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Galanin (GAL) and GAL receptors (GALR) are overexpressed in limbic brain regions associated

with cognition in Alzheimer disease (AD). The functional consequences of this

overexpression are unclear. Because GAL inhibits cholinergic transmission and restricts long-term

potentiation in the hippocampus, GAL overexpression may exacerbate clinical features of AD. In

contrast, GAL expression increases in response to neuronal injury, and galaninergic hyper-

innervation prevents the decreased production of protein phosphatase 1 subtype mRNAs in

cholinergic basal forebrain neurons in AD. Thus, GAL may also be neuroprotective for AD.

Further elucidation of GAL activity in selectively vulnerable brain regions will help gauge the

therapeutic potential of GALR ligands for the treatment of AD.



INTRODUCTION

Galanin (GAL) is distributed throughout the mammalian central
nervous system (CNS), where it modulates several ascending
neurotransmitter systems, including the cholinergic,
noradrenergic, serotoninergic, and neuroendocrine pathways
(1–9). Three G protein–coupled GAL receptors (GALR1, GALR2,
and GALR3) signal in a tissue- and cell-specific manner to elicit a
wide array of biological and behavioral responses (10–13).

An important behavioral consequence of GAL activity is the
regulation of cognitive function by GALR-mediated actions in the
basal forebrain, entorhinal cortex, hippocampus, and amygdala (1,
2, 14–26). In particular, GAL regulates the activity of cholinergic
basal forebrain (CBF) neurons that provide the major cholinergic
innervation of the cortex and hippocampus (27) and play a key
role in memory and attention (15, 26, 28–30). CBF neurons
undergo selective degeneration during later stages of Alzheimer
disease (AD) that correlates with disease duration and degree of
cognitive impairment (31). We and others have made the striking
observation that GAL-containing fibers within the CBF undergo
hypertrophy and hyperinnervate surviving CBF neurons in end-
stage AD (32–34). GAL levels are increased throughout the cortex
in AD, and GALR binding sites are amplified in the CBF,
hippocampus, entorhinal cortex, and amygdala during the course
of the disease (20, 23, 35–37). However, the role that GAL
overexpression plays in AD is still unclear. GAL inhibits

acetylcholine (ACh) release in rodent hippocampal preparations
and disrupts cognitive performance in animals (1, 2, 15, 19, 26,
38–40), suggesting that GAL overexpression in AD basal forebrain
may hamper ACh-mediated functions of remaining CBF neurons.
Hence, excess GAL may exacerbate the cholinergic deficit seen in
end-stage AD. On the other hand, GAL promotes neuritogenesis
following sensory neuronal injury (41–43), raising the possibility
that increased GAL promotes neuronal survival to combat AD.
This review focuses on galaninergic plasticity in brain regions that
are associated with cognition in AD and on the therapeutic
potential of GALR ligands for the treatment of this debilitating
disease.    

GALANIN

GAL is a twenty-nine–residue (thirty in humans) peptide cleavage
product of preprogalanin (44–46). The preprogalanin gene has been
cloned from several species (47–49), and its promoter contains
binding sequences for regulatory factors whose activities are
regulated by nerve growth factor (NGF), estrogen, protein kinase C,
and adenosine 3',5' monophosphate (cAMP) (50–52). The N-
terminal fifteen amino acids of GAL are highly conserved in all
species examined—from insects to humans—and are sufficient for
high-affinity receptor binding (53–57). Metabolic studies indicate
that the GAL C terminus protects the N-terminal portion from
proteolytic attack, resulting in increased bioavailability (58, 59).
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Figure 1. Schematic representation of a sagittal section of the mouse brain showing the distribution of GAL
immunoreactivity in neurons (filled circles). A5, A5 noradrenergic cells; ac, anterior commissure; AMG, amygdala; AO, anterior
olfactory nucleus; AOB, accessory olfactory bulb; BST, bed nucleus of the stria terminalis; C, cerebral cortex; cc, corpus callosum; CE,
cerebellum; CL, central lateral thalamic nucleus; CPu, caudate-putamen complex; DB, diagonal band of Broca; G1, glomerular layer of the
olfactory bulb; H, hippocampus; Hy, hypothalamus; IC, inferior colliculus; IO, inferior olive; LC, locus coeruleus; LV, lateral ventricle; M,
mesencephalic tegment; OB, olfactory bulb; OPT, olivary pretectal nucleus; RF, reticular formation; S, septum; SC, superior colliculus; SO,
supraoptic nucleus; Sol, solitary tract nucleus; SOR, retrochiasmatic supraoptic nucleus; SS, superior salivatory nucleus; SuC, subcoreuleus
nucleus; Th, thalamus; 10, dorsal motor nucleus of vagus nerve; 12, hypoglossal nucleus.



GAL-immunoreactive (-ir) profiles have been described
throughout the mammalian CNS in numerous species (34, 60–66).
For example, in the mouse brain, GAL-ir neurons and fibers are
found in several brain structures important for cognition,
including: the cerebral cortex; the lateral and medial septum;
vertical and horizontal limbs of the diagonal band of Broca and
nucleus basalis of Meynert; the central and medial amygdaloid
nuclei; and in the dentate gyrus and CA3 regions of the
hippocampus (61, 65) (Figure 1).  

Several lines of evidence suggest that GAL inhibits
neurotransmission in the CNS. GAL promotes nociception by
attenuating the C-fiber transmission that underlies pain sensation
(67, 68). Electrophysiologic studies show that GAL reduces the
firing rate of noradrenergic locus coeruleus neurons by increasing
their K+ conductance (6, 9, 69). GAL hyperpolarizes cell
membranes of serotoninergic dorsal raphe neurons (8), and GAL
infusion into the dorsal raphe nucleus decreases the expression of
tryptophan hydroxylase and reduces serotonin release in the
ventral hippocampus (3, 70). GAL reduces dopamine release from
the ventral tegmental area and median eminence (71–73), due
possibly to a GAL-mediated opening of G protein–gated inwardly
rectifying K+ channels (GIRKS) and a concomitant reduction in
tyrosine hydroxylase expression (74). Finally, as detailed below,

GAL inhibits the evoked release of ACh and glutamate in rodent
hippocampus (2, 18, 75–78). 

GALANIN RECEPTORS

The activity of GAL in the CNS is mediated by at least three GALR
subtypes termed GALR1, GALR2, and GALR3 [for reviews see
(10–13)]. GALRs are members of the integral membrane,
rhodopsin-like G protein–coupled receptor superfamily. GALR
subtypes show substantial differences in their primary sequence,
distribution, and functional coupling that may contribute to a
diverse repertoire of signaling activities in various CNS pathways.
Table 1 summarizes GALR subtype-specific expression patterns in
brain regions associated with cognition, and Table 2 describes the
in vitro activities of the cloned receptors. In general, GALR1
activation reduces cAMP concentrations, opens GIRK channels, or
stimulates mitogen-activated protein kinase (MAPK) activity in a
pertussis toxin (PTX)-sensitive manner, consistent with GALR1
coupling to Gi/o proteins (79–82). GALR2 activation increases
inositol phosphate hydrolysis, mediates the release of Ca2+ into
the cytoplasm from intracellular stores, and opens Ca2+-
dependent chloride channels in a PTX-resistant manner, indicating
that GALR2 couples to Gq/11 proteins (80, 82–86). GALR3, like
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TABLE 1. GALR MRNA EXPRESSION IN BRAIN REGIONS ASSOCIATED WITH COGNITION

GALR subtype Species GALR Brain region Detection assaya

GALR1 Human Cortex, hippocampus, amygdala RT-PCR (86)

Rat Cortex, hippocampus, amygdala RPA (156)

LS/HDB; entorhinal, insular, and piriform cortices; ISH (138)
ventral CA1; amygdala

LS/HDB, VDB, and nucleus basalis; entorhinal cortex; ISH (140)
ventral dentate gyrus; central, medial, basomedial amygdaloid 
nuclei; amygdalohippocampal area 

GALR2 Human Hippocampus RT-PCR (157)

Cortex, hippocampus, amygdala RT-PCR (86)

Rat Cortex, hippocampus, amygdala RPA (156)

Entorhinal/piriform cortices, hippocampus, amygdala ISH (158)

Dentate gyrus granule layer ISH (113)

MS/VDB; neo,piriform, and retrosplenial cortex; ISH (138)
dentate gyrus; amygdala 

GALR3 Rat Cortex, hippocampus, amygdala RPA (156)

MS/VDB, medial amygdaloid nucleus ISH (139)
aReferences in parentheses. RT-PCR, reverse-transcription polymerase chain reaction; RPA, ribonuclease protection assay; ISH, in situ hybridization.



GALR1, elicits an inhibitory response by opening GIRK channels
in a PTX-sensitive manner (81, 85). Future research aimed at
understanding the distribution and activities mediated by
endogenous GALR subtypes will be critical for gauging the
therapeutic efficacy of various GALR ligands for the amelioration
of AD symptoms. The three GALRs are also found extensively in
peripheral tissues, including the digestive tract (79, 85, 87), which
may pose contraindications for drugs designed to modulate GALR
activity in the CNS. Moreover, membrane binding studies
demonstrating high affinity binding of GAL(1–15) but not full-
length GAL in rat hippocampus (88–90), and high affinity binding
of GAL(3–29) but not GAL(1–15) in rat anterior pituitary (91),
suggest the presence of unidentified GALR(s).

GALANIN IN ALZHEIMER DISEASE

GAL-ir fibers enlarge and hyperinnervate surviving CBF neurons
within the septal diagonal band complex and nucleus basalis of
patients with end-stage AD (32–34) (Figure 2A and B). Using
confocal laser microscopy, we demonstrated terminal appositions
between GAL-containing fibers and CBF neurons in the normal
human brain and that these contacts hypertrophied in AD (32).
Recently, we determined via a two-site ELISA assay that GAL
concentrations in the nucleus basalis of pathologically confirmed
AD subjects were increased ~3-fold in the AD nucleus basalis
compared to GAL concentrations in age-matched controls
(Mufson, unpublished observations), supporting an earlier study
showing a ~2-fold GAL increase in AD basal forebrain (92). This

data corroborates light microscopic studies of GAL overexpression
in the AD basal forebrain and lend support to the concept that
GAL may regulate CBF tone in end-stage AD. To understand the
role of GAL overexpression during the development of AD, our
group has undertaken a semi-quantitative study of GAL-ir profiles
in the anterior nucleus basalis of people clinically diagnosed with
mild cognitive impairment or mild AD (93). The anterior nucleus
basalis shows the greatest degree of GAL hyperinnervation in the
CBF in end-stage AD (32–34). Preliminary data from these
investigations indicate that GAL fibers do not hyperinnervate this
region of the CBF during the prodromal or early stages of AD.
This finding suggests that GAL overexpression in the CBF occurs
mainly during later stages of the disease process.

Additional evidence for GAL plasticity comes from GAL
radioimmunoassays (RIA) and GALR binding studies in aged-but-
intact or AD brains. Gabriel and coworkers (35) demonstrated a
~20–60% increase in GAL in frontal, temporal, and parietal
cortical association areas in AD, but not in patients with
schizophrenia. The distribution of GALR binding sites was studied
in the normal post-mortem human brain using [125I]-hGAL in
combination with in vitro receptor autoradiography (94). This
study demonstrated high binding density in the basal forebrain.
GALR binding sites were also detected in all cortical areas and in
layer II of the entorhinal cortex, the uncus, and the hippocampal-
amygdala transition area (94). Our group studied the expression
pattern of GALRs in the nucleus basalis in pathologically defined
early (mild) and late (severe) AD cases using quantitative in vitro
autoradiographic imaging of [125I]-hGAL binding sites (20)
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TABLE 2. PUTATIVE SIGNALING MECHANISMS OF GALR SUBTYPES IN VITRO

GALR subtype Species GALRa Expression system Functional Activity G protein coupling
GALR1 Human (79) CHO cells � cAMP/PTXs Gi

Rat (80,82) CHO cells � cAMP/PTXs Gi
Rat (81) � MAPK/PTXs/PKCi Gi/o

Xenopus oocytes � K+ /PTXs Gi/o
GALR2 Human (84,86) HEK293/H69 � IP3 /PTXi Gq/11

� Ca2+ /PTXi Gq/11

Human (84) CHO/HEK293 � cAMP/PTXs Gi

Rat (80,82) CHO/COS7 � IP3 /PTXi Gq/11

Rat (82) CHO � MAPK/PTXs/PKC-dep Go

Rat (80) Xenopus oocyytes � Cl– /PTXi /Ca2+-dep Gq/11

GALR3 Rat (81) Xenopus oocytes � K+ /PTXs Gi/o
aReferences in parentheses. CHO, chinese hamster ovary cell line; COS7, african green monkey COS7 kidney cell line; H69, human H69 small cell lung
cancer cell line; HEK293, human embryonic kidney 293 cell line; Ca2+-dep, Ca2+ dependent; Cl– , Cl– conductance (outwardly rectifying current–voltage
relationship); K+ , K+ conductance (inwardly rectifying current–voltage relationship); PKC-dep, protein kinase C–dependent; PKCi, PKC-independent;
PTXi, PTX pertussis toxin insensitive; PTXs, PTX sensitive



(Figure 3A–C). The highest labeling density in the aged control
nucleus basalis complex was found within the intermedioventral
division, the lowest within the posterior division, and an
intermediate density was seen within the anterior regions. GALR
labeling in age-matched early AD cases was similar to that found
in the controls. Significantly, the density of GALRs in the anterior
region of the CBF increased in late AD compared to early AD or
aged controls (Figure 3A–C). Interestingly, the hyperinnervation of
GAL-containing fibers upon surviving CBF neurons in end-stage
AD occurs primarily in the anterior CBF (32–34), which is
relatively spared in AD (95, 96). On the other hand, the posterior
nucleus basalis, which undergoes severe degeneration in AD (95,
96), displayed the least [125I]-hGAL binding in control or AD
subjects (20). These findings suggest a putative positive effect of
GAL overexpression on CBF neuron survival in AD. 

GALR binding studies demonstrate that galaninergic plasticity
occurs in the entorhinal cortex, hippocampus, and amygdala in
AD. [125I]-hGAL binding sites have been found in cortical layers
II and IV of the human entorhinal cortex (36, 94), which plays a
crucial role in the transfer of feed-forward cortico-cortical
information related to memory (97). This is intriguing because the
layer II neurons provide the major glutamatergic excitatory input
to the hippocampus that travels within a fiber bundle known as
the perforant pathway and degenerates very early in AD (97–99),
whereas layer IV receives sigificant hippocampal efferent
projection (97). Our in vitro autoradiography studies of [125I]-
hGAL binding in control and AD subjects revealed a ~3-fold
increase in GALR binding sites in entorhinal cortex layer II in early
AD patients compared to those with late AD, when binding levels
were increased only slightly over control (23) (Figure 3D–F).
Similarly, Rodriguez-Puertas and colleagues (37) demonstrated that
GALR binding sites increased ~10–30% in the entorhinal cortex
and ~50–100% in the hippocampus in late AD. [125I]h-GAL
binding sites are also found in the central nucleus and the cortico-
amygdaloid transition area of the amygdala, which has reciprocal
connections with the basal forebrain, hippocampus, and cortex
(e.g., superior temporal and entorhinal cortices), plays a pivotal

role in higher order cognitive processing, and displays extensive
AD-related pathology early in the disease process (23, 100–102).
[125I]-hGAL binding is increased in these same areas of the
amygdala in early/probable AD but not during late-stage AD (23)
(Figure 3D–F). Whether increased GALR expression in limbic and
cortical areas related to cognitive function represents an attempt at
rescuing these neuronal populations remains to be determined.

POTENTIAL TRIGGERS OF GAL PLASTICITY IN AD

The pathophysiological factors that induce GAL plasticity in the
AD brain have been a matter of great speculation. In general, the
spatio-temporal pattern of GAL overexpression coincides with the
degeneration of select neuronal populations during the course of
the disease. Limbic areas (e.g., entorhinal cortex and amygdala)
that degenerate in the prodromal stage of AD (98, 99, 102) are sites
that overexpress GAL early in disease (23), whereas the plastic
response occurs during the later stages of AD within the
cholinergic system (20, 32–34). A parsimonious explanation for
these phenomena is that GAL systems hypertrophy in response to
neuronal injury. In this regard, observations that GAL plasticity
does not occur in the nucleus basalis during the prodromal stage
of AD (93) when CBF neurons are preserved (103) suggest that
GAL hyperinnervation of the nucleus basalis in end-stage AD is an
attempt to rescue degenerating CBF neurons and to maintain
cholinergic function. Recently, we tested whether neurochemical
lesions of CBF neurons of the horizontal limb–diagonal band
(HDB) by the selective cholinergic cell toxin 192IgG–saporin
would induce GAL hyperinnervation of this CBF subfield (16).
The immunotoxic lesion caused a ~30% loss of cholinergic cells
ipsilateral to the lesion. Increased GAL immunoreactivity with a
thickening of GAL-ir fibers in both ipsilateral and contralateral
HDB subfields was observed as early as one hour and as late as
twenty-four weeks after the lesion (Figure 4). The number of
cholinergic neurons did not recover to control levels after six
months, nor did the density of GAL immunoreactivity decrease to
control levels in that same period. These findings of increased
local GAL following neurochemical lesioning of the HDB by either
the selective cholinergic cell toxin 192IgG–saporin (16) or ibotenic
acid (104) support the notion that GAL plasticity is triggered by
neuronal damage. 

AD neurodegenerative lesions may also play a role in GAL
hypertrophy. Human neuropathological studies have shown that
neuritic plaques contain GAL (105), whereas neurofibrillary tangle-
bearing neurons do not contain appreciable levels of GAL
immunoreactivity (Mufson, unpublished observations). Studies
using transgenic mice that overexpress human amyloid precursor
protein bearing the AD-related V717F mutation suggest a role for
plaque deposition in GAL overexpression (106). Older mice
exhibit age-related increases in amyloid plaque deposition in the
hippocampus and entorhinal cortex and display a prominent up-
regulation of GAL-ir fibers into these areas. Dystrophic GAL-ir
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Figure 2. GAL plasticity in the basal forebrain nucleus
basalis in AD. A. Photomicrograph shows a magnocellular
cholinergic nucleus basalis neuron immunostained with the CBF
neuronal marker p75NTR (brown reaction product) and innervated
by GAL-ir fibers (dark blue reaction product) in aged control brain.
The GAL-ir parvicellular neuron contacting the CBF neuron is
visible. B. The photomicrograph shows striking hyperinnervation of
GAL fibers impinging upon a nucleus basalis CBF neuron in AD.



neurites are found in many of the amyloid plaques, and occasional
GAL-ir cell bodies can be observed in the hippocampus that are
not evident in wild-type mice (106). The hippocampus and
entorhinal cortex contain extensive plaque deposition and are first
affected in AD (98, 107); therefore, amyloid deposition might
trigger the overexpression of GAL in these areas in early stages of
the disease. 

A final factor underlying GAL plasticity in AD may be related
to ApoE genotype, the major genetic risk factor for late-onset
sporadic AD (108–110). Comparison of GAL concentrations in the
nucleus basalis between AD subjects carrying at least one apoE4
allele (apoE3,4 or apoE4,4) and AD subjects lacking an apoE4
allele revealed a trend (p = 0.12) for a twofold increase in GAL
concentration in the nucleus basalis in the presence of apoE4
(Mufson, unpublished observations). ApoE4 gene dosage is

inversely related to choline acetyltransferase (ChAT, the synthetic
enzyme for ACh) activity and to ACh binding levels in the
hippocampus and temporal cortex of AD cases (111, 112).
Moreover, the presence of apoE4 is associated with reduced
efficacy of cholinesterase inhibitor therapy in AD (112). Thus, the
influence of apoE genotype on cholinergic function may
contribute to GAL overexpression in the basal forebrain in AD.

NEURONAL ORIGIN OF GAL HYPERINNERVATION
IN AD

The source(s) of GAL hyperinnervation and GALR plasticity in AD
remain unclear. For instance, it is unlikely that the few small GAL-
ir neurons within the basal forebrain and preoptic area account for
the rich galaninergic fiber plexus seen within this region (33, 34,

Review

142

Figure 3. Plasticity of GAL binding sites in early and late stage AD. Autoradiograms showing the regional distribution of
[125I]-hGAL binding to GALRs in the aged control (A, D) brain as compared to early (B, E) and late stage (C, F) Alzheimer disease.
Pseudocolor density maps show changes in [125I]-hGAL labeling in the basal forebrain (A–C), entorhinal cortex (D–F), and amygdala (D–F)
during the progression of the disease. There is an  increase in labeling in the anterior subfield of the nucleus basalis in late AD (compare C
with A and B). In contrast, the entorhinal cortex displays increased expression of GAL binding only in early AD (compare E with D and F).
Likewise, GAL binding increases dramatically in the central nucleus and cortico-amygdaloid transition area of the amygdala in early AD and
returns to levels similar to controls by late AD. AB, accessory basal nucleus of the amygdala; ac, anterior commissure; BL, basolateral
nucleus (amygdala); BNST, bed nucleus of the stria terminalis; CAT, cortico-amygdaloid transition area; Ce, central nucleus (amygdala),
Ch4a, anterior cholinergic cell groups of the nucleus basalis; Co, cortical nucleus (amygdala); ENT, entorhinal cortex; Gp, globus pallidus; ic,
internal capsule; L, lateral nucleus (amygdala); Pt, putamen. Colorimetric scale (inset) correlates pseudocolor density with [125I]-hGAL
binding density.



60, 62). One potential source of GAL fiber innervation to the basal
forebrain may be the locus coeruleus (113, 114). The coeruleo-
forebrain pathway is well characterized in the mammalian CNS
(115), and GAL-ir cells within the locus coeruleus also exhibit
enhanced GAL immunoreactivity in AD (116). However, the
human locus coeruleus does not appear to contain numerous
GAL-ir cells (62). Another source of GAL fibers may emanate from
the central nucleus of the amygdala and course through the basal
forebrain en route to the substantia innominata, bed nucleus of
the stria terminalis, and hypothalamus (34). Although the cells of
origin of this GAL-ir bundle are undetermined, the input may
arise from the extended amygdaloid complex, which contains
numerous GAL-ir cell bodies (34, 117) and displays hypertrophy
of GAL-ir fibers in AD (Mufson, unpublished observations).

GAL PLASTICITY AS A DETRIMENTAL FACTOR IN AD

The functional consequences of GAL plasticity in AD are of intense
interest. The most compelling evidence that GAL overexpression
exacerbates the presentation of AD comes from rodent studies
showing that GAL inhibits ACh release in the hippocampus and
disrupts cognitive performance (1, 2, 19, 26, 38–40). GAL inhibits
the evoked release of ACh in the ventral hippocampus of the rat in
a concentration-dependent manner and blocks the slow
cholinergic excitatory post-synaptic potential (EPSP) induced by
the release of endogenous ACh onto CA1 pyramidal neurons (1).
Furthermore, administration of GAL into the medial
septum–diagonal band complex or ventral hippocampus impairs
cognitive performance on several spatial learning and working
memory tasks in rats (19, 26). GAL interference of cholinergic

transmission during these tasks is
particularly evident in the presence
of muscarinic ACh receptor
antagonists or cholinergic
immunotoxin lesions (38, 40, 77).

A role for GAL in glutamate-
mediated long-term potentiation

(LTP) in the hippocampus may also contribute to GAL’s effects on
memory. Electrophysiological studies show that GAL restricts LTP
at both perforant path-dentate gyrus and Schaffer collateral-CA1
synapses (14, 18, 22, 24). GAL may impact glutamatergic
transmission in the hippocampus by reducing evoked glutamate
release (18, 75, 78, 118). However, a recent study demonstrated
that while GAL inhibits LTP at CA1 synapses, it has no effect on
ionotropic �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) or N-methyl-D-aspartate (NMDA) glutamate receptor-
mediated EPSPs, suggesting that GAL acts through a postsynaptic
GALR to inhibit LTP-related signaling cascades (14). 

The development of transgenic mice that overexpress murine
GAL under control of the dopamine �-hydroxylase promoter
(GAL-tg) has facilitated the study of GAL overexpression in the
brain (25, 119) (Table 3). GAL-tg mice display increased GAL fiber
density in the basal forebrain and a ~3-fold reduction in the
number of ChAT-ir neurons in the HDB subfield (25). In situ
hybridization experiments demonstrated a down-regulation of
ChAT mRNA per cell within the HDB without a difference in the
number of ChAT mRNA-containing HDB cells in GAL-tg mice
(119), suggesting that GAL overexpression in the basal forebrain of
GAL-tg mice selectively reduces the expression of the cholinergic
neuron phenotype. Spatial navigation testing with the Morris
water task in GAL-tg mice showed a complete lack of selective
search on the probe trial at eight, sixteen, and twenty-four months
of age (25). GAL-tg mice displayed normal swim speed, swimming
patterns across time bins, and visible and hidden platform
acquisition. Thus, the GAL-tg mice could perform all of the
procedures in the Morris water maze but could not generate a
cognitive map of the spatial environment to solve the probe test,
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Figure 4. GAL innervation of
basal forebrain HDB following
immunolesion with the
selective cholinergic cell toxin
192IgG–saporin. Photomicrograph
of ipsilateral lesioned HDB shows
p75NTR-ir CBF neurons (brown
reaction product; arrowhead) and
p75NTR-ir CBF neurons containing
heavy deposits of GAL
immunoreactivity (dark blue reaction
product; arrow). The beaded and
punctate dark blue deposits
resembling GAL-ir axons and
terminals covering some of the
p75NTR-ir dendrites are visible. Scale
bar = 50 mm.



the most challenging component of the this task (25, 119). The
Morris task requires an intact, functioning hippocampus (25),
thus, it seems likely that the mechanisms underlying the observed
deficits in GAL-tg mice include inhibitory neuromodulation by
GAL in the hippocampus. Along these lines, GAL expression is
increased as much as ~4-fold in the hippocampus of GAL-tg
compared to wild-type (WT) mice (120), and GAL overexpression
reduces glutamate release and restricts LTP at perforant path-
dentate gyrus synapses in GAL-tg hippocampal slices (18).
Similarly, transgenic mice that overproduce GAL expressed from a
platelet-derived growth factor B promoter (GalOE) had a ~4-fold
increase in hippocampal GAL and reduced frequency facilitation of
field EPSPs—a form of short term synaptic plasticity—at mossy
fiber-CA3 synapses in GalOE hippocampal slices (121) (Table 3).

Altogether, these data suggest that the GAL overexpression
that occurs in the AD basal forebrain, hippocampal formation, and
cortex acts to coordinate the inhibition of multiple
neurotransmitter systems involved in cognitive function.

GAL PLASTICITY AS A NEUROPROTECTIVE FACTOR
IN AD

An alternative hypothesis is that GAL is neuroprotective in AD. A
role for GAL in cholinergic cell survival was demonstrated in a
knockout mouse model carrying a targeted loss-of-function
mutation in the GAL gene (GAL-KO) (13, 22) (Table 3). GAL-KO
mice show significant decreases in the number of ChAT-ir neurons
in the basal forebrain medial septum (MS) and vertical
limb–diagonal band (VDB) subfields. Moreover, these areas and

the nucleus basalis displayed a significant decrease in the number
of neurons expressing TrkA, the high affinity receptor for the
cholinergic survival protein NGF (22). Hence, GAL may act as a
trophic factor for CBF neurons during development. On the other
hand, preliminary data in our lab has demonstrated that the
number of MS and VDB subfield neurons expressing the p75NTR

neurotrophin receptor is similar in WT and GAL-KO mice (122).
Because p75NTR is a well-established cholinergic marker (123),
these findings suggest that GAL is required for regulating the
cholinergic phenotype of basal forebrain neurons during
development. GAL-KO mice exhibit age-related decreases in
evoked ACh release in the hippocampus, inhibition of LTP in the
CA1 region of the hippocampus, and age-dependent behavioral
decline in the Morris water maze (22), indicating an excitatory role
for GAL in these animals. Significantly, a recent electrophysio-
logical study using rat primary basal forebrain diagonal band
cultures showed that exogenous GAL reduced an array of
inhibitory K+ currents in cholinergic neurons (17). GAL also
increased the excitability of these cells under current-clamp
conditions (17). Thus, GAL overexpression in AD may improve
cognition by promoting the survival or cholinergic tone of CBF
neurons and by preserving hippocampal LTP. 

Additional findings support a role for galanin in neuronal
repair. GAL expression increased ~120-fold following peripheral
nerve injury in dorsal root ganglia (DRG) preparations (43). GAL
promotes neuritogenesis in cultured DRG explants of WT mice and
rescues a deficiency in neurite outgrowth observed in DRG explants
of GAL-KO mice (41, 42). GAL mRNA and protein are also
increased near lesions in several rat models of CNS degeneration,

Review

144

TABLE 3. CHARACTERISTICS OF GAL AND GALR MUTANT MICEa

Genotype GAL/R expression (vs. WT) Phenotypes related to cognition
GAL-tg ~5-fold increase in locus coeruleus via GAL RIA (25) ~60–70% decrease in ChAT-ir HDB neurons (25)
(human dopamine 
�-hydroxylase Increased fiber density in septum via GAL Impairment on Morris probe trial, olfactory 
promoter + murine immunohistochemistry (25) recognition of familiar food, and trace cued fear 
preprogalanin) (25) conditioning (25)

~4-fold increase in hippocampus and frontal cortex Inhibition of perforant path/dentate gyrus LTP (18)
via GAL RIA(120)

GalOE (galanin  + ~4–8-fold increase in hippocampus and Reduced frequency facilitation of field excitatory 
PDGF-B promoter cortex via GAL RIA (121) postsynaptic potentials (a form of short-term synaptic 
(121) plasticity) at mossy fiber–CA3 cell synapses; anticonvulsant 

effects of GAL during kindling (121)
GAL-KO (22) GAL-deficient ~35% decrease in ChAT-ir MS/VDB neurons (22)

Decrease in ChAT-ir fibers in hippocampus (22)
Inhibition of scopolamine-induced ACh release in 
hippocampus (22) Impairment on Morris probe trial (22)
Inhibition of Schaffer collateral/ CA1 stratum oriens LTP (22)
Enhancement of perforant path/dentate gyrus LTP (18)

GALR-KO (134) GALR1-deficient Enhanced hippocampal excitability
aReferences in parentheses



including decortication (i.e., cortical transection),
lesioning of the entorhinal cortex and ventral
hippocampus (124, 125), lesioning of the CBF (16,
104), and spinal cord axotomy (126). Thus, increased
GAL expression may occur in vulnerable brain
regions in response to neuronal damage. Notably,
GAL hyperinnervation and GAL binding sites in AD
are greatest in the anterior subfields of the basal
forebrain where the least amount of neural degeneration occurs,
whereas GAL overexpression is least found in the posterior
subfields of the basal forebrain where degeneration is greatest (20,
33, 95, 96).

We have used single cell RNA amplification technology
(127–130) to address the genetic consequences of GAL
hyperinnervation upon CBF neurons (131). Using postmortem
brain tissue from cognitively intact and end-stage AD subjects,
single anterior nucleus basalis neurons immunopositive for the
cholinergic p75NTR in the presence or absence of
hyperinnervating GAL-ir fibers [p75NTR(GAL+) or
p75NTR(GAL–), respectively] were microaspirated and processed
for linear RNA amplification. Radiolabeled RNA probes generated
from single cells were hybridized to custom-designed cDNA arrays
(127–130) (Figure 5A). Expression of protein phosphatases PP1�

and PP1� mRNA in p75NTR(GAL–) neurons from AD brains was
inhibited compared to phosphatase expression in p75NTR(GAL–)
neurons from control brains (Figure 5B). However, GAL-
hyperinnervated p75NTR(GAL+) neurons do not display
decreased expression of PP1� and PP1� mRNA in AD brain
(Figure 5A, B). As the reduction of protein phosphatases has been
associated with the evolution of neurofibrillary tangle formation
(127, 132, 133), this apparent maintenance of PP expression by
GAL may be neuroprotective for CBF neurons. However, a
thorough analysis of the genetic signature of p75NTR(GAL–) and
p75NTR(GAL+) neurons will provide a more complete picture of
the effects of GAL on gene expression in this cell group.

The conflicting data regarding the nature of putative GAL

overexpression in AD has yet to be reconciled, especially in light
of the similar detrimental phenotypes observed in the GAL-KO
and GAL-tg mice (Table 3). Regarding the basal forebrain, results
from the GAL-KO mouse suggest that GAL is important for the
establishment of cholinergic basocortical and septohippocampal
systems (22). The hypertrophy of GAL-secreting neurons systems
in AD may then represent a recapitulation of this developmental
program in response to the cholinergic deafferentation of cortex
and hippocampus. However, the potential compensatory effects of
GAL plasticity may instead have deleterious consequences in the
adult brain by inhibiting cholinergic transmission, as might be
inferred from the phenotype of the GAL-tg mouse (25). In any
event, the roles of GAL activity in normal cognition and in AD
remain undetermined. The development of transgenic animals
overexpressing GALR subtypes or deficient for GALR subtypes
may help to clarify the role(s) of GAL signaling in cognitive
processes. For instance, initial reports on the development of
GALR1 null mice (GALR1-KO) show that these mutants often
exhibit severe spontaneous seizure activity in response to bright
light or handling (134) (Table 3). This observation suggests that
GALR1 mediates GAL’s role in restricting glutamatergic
transmission in the hippocampus and supports other data
indicating that GAL may act as an anticonvulsant (18, 135–137).

GAL RECEPTORS AS THERAPEUTIC TARGETS FOR AD

GALR1, GALR2, and GALR3 mRNAs are found in cell bodies of
the rat basal forebrain (138–140) (Table 1). However, very few
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Figure 5. GAL innervation ameliorates
down-regulation of protein phosphatase 1
(PP1) subtypes in AD nucleus basalis.
Representative gene array (A) and histogram (B)
shows a significant down-regulation of protein
phosphatases PP1� (~10% of control) and PP1�

(~12% of control) mRNA in p75NTR(GAL–)-ir CBF
neurons in AD nucleus basalis, whereas GAL-
hyperinnervated p75NTR(GAL+)-ir CBF neurons do
not have decreased expression of PP1� or PP1�

mRNA in AD. A total of twenty neurons were analyzed
from normal control brains (n = 4 brains; 4–6 cells per
brain); twenty-six neurons were analyzed from AD
brains (n = 6 brains; 4–5 cells per brain) including 17
p75NTR(GAL–)-ir CBF neurons and 9
p75NTR(GAL+)-ir CBF neurons; *, p < 0.01 via
ANOVA with Neuman–Keuls post hoc test for multiple
comparisons.
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cholinergic cells in the rat basal forebrain colocalize with GALR1
mRNA (117, 141), suggesting that GALR2, GALR3, or both, might
mediate postsynaptic GAL effects on CBF neurons. If GALR2 is a
postsynaptic receptor on CBF neurons, then augmented GAL
input might be coupled to phospholipase C activation, the
principal GALR2-mediated pathway identified in cell culture
studies (80, 82, 84–86) (Table 2). Activation of this pathway may
improve cholinergic tone or survival of CBF neurons. Along these
lines, the GALR2-specific agonist AR-M1896 (142) (Table 5)
promotes neurite outgrowth in GAL-KO DRG explants in a PKC-
dependent manner, whereas a GALR1-specific antagonist RWJ-
57408 (143) (Table 5) was ineffective at blocking GAL-mediated
neuritogenesis (42). Alternatively, postsynaptic GALR2 or GALR3
may be coupled to adenylyl cyclase inhibition or GIRK activation
(82, 85, 86) (Table 2), potentially inhibiting cholinergic function.
Finally, colocalization studies in rodents do not preclude the
possibility that GALR1 is present on human CBF neurons. Future
efforts addressing the protein expression patterns (e.g., pre- or
postsynaptic) in human AD-related brain regions and the signaling
repertoires of native GALR subtypes in these structures will be
critical to understanding GAL activity in cognition and the efficacy
of targeting GALRs for the treatment of AD. 

