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Abstract: The commentary emphasizes the immediate necessity to find alternative sources for the production of pharmaceutical heparin 
to meet the ton-amount world’s demand of the glycosaminoglycan. The recent development of a synthetic approach brings considerable 
new technical and scientifically relevant knowledge to the field, with a strong potential for application in the future. However, the artifi-
cial approach does not offer a rapid alternative for the current world crisis affecting the production of heparin, which has to respond to 
an increasing worldwide demand. It is important to call attention for the availability of marine organisms that are rich sources of heparin 
analogs with significant anticoagulant activity, low bleeding effect that have been cultivated in very large amounts for years in different 
parts of the world. Additionally, alternative sources of mammalian heparin, such as bovine intestine and lung have been continually used 
in countries from South America, Africa and Asia, since the outbreak of the BSE without any report of prion contamination in humans. 
Recently, it has been shown that bovine and porcine intestinal heparins are composed by different proportions of a mixture of the same 
fractions that can be simply separated by anion exchange chromatography. In other words, high quality porcine heparin can be obtained 
from bovine tissue. We believe that alternative animal sources of heparin are currently a more realistic solution than artificial heparin to 
respond to the increasing demand for heparin.
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Heparin is the main natural anticoagulant used to 
treat and prevent thromboembolic disorders.1 The 
increasing demand for heparin and the recent epi-
sodes involving its production called attention to 
the immediate need for alternative sources of the 
glycosaminoglycan. Currently, heparin is obtained 
almost exclusively from porcine intestine. A recent 
work by Xu et al2 presents a new artificial alternative 
to replace animal heparin. However, can the artificial 
method respond to the increasing worldwide demand 
for the glycosaminoglycan? How about other known 
animal sources of heparin such as marine organisms 
or alternative mammalian tissues?

During a 75-year period of clinical usage, since the 
appearance of the first heparin product for intravenous 
use in 1936,3 two recent incidents involving different 
aspects of its production have been reported. In late 
2007, contamination of unopened heparin syringes 
with the microorganism Serratia marcescens caused 
a nationwide recall of the glycosaminoglycan in the 
United States. Less than one year later, in early 2008, 
another contamination with a non-natural oversul-
fated chondroitin sulfate of a heparin stock produced 
in China, was responsible for the death of 81 patients 
in the United States, according to the U.S. Food and 
Drug Administration. These two facts raised concerns 
on the reliability and safety of heparins and their low 
molecular weight derivatives obtained from animal 
sources,4 leading to the establishment of more strict 
analytical methods for the testing of heparin prepa-
rations, now described in the USP Heparin stage 
2 monograph.5

At the same time, the necessity of alternatives to 
the mammalian sources of heparin, which is currently 
obtained almost solely from porcine intestine, became 
evident. Several groups focused their efforts in the 
artificial synthesis of heparin and developed a very 
expensive and laborious 50- step process, resulting in 
the production of a synthetic heparin analog of limited 
size, the expensive 1.5 kD-Arixtra pentasaccharide, 
which has been used since 2002 as an antithrombotic 
agent.6 More recently, an alternative 12-step chemo 
enzymatic approach capable of synthesizing heparin 
oligosaccharides of defined low molecular weight, 
significant anticoagulant activity and with the pos-
sibility to scale-up to multi milligram quantities has 
been reported.2 Undoubtedly, the development of the 
two synthetic approaches brought considerable new 

technical and scientifically relevant knowledge to the 
field, with a strong potential for application in the 
future. However, the artificial approach does not offer 
an immediate realistic alternative for the current world 
crisis affecting the production of heparin, which has to 
respond to a demand of approximately 100 tons/year 
worldwide. Several limitations are involved in the 
commercial production of ton quantities of artificial 
heparin: the technical machinery required to produce 
large quantities, the huge financial investment in new 
industrial plants, new extensive clinical trials, the 
extremely high price of the synthetic product com-
pared to the very low price of unfractionated heparin 
(∼1.5 U.S. Dollars per g).

It is clear that the world crisis of heparin has two 
main components: the increasing worldwide demand 
and the necessity to maintain the quality control dur-
ing the different steps of the production. While the 
latter component is being realistically approached, as 
noted by the constant USP Heparin Study Participa-
tion calls by the U.S. Pharmacopeia, the former com-
ponent, which clearly involves finding alternative 
sources of heparin requires the attention from the sci-
entific community. In this regard, there are two alter-
native heparin sources that, when compared to the 
artificial synthesis, may meet the technical, logistical 
and economical criteria required for long-scale pro-
duction in a shorter time. These souces are: marine 
organisms and alternative mammalian tissues, such 
as bovine intestine and lung.

Heparin from Marine Organisms
Several heparin analogs obtained from different 
marine organisms have been described (Table 1). Some 
of these compounds have been extensively studied in 
terms of structure, biological activity and mechanism 
of action, and evaluated in pre-clinical experiments in 
rodent animals with promising results.7

One important aspect of heparin from marine 
organisms is the very low risk of contamination with 
pathogens, since they are evolutionally distant from 
mammals. Therefore, the chance of microorganism or 
prion infection in mammalian cells is very unlikely. 
Another relevant point regarding the therapeutic use of 
an animal-derived drug is the technical and economic 
possibility to obtain very large quantities in a constant 
and ecologically correct manner. Overall, the heparin 
analogs are isolated from marine invertebrate animals 
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at reasonable yields (about 0.5%–2% of the dry weight, 
comparing to 0.022% from pig intestinal mucosa8), by 
procedures similar to those already employed in the 
preparation of pharmaceutical heparin. Several species 
of mollusks and sea cucumbers, including those con-
taining high quantities of heparin analogs, have been 
successfully cultivated for a long time in different parts 
of the world. The current aquaculture technologies are 
capable to produce ton-quantities of starting mate-
rial.9–11 In 2001, the world’s production of sea cucum-
ber reached about 21,000 tons,9 and that of scallops, in 
1999, about 73,000 tons.12 Possibly, major limitations 
for medical application of polysaccharides from marine 
organisms are a more profound analysis of their effects 
on mammalian systems and their mechanisms of action 
compared with heparin. Probably, these analyses could 
be performed in a shorter time than that required for 
the artificial synthesis of heparin.

Alternative Mammalian Sources
After the outbreak, in the late 1980s, of the bovine 
spongiform encephalopathy, which is caused by 

a particular strain of prion, the commercializa-
tion of heparin from bovine tissues has ceased in 
Europe, Unites Stated and Japan. However, bovine 
heparin continued to be used clinically in coun-
tries from South America, Africa and Asia, with-
out any reported event on prion contamination in  
humans.

Bovine heparins can be obtained from two main 
tissues: lung and intestine, and are chemically distinct 
from each other (Table 2). Bovine lung heparin has a 
higher proportion of N-sulfated α-glucosamine units 
and a lower proportion of N-acetylated residues than 
porcine mucosa heparin.13 Bovine intestinal heparin 
is more heterogeneous, varying significantly in the 
substitutions in the α- glucosamine units: ∼57% are 
6-O and N-disulfated, as in porcine heparin, ∼33% are 
6-desulfated and ∼10% N-acetylated. In recent stud-
ies,13,14 pharmaceutical grade heparin obtained from 
bovine and porcine intestinal mucosa was shown to 
contain different proportions of the same mixture of 
fractions. In other words, the typical disaccharide 
composition of porcine intestinal heparin with high 

Table 1. Main disaccharide composition and biological activity of heparinoids from marine organisms.

Organisms (species) GAG type (main  
disaccharide units)

Organ Biological activity Ref.

Shrimp (penaeus brasiliensis) Low molecular weight  
heparin  
[GlcA-GlcNS,6S]n

Head Anti-xa and anti-IIa activities; heparin  
cofactor II activity; antithrombotic 
activity;

19,20

Shrimp (litopenaeus  
vannamei)

Heparin
[GlcA-GlcNS,6S]n and  
[GlcA2S-GlcNS]n

Cephalo  
torax

Anticoagulant activity 21

Bivalve mollusk (callista  
chione)

Heparin
[IdoA2S-GlcNS,6S]n

Internal  
organs

Anticoagulant activity 22

Bivalve mollusk (tapes  
philippinarum)

Heparin
[IdoA2S-GlcNS,6S]n

Internal  
organs

High anticoagulant activity 23

Bivalve mollusk (mercenaria  
mercenaria)

Heparin
(3-O-sulfated GlcNAc  
residues)

Internal  
organs

High anticoagulant activity;  
anti-IIa and anti-Xa activities

24,25

Bivalve mollusk (tivela  
mactroides)

Heparin
[GlcA-GlcNS,6S]n

Internal  
organs

High anticoagulant activity 26,27

Bivalve mollusk (donnax  
striatu) s

Heparin
[GlcA-GlcNS,6S]n

Internal  
organs

High anticoagulant activity 27

Bivalve mollusk (nodipecten  
nodosus)

Heparin-like
[GlcA-GlcNAc]n

Internal  
organs

Low anticoagulant activity; high  
antithrombotic effect

28

Bivalve mollusk (amusium  
pleuronectes)

Low molecular weight  
heparin (porcine type)

Internal  
organs

Anticoagulant activity 29

Tunicate ascidian (styela  
plicata)

Heparin 
[IdoA2S-GlcNS,6S]n

Internal 
organs

Anticoagulant and antithrombotic  
activities

30,31

Echinoderm sea-cucumber  
(ludwigothurea grisea)

Fucosylated chondroitