstrated the effects of the synthetic jet on flow
control or have discussed the optimal conditions to operate the synthetic jet around an airfoil or a



backward-facing-step configuration. Amitay et al. [2], Amitay and Glezer [3], Glezer et al. [4], and
Seifert and Darabi [5] have analyzed the effects of several parameters in their experiments, as well as
the effects of the installation position, nondimensional jet frequency (based on the chord or separation
lengths and freestream velocity), and jet mass flow on flow-separation control around an airfoil.
Previous studies have shown that actuation with both the nondimensional jet frequencies of O(1) and
O(10) (based on the airfoil chord length) works satisfactorily, whereas the actuation with the
nondimensional jet frequency of O(10) works better.

In addition, several computational studies have been conducted. You and Moin [6] performed LES
of flow separation over an airfoil using a synthetic jet. They showed that the key mechanism in flow-
separation control is the modification of the boundary-layer profile by adding or removing the
directional momentum of the flow to or from the boundary layer, in addition to the enhancement of the
mixing. Dandois et al. [7] conducted DNS and LES of the flow over a rounded ramp using a synthetic
jet. They compared the low-frequency (F+ = 0.5) and high-frequency (F+ = 4.0) excitations and
concluded that low-frequency excitation works best because turbulent kinetic energy is satisfactorily
produced in this case. Okada et al. [8, 9] conducted computational simulations of a synthetic jet in a
quiescent state and showed the importance of flow within a cavity; they recommended the inclusion of
an internal cavity for the numerical simulation. Moreover, they illustrated the effects of Reynolds and
Strouhal numbers of a synthetic jet on the generated zero-net-mass jet flow in a quiescent state.

Moreover, there are a lot of studies for flow control using other devices. Chun and Sung [10] have
experimentally investigated flow-separation control in a backward-facing-step configuration using local
forcing, whereas the turbulent inflow is imposed. They concluded that an F+

θ (based on the momentum
thickness of the shear layer and freestream velocity, whose definition is different from that of the flow
around an airfoil) of 0.01 works better. This frequency is near the frequency of the natural-vortex
shedding of an unforced flow. Wengle et al. [11] conducted experiments and direct numerical simulations
(DNS) of transitional flow-separation control over a backward-facing step by blowing/suction excitation
with an initially laminar flow. They concluded that the optimum frequency corresponds to an F+

θ of
0.012, whose laminar-to-turbulent transition is the most amplified. In addition, Yoshioka et al. [12, 13]
experimentally studied the separation control of a backward-facing-step configuration using periodic
excitation. They showed that actuation with a nondimensional frequency F+

h (based on the height of the
backward-facing step and freestream velocity, whose definition is different from that of the flow around
an airfoil) of 0.2 works best. Dejoan and Leschziner [14] performed large eddy simulations (LES) of the
flow experiments over a backward-facing step, conducted by Yoshioka et al. Dejoan and Leschziner’s
computation reproduces the flow features obtained in the experiments, and they concluded that a
flapping motion can be observed when flow is excited at the optimum frequency, F+

h of 0.2.
Although previous studies have mainly shown the efficiency of flow-separation control with a

synthetic jet and other devices, the mechanism of separation control has not been discussed in
greater detail. In this study, the flow fields of a synthetic jet, used for flow-separation control, are
analyzed to understand the mechanics of flow-separation control by a synthetic jet. Separated flow
fields around a backward-facing step with and without a synthetic jet are computationally
simulated, and the change in massively separated flow by the synthetic jet is discussed. A
backward-facing-step configuration is selected for this study because of the fixed separation point
and simpler flow field and geometry than those around an airfoil; therefore, we have a smaller
number of parameters for the flow and geometric conditions. While previous studies have shown
the frequency effect of a synthetic jet on the separation control, there are two different opinions on
the optimum frequency (F+ = 1 or F+ = 10) for the separation control. This analysis focuses on the
frequency characteristics of a synthetic jet controlling the separated flow.

2. EXPERIMENTAL SETTINGS
2.1. Configuration of the Synthetic Jet
A synthetic jet with a geometric configuration shown in Ref. [15] is selected for use in this study (Fig. 1).
The nondimensional orifice depth, d, is equal to the nondimensional orifice width, b. The cavity depth,
ZD, is 5 d, and the cavity width, XL, is 7.5 d. The cavity-span length in the y-direction is set to be wide
enough for the simulation; therefore, a two-dimensional configuration is adopted in this study.

The oscillation of the cavity wall is defined by Eq. (1) as follows:

(1)h x t A F tw h( , ) sin( )= ⋅ +2π
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Here the amplitude of the wall’s oscillation, A, is a constant. F+
h is the nondimensional frequency of

the wall’s oscillation. The input parameters are shown in the Section 2.3, which describes flow
conditions.

2.2. Configuration of Backward-Facing Step
The backward-facing-step configuration and flow conditions are the same as those of Jovic’s study [16]
because this experiment has comparable data to validate the case without the synthetic jet control.
Figure 2 shows the backward-facing-step configuration. All the dimensions in the figure are in
centimeters, but the figure is not to scale. Areas colored in gray show the computational regions in this
study.

The synthetic jet is located near the edge of the backward-facing step because a previous study [2]
reported the optimal location for a synthetic jet is near the separation point (the edge of the backward-
facing step). The cavity of the synthetic jet is located between −0.5 h and −0.125 h from the edge of the
backward-facing step. (See Fig. 4)

2.3. Flow Conditions
The inlet flow Mach number and Reynolds number, based on the height of the backward-facing step
and the freestream velocity, are 0.2 and 5000, respectively. Here a 99% boundary layer thickness is 1.2 h
at x/h = −3.15. The inflow boundary layer is turbulent. The Reynolds number and the boundary layer
thickness are the same as those in Jovic’s study [16]. A synthetic jet has two important input parameters
that are commonly used for describing the operating conditions for flow control: nondimensional
frequency and momentum coefficient. The nondimensional frequency denotes the wall-oscillation
frequency of the synthetic jet, and the nondimensional momentum coefficient denotes the ratio of the
momentum of the synthetic jet and freestream.

(2)

where f, h, u∞, and wjmax, are the dimensional frequency of the wall’s oscillation, height of the
backward-facing step, freestream velocity, and temporally maximum value for the spatially averaged
orifice exit velocity, respectively. In this study, three cases are analyzed: Synthetic-jet-off (without a
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Figure 1. Current synthetic-jet configuration.



synthetic jet), F+
h = 2.0, and F+

h = 0.2, where the nondimensional frequency F +
h is normalized with

the height of the backward-facing step and freestream velocity. These values correspond to F+ ~10 and
1, respectively. Here, the nondimensional frequency F+ is normalized to the length of the separation
region and the freestream velocity. Previous studies on an airfoil [2, 3, and 4] have shown that both
values are good for controlling. Actuation at a lower frequency (F+ of less than 1) apparently does not
to work well for flow control because low-frequency components are not observed in the uncontrolled
cases, and there are no published reports that show functional lower-frequency (F+ of less than 1)
actuation. Therefore, actuation at a lower frequency (F+ of less than 1) is not examined. In this study,
the momentum coefficient is set to the same value (0.2%) for each case because this analysis focuses
on the frequency characteristics of the synthetic jet. The value of the momentum coefficient is very
small compared with that of a continuous-blowing jet, which successfully controls the separation. The
amplitude parameter is different for F+

h = 2.0 and F+
h = 0.2 to maintain constant ujmax because ujmax is

proportional to the amplitude and frequency, as shown in the equation below (also see Table 1).

(3)

where k is a constant determined by the geometric shape of the synthetic jet.

u k A Fj hmax = ⋅ ⋅ +
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Figure 2. Schematic of the wind tunnel.

Table 1. Synthetic jet parameters

Case F+
h Cµ Amp.

Synthetic-jet-off N/A N/A N/A
F+

h = 2.0 2.0 0.20% 0.0041 h

F+
h = 0.2 0.2 0.20% 0.041 h



3. COMPUTATIONAL APPROACH
3.1. Numerical Methods
Three-dimensional, compressible Navier–Stokes equations nondimensionalized by freestream sound
speed, density, and reference length are employed as the governing equations. These equations are solved
in the generalized, curvilinear coordinates by the in-house code LANS3D [17] (which represents “LU-ADI
Navier–Stokes code for three-dimensional flows”), developed at ISAS/JAXA. This code is based on an
efficient and accurate method for analyzing complicated flow fields by solving compressible
Navier–Stokes equations. The spatial derivatives of convective and viscous terms, metrics, and Jacobian
are evaluated by a sixth-order compact-difference scheme [18], and the weak flow induced by the synthetic
jet and turbulent boundary layer are resolved effectively. Near the boundary, second-order explicit
difference schemes are used. Tenth-order filtering [19] with a filtering coefficient of 0.45 is applied once
every time step. The spilt form of the governing equation by Visbal and Gaitonde to compute the deforming
and moving meshes is used for preserving the freestream [20, 21]. For time integration, an alternating
direction implicit and symmetric Gauss–Seidel (ADI–SGS) [22, 23] algorithm is used. This algorithm uses
the same basic concept as that of a four-factored symmetric Gauss–Seidel (FF-SGS) [24] algorithm, which
adopts the concepts of both a lower–upper symmetric alternating direction implicit (LU-ADI) [17]
algorithm and a lower–upper symmetric Gauss–Seidel (LU-SGS) [25] algorithm. To ensure time accuracy,
a backward second-order difference formula is used for time integration, in which three sub-iterations are
adopted. The computational time step is 0.003 in nondimensional time, so the maximum
Courant–Friedrichs–Lewy number becomes approximately equal to 2.0. In the standard LES approach,
explicit subgrid-scale models are employed, but in an ILES approach, they are not employed. Instead, a
high-order low-pass filter selectively damps poorly resolved high-frequency waves. DNS is not used
because the computational resources are insufficient, and an analysis of the vortex structure that can be
resolved using LES is sufficient to understand the flow-control mechanism. Turbulent inflow boundary
conditions are generated by using the rescaling method by Urbin et al. [26]. The rescaling domain is −12.0
< x/h < −2.0. Outflow boundaries are located away from the edge of the backward-facing step by stretching
the mesh in the streamwise direction. At the outflow boundary, all variables are extrapolated. On the lower
surface, no-slip conditions are adopted along with a zero normal pressure gradient. The upper surface is
treated as a slip wall (w = 0), and the normal derivative of other variables is set to zero. A periodic boundary
condition is applied to the spanwise boundaries.

3.2. Computational Grids
Figure 3 shows a side view of the backward-facing step. The square region is the resolved region shown in
Fig. 2. The length of the computational region of zone 1 in the streamwise direction (x-direction) is 12 h,
and the rescaling domain is set to −12.0 < x/h < −2.0. A buffer region is configured, as shown in Fig. 3, to
avoid the nonphysical reflection of acoustic waves [27]. The orifice and cavity configuration of the
synthetic jet is shown in Fig 4. The length of the computational region in the span direction (y-direction) is
4 h, as shown in Fig. 5. A patched-grid approach is employed to generate grids for cavity, orifice, and
backward-facing step regions, as shown in Figs. 3, 4, and 5. The synthetic-jet-off case does not include the
cavity and orifice regions. The grid-deformation approach, developed by Melville et al. [28], is used to
generate a time-varying fluid grid system for the cavity regions, as shown in Figs. 4 and 5. This algebraic
method can maintain the grid quality of the initial grid near the deforming surfaces under arbitrary,
moderate deflections and rotations. The total number of grid points is approximately 7,000,000.
(See Table 2) The spatial resolution of a sixth-order compact difference scheme is generally much finer
than that of a conventional low-order upwind scheme. Our observation indicates that the results obtained
with this method correspond to those obtained from a conventional scheme with 50–100 times more grid
points [29, 30 and 31]. Between each region, 12 grid points are overlapped to maintain the same accuracy
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as that of the internal grid points in an overlapped region. The minimum grid size in each direction of all
the grids is ∆x = 0.0017, ∆y = 0.04, and ∆z = 0.0017, respectively. The grid sizes in the wall units (∆x+, ∆y+,
∆z+

min) are (4, 5, 0.2) in zone 1, respectively. These values are sufficient for resolving a turbulent boundary
layer. The grid points, minimum grid spacing, and computational region are set on the basis of the results
of a study by Le et al. [32]. A grid-sensitivity analysis is also performed in our preliminary study.

3.3. Validation
The simulation results for synthetic-jet-off are compared with those of Jovic’s experiment [16] to
validate the grid resolution and numerical methods. The simulation results for synthetic-jet-off are
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Table 2. Number of grid points of current computational grids

Zone Name j × k × l x/h y/h z/h
zone 1 backstep 349 × 101 × 85 0.0017 0.04 0.0017
zone 2 backstep 268 × 101 × 138 0.0027 0.04 0.0017
zone 3 orifice 21 × 101 × 43 0.0017 0.04 0.0017
zone 4 cavity 99 × 101 × 65 0.0017 0.04 0.0017



discussed in detail in a previously published paper [33]. The inflow Mach number is less than 0.2,
different from that for Jovic’s experiment. A Mach number in this range apparently does not strongly
affect the computational results, and a Mach number of 0.2 is selected to increase the computational
efficiency. The time-and-spanwise-averaged skin friction coefficients are compared in Fig. 6. The
computational results agree well with the experimental results. Table 3 shows the reattachment point of
the experimental and computational results. The reattachment point is the location at which the skin
friction is zero; it also agrees with those of the experimental results. Figure 7 shows time-and-spanwise-
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Figure 6. Skin friction coefficient for the synthetic-jet-off case compared with experimental data.

Table 3. Reattachment location

Case Reattachment location
Exp. 6.0h(+/−0.15 h)
CFD 5.85 h
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Figure 7. Pressure coefficient for the synthetic-jet-off case compared with experimental data.



averaged pressure coefficients compared with Jovic’s results. These computational results agree well
with the experimental results from x/h = 0.0 to 3.0, but they show a slightly higher value from x/h = 4
to 10. This might be because of gradual stretching of the grid in the flow direction at zone 2, as shown
in Fig. 3, although the DNS computational result by Le et al. [32] also shows the same trend. These
numerical errors in the time-averaged skin friction and pressure coefficients are sufficiently small for a
qualitative understanding of the frequency characteristics of the synthetic jet and flow field. The
simulation results for synthetic-jet-off agree well with the experimental results, and in addition, the
applicability of the computational code with respect to various flows have been well examined in Refs.
[29, 30 and 31].

4. RESULTS AND DISCUSSIONS
4.1.Time-averaged Flow Fields
Figure 8 shows the time-and-spanwise-averaged skin-friction coefficient on the bottom wall (0.0 < x/h
< 10.0) for each case. The distance from the edge to the reattachment position for F+

h = 0.2 is evidently
shorter than that for the synthetic-jet-off and F+

h = 2.0. Table 4, which lists the recirculation length
computed from the skin-friction coefficient, shows that the length of the separation region of F+

h = 2.0
is similar to that for the synthetic-jet-off, whereas the length of the separation region of F+

h = 0.2 is
20% shorter than that for the synthetic-jet-off. Figure 9 shows the time-and-spanwise-averaged
Reynolds stress distribution for each case. In case of the synthetic-jet-off, strong Reynolds stress
regions exist between the shear-layer (0.0 < x/h < 2.0) and the recirculation (2.0 < x/h < 6.0) regions.
The Reynolds stress distribution for F+

h = 2.0 is similar to that for the synthetic-jet-off; however, the
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Figure 8. Skin friction coefficients of the cases examined.



Reynolds stress is slightly weaker than that for the synthetic-jet-off. On the other hand, a strong-
Reynolds-stress distribution is observed at both the shear layer (0.0 < x/h < 1.5) and the recirculation
(1.5 < x/h < 5.0) regions when F+

h = 0.2. Such a strong- Reynolds-stress distribution enhances the
mixing of the shear layer and the recirculation regions, and the flow is quickly reattached. The shear-
layer evolution along the flow is analyzed by estimating the vorticity thickness. Here, the vorticity
thickness is defined as follows:

(4)

Figure 10 shows the vorticity thickness of the shear layer. Vorticity thickness is usually used as a
reference for the scale of thickness of the mixed and shear layers. In total, the vorticity thickness for F+

h = 0.2
is larger than that for other cases. The Reynolds stress distribution increases at x/h = 1.5 (Fig. 9). On the
other hand, when F+

h = 2.0, the vorticity thickness is similar to that for the synthetic-jet-off and is slightly
smaller in the recirculation region (4.0 < x/h < 6.0). These time-averaged flow-fields illustrate that the
Reynolds stress, vorticity thickness, mixing and reattachment point have a strong correlation; therefore, the
Reynolds stress is apparently an important index of reattachment points.