Currently approved drug treatments for AD consist of
cholinesterase inhibitors, which act by increasing the
bioavailability of synaptic ACh. These drugs produce small but
consistent improvements of memory and global function and
positively influence activities of daily living (144–147). If GAL
inhibits ACh release, then GALR subtype-specific antagonists may
enhance cholinergic transmission by reducing the inhibitory

influence of GAL on the firing rate of CBF neurons. Likewise, if
GAL promotes the survival or cholinergic tone of CBF neurons,
then a GALR agonist might prove efficacious. Until recently, the
only tools available for pharmacological differentiation of GALR
subtypes have been synthetic GAL analogs with one or more
amino acid substitutions or chimeric GAL peptide ligands that
show variable affinity for human and rat GALRs and,
incongruently, behave as antagonists at native receptors but as
partial or weak agonists at cloned receptors (10, 12, 19, 118,
148–152) (Table 4). However, two new peptidergic compounds,
AR-M1896 and AR-M961, are selective agonists for GALR2 and
GALR1–GALR2, respectively (142) (Table 5). These compounds
have been used to identify GALR subtype-specific activities in rat
preparations, including nociception (mediated by GALR2) and
analgesia (GALR1) in the spinal cord (140), hyperpolarization of
locus coeruleus neurons (GALR1) (6), and neuritogenesis in DRG
explants (GALR2) (42). A limiting factor in the pharmacological
characterization of GALRs has been the relatively slow discovery
of potent and selective non-peptidergic agonists and antagonists.
Four non-peptidergic compounds have been discovered that are
either GALR1-specific agonists or GALR1-specific antagonists
with variable affinities at human receptors (136, 143, 153–155)
(Table 5). Nonetheless, the field of GAL research is still
developing, and the ongoing search for selective GALR ligands in
drug discovery programs might provide new research tools for
understanding GAL pharmacology and physiology. AD appears to
arise from multiple etiologies, therefore a rational treatment
strategy might include high-affinity GALR ligands used in
combination with anticholinesterases and perhaps other
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TABLE 4. Ki OF NONSPECIFIC GALR LIGANDS AT CLONED RAT GALRSa AND ANTAGONIST ACTIONS OF CHIMERIC GAL
PEPTIDES ON RAT BEHAVIORAL ASSAYSb

GAL ligand GALR1 GALR2 GALR3 Antagonist actions in vivo
(nM range)

GAL (1–29) 1 1 1
GAL (1–16) 5 5 50
GAL (2–29) 100 1 10
GAL (3–29) 1000 1000 1000

C7
[GAL(1–13)-spantide-amide] 20 20 1 Inhibits nociceptive flexor reflex and blocks feeding (149, 159)

M15
[GAL(1–13)-substance 10 1 100 Improves social recognition social memory task (160)
P(5–11)amide] Galantide

M35 
[GAL(1–13)-bradykinin(2–9)amide] 1 1 10 Facilitates acquisition of Morris spatial memory task (21)

M40 
[GAL(1–13)-PPALALA-amide] 5 1 50 Facilitates delayed nonmatching to position working memory task (19)
aAdapted from (80, 83); bReferences in parentheses



compounds, such as cholinergic and glutamatergic agonists, anti-
inflammatory drugs, or modulators of apolipoprotein E
metabolism or function. We suggest that the pharmacological use
of such compounds may ameliorate cholinergic hypofunction in
AD and perhaps benefit other aspects of this heterogeneous
disorder.

CONCLUSIONS

The presentation of AD is likely precipitated by neuronal
degeneration in selectively vulnerable brain regions involved in
higher cognitive processes. The GAL system plasticity in these
regions during AD raises the intriguing possibility that
pharmacological manipulation of GAL activity might be
neuroprotective and slow the cognitive decline in AD. However,
the functional consequences of GAL plasticity in AD must be
clarified to guide the development of high-affinity GALR subtype-

specific agonists or antagonists. Future elucidation of GALR
distribution through the development of subtype-specific
antibodies and of endogenous GALR activity through the
development of subtype-specific ligands and transgenic GALR
mice will be critical for gauging the therapeutic efficacy of GAL
mimetics for the amelioration of AD symptoms.
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TABLE 5. GALR SUBTYPE SPECIFIC LIGANDS

GAL liganda GALR subtype specificity IC50

AR-M1896 GALR2 agonist 1.76 nM (rat GALR2)
GAL(2–11)-NH2 879 nM (hGALR1)
(142)
AR-M961 GALR1 agonist 1.74 nM (hGALR1)
[Sar(1), D-Ala12]Gal GALR2 agonist 403 pM (rat GALR2)
(1–16)-NH2(142)

Sch202596 GALR1 antagonist 1.7 �M (hGALR1)
Spirocoumaranon
(153, 155)
PS 766257 hGALR1 agonist Not reported
Structure unknown
(154)

RWJ-57408 hGALR1 antagonist
dithiepin-1,1,4,4-tetroxide 170 nM (hGALR1)
(143)

GALNON hGALR agonist (specificity 4.8 �M (Ki at hGALR1)
Fmoc-cyclohexylalanine- not established)
Lys-amidomethylcoumarin,
(136)
aReferences in parentheses bGALNON is presently the only systemically active GALR agonist.
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