4.2. Spectral Analysis
Spectral analysis is conducted to understand the quantitative frequency characteristics of the flow field
and vortex structure. Figure 11 shows the location of the measured spectrum points from Stations 1 to 8.
These locations are along the time-averaged streamline (i.e., the shear layer) of the synthetic-jet-off.
Each spectrum is averaged over 12 points in the spanwise direction. Figures 12, 13, and 14 show the
one-third octave-band-filtered power spectrum densities of the vertical velocity for the synthetic-jet-off
at F+

h = 2.0 and 0.2, respectively. The power spectrum densities are filtered by the one-third octave
band, and the noise in the narrow-band spectrum data are removed. The vertical velocity is analyzed
because it shows clearer frequency characteristics of the shear layer and vortices than those of pressure
or density. The definition of the Strouhal number is the same as that of the nondimensional frequency
of synthetic jet actuation, where F+

h is used for the input parameter, and St is used to understand the
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physical phenomenon. In case of synthetic-jet-off, Station 1 has a peak at St = 0.4, and its maximum
value is smaller than that for other stations. Station 2 has a clear peak at St = 0.2, and the maximum
value is adequate. At Station 2, the vortex pairs with the frequency of the actuation (i.e., low frequency)
although its location is near Station 1. Ho and Huang [34] also discussed this pairing mechanism on the
basis of an experimental study of vortex pairing in the mixing layer. At stations in the downstream
region, the peak frequency decreases and the maximum value increases because the shear layer
develops, as shown in Fig. 10. This corresponds to the result that the vortex scale increases further
downstream (the details are described in the next section). Cases with actuation also show this trend.
For Fh = 2.0, the spectrum at Station 1 has a peak corresponding to the frequency actuation of the
synthetic jet. This shows that vortices are generated by the actuation of the synthetic jet at St = 2.0. The
level of the high-frequency component in velocity-fluctuation spectra for this case is higher than those
for the other cases because the synthetic jet is actuated at a high frequency (F+

h = 2.0). The peak shifts
to the lower-frequency side, and the maximum value increases because the vortices of the various
scales generated in the shear layer increase. The trend of the spectrum in this case is similar to that for
the synthetic-jet-off case, except for the high-frequency region. For F+

h = 0.2, Station 1 has three clear
peaks at St = 0.2, 0.4, and 0.6, of which the first and second peaks are dominant. The first peak
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corresponds to the input frequency of the synthetic jet and the vortices generated from the synthetic jet,
whereas the second and third peaks correspond to the harmonic components. The second and third
peaks might represent the nonlinear phenomenon of the fluid, i.e., breakup and stretching of vortices
induced by the shear layer. The peak shifts to the lower-frequency side, and the maximum value
increases because more vortices of various scales are generated in the shear layer. In the order Stations
3 (x/h = 1.5), 4 (x/h = 2.0), and 5 (x/h = 3.0), the maximum values of the second and the third peaks
decrease, whereas the maximum value of the first peak increases, and it has the maximum value
because of vortex pairing at Station 3 (x/h = 1.5), similar to the synthetic-jet-off case. Details are
presented in the phase-averaged analysis discussed later. Therefore, the vorticity thickness reaches a
plateau, as shown in Fig. 10. Moreover, Ho and Huang [34] show that start of the plateau agrees with
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the location of vortex pairing. In addition, the location of vortex pairing corresponds to the spread
location of the Reynolds stress distribution. At Station 7, the first peak disappears because the vortices
disintegrate, as shown in the phase-averaged analysis. Additionally, the spread Reynolds stress region
corresponds to the location of vortex pairing and diffusion, as shown in Fig. 8. Morris and Foss [35]
showed that the unstable frequency of the turbulent shear layer is Stθ = fθ/uave = 0.022–0.024 from the
experimental study of vortex pairing in the mixed layer, where θ denotes the momentum thickness, and
uave denotes the averaged velocity of both sides of the shear layer. In this study, the reference length is
set to the height of the backward-facing step, and the unstable frequency of the turbulent shear layer
approximately corresponds to Sth = fh/u∞ = 0.2. The flow separation is suppressed when F+

h = 0.2
because the unstable frequency is near the input frequency of the synthetic jet. Therefore, this implies
that the frequency normalized by the momentum thickness of the separated shear layer (boundary layer)
might be a better parameter than that normalized by the the separation length, whose optimum value is
unclear in previous studies of separated flow around an airfoil [2, 3, 4 and 5], as discussed in Section 1.
This optimum value based on the momentum thickness is well corresponding to that of the previous
studies in which the backward-facing step is controlled using other devices. [10, 11, 12, 13 and 14]

4.3. Phase-averaged Analysis
A phase-averaged analysis is conducted, and the vortex structure and generation mechanisms of the
Reynolds stress for F+

h = 2.0 and F+
h = 0.2 are investigated. This analysis is effective for analyzing

periodic phenomenon in turbulent shear and mixed layers and it distinguishes between the periodic and
turbulent fluid motions [36]. The frequency of phase averaging is set to be the same as that of the
synthetic-jet actuation at F+

h = 2.0 and F+
h = 0.2. These frequencies are the most dominant for each

case, as shown in Figs. 11 and 12.
Figures 15 and 16 show the phase-and-span-averaged contour surface of static pressure and the

contour lines of the second invariant of the velocity gradient tensor Q at each phase for F+
h = 2.0 and

F+
h = 0.2, respectively. The contour lines clearly show the vortex structures. For F+

h = 2.0, periodic
vortices are developed near the edge of the backward-facing step, but they diffuse further downstream.
The vortices from the synthetic jet have a weak effect on the flow and pressure contour. For F+

h = 0.2,
multiple vortices are shed during one cycle. At ϕ = 5/4 π, a vortex (SL1) is induced near the edge of
the backward-facing step because of the Kelvin–Helmholtz instability. Then, SL1 develops within the
shear layer. At ϕ = 0, the next vortex (SL2) is induced near the edge of the backward-facing step, also
because of the Kelvin–Helmholtz instability. At φ = 1/4 π, a vortex (SJ) is generated from the synthetic
jet. At ϕ = 2/4 π, the SL1 andSL2 are paired because of vortex-line instability and the deceleration by
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the adverse pressure gradient. At ϕ = 7/4 π, SJ and SL1 + SL2 are paired. A second pairing is observed
at x/h = 1.5 (Station 4), as shown in the spectrum analysis (Fig. 14), and the merged vortices are
convected and diffused on the downstream side.

Figures 17 and 18 show time-and-spanwise-averaged periodic (coherent) and nonperiodic
(turbulent) components of the Reynolds stress distribution for F+

h = 2.0 and 0.2, respectively. The
Reynolds stress (total component) can be divided into periodic and nonperiodic components using
triple decomposition. The nonperiodic component is totally dominant when F+

h = 2.0. The periodic
component is dominant in the shear layer, whereas the nonperiodic component is dominant and
especially strong from x/h = 1.5 to 5.0 when F+

h = 0.2.
Figures 19 and 20 show the periodic and nonperiodic components of the Reynolds-stress distribution

and the second invariant of the velocity gradient tensor, Q, at each phase in F+
h = 0.2. These data are

spatially averaged in the span direction. The contour of the second invariant of Q shows the two-
dimensional coherent structure of a developing vortex. The developing vortices induce the periodic
component from x/h = 0.0 to 1.5 h. On the other hand, a nonperiodic component is induced in between
vortices, and this component is especially strong in the recirculation region. This trend in Reynolds-
stress distribution is similar to that of the turbulent free-shear layer [36], where the longitudinal vortices
(named rib structure) [37] between two-dimensional vortices (named roller structure) [38] generate the
nonperiodic component of Reynolds stress [36]. Therefore, the flow for F+

h = 0.2 appears to have
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flow-field characteristics similar to that of the free-shear layer, and actuation at F+
h = 0.2 might promote

these characteristics by generating two-dimensional vortices that lead to vortex pairing and turbulent
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mixing between vortices. These flow characteristics (vortex pairing and turbulent mixing behavior) are
similar to that of previous studies in which the backward-facing step is controlled by other devices with
the optimum frequency actuation. [10, 11 and 14]

5. SUMMARY
The effect of using a synthetic jet to control the flow in a backward-facing step configuration was
computationally studied, and the control mechanism of a massively separated flow was discussed. The
flow fields and the effect of nondimensional frequency were investigated.

Two actuations were selected; that is, the flow with a synthetic-jet control at F+
h = 2.0 and F+

h = 0.2,
where the nondimensional frequency F+

h was normalized with the height of the backward-facing step and
the freestream velocity. These values corresponded to F+ ~10 and 1, respectively. Here the non-dimensional
frequency F+ was normalized using the length of the separation region and the freestream velocity.

A time-averaged flow field showed that the separation-length size for the flow controlled by F+
h = 2.0

is similar to the case without flow control. On the other hand, the separation length for the flow
controlled by F+

h = 0.2 was 20% shorter than that of the case without flow control. This is because a
strong Reynolds stress enhances mixing in the shear layer and the recirculation region. The time-
averaged flow-fields showed that the Reynolds stress, mixing, and reattachment point has a strong
correlation and that the Reynolds stress is apparently an important index of the reattachment point.

In the synthetic-jet-off case, frequency analysis showed that the vortex scale increased further
downstream because of vortex pairing and growth. For F+

h = 2.0, frequency analysis showed that weak,
short periodic vortices, induced by the synthetic jet, does not affect the flow, and they are diffused in
the recirculation region. The overall trends of the spectrum were similar to the synthetic-jet-off case,
except for the high-frequency region. For F+

h = 0.2, frequency analysis showed that vortex pairing in
the shear layer is enhanced by the synthetic jet, thereby resulting in a strong Reynolds stress and a
shorter reattachment point, as discussed above.

The phase-averaged analysis for F+
h = 2.0 showed that the short-period vortices, generated from the

synthetic jet, are diffused in the shear layer and that the dominant Reynolds stress component is the
nonperiodic one. On the other hand, the phase-averaged analysis for F+

h = 0.2 case showed that the flow
induced by a synthetic jet results in strong two-dimensional vortices and longitudinal vortices between
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the two-dimensional vortices. These strong two-dimensional vortices generate the periodic component
of the Reynolds stress in the shear layer, whereas the nonperiodic component of the Reynolds stress is
generated between the two-dimensional vortices—similar to the free-shear layer. These periodic and
nonperiodic components of the Reynolds stress enhance mixing in the separated shear layer and the
recirculation region, respectively. The results above showed that it is important to induce two-
dimensional vortices that promote vortex pairing and turbulent mixing among vortices.

Effective parameter settings to practically control the separated flow were discussed. Strong two-
dimensional vortex pairing was induced because F+

h = 0.2 is close to the most unstable frequency of
the developing shear layer. This observation corresponds to that obtained in previous studies, [10, 11,
12, 13 and 14] though the other devices which generate disturbances are used for flow control in these
studies. This implies that the essential mechanism of synthetic jet is almost the same as other devices
which generate disturbances. A frequency analysis illustrated that the frequency should be normalized
by the momentum thickness of the separated shear layer (boundary layer). Finally, for flow-separation
control, the generation of two-dimensional vortices by a synthetic jet is important as this promotes
vortex paring and turbulent mixing between two-dimensional vortices. These observations could
probably be applied for separated flows not only over the airfoils but also in other applications—even
those using other active flow-control devices (e.g., a dielectric barrier discharge plasma actuator) [39].
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NOMENCLATURE
A = nondimensional amplitude of the oscillation of the cavity wall
b = nondimensional orifice width
c = Speed of sound
Cµ = nondimensional momentum coefficient
d = nondimensional orifice depth
δω = vorticity thickness
F+ = nondimensional frequency based on separation region
F+

h = nondimensional frequency based on the height of the backward-facing step
F+

θ = nondimensional frequency based on the momentum thickness of the shear layer
h = height of the backward-facing step
hw = offset of the position of the cavity wall
Mach = Mach number
Re = Reynolds number
Q = Second invariant of velocity gradient tensor
St = Strouhal number. Definition is the same as that of F+

h.
t = time
u = x-direction velocity
uj = temporally maximum value of spatially averaged orifice exit velocity
u∞ = freestream velocity
w = z-direction velocity
XL = nondimensional cavity width
x = nondimensional Cartesian coordinate in transverse direction
y = nondimensional Cartesian coordinate in spanwise direction
yB = nondimensional orifice half span
z = nondimensional Cartesian coordinate in streamwise direction
ZD = nondimensional cavity depth
∆x = computational grid spacing in the x-direction
∆y = computational grid spacing in the y-direction
∆z = computational grid spacing in the z-direction
µ = viscosity
ϕ = phase
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θ = momentum thickness

Superscript
- = time-averaged quantity
< > = phase-averaged quantity
′ = fluctuation
~ = periodic fluctuation
″ = nonperiodic fluctuation
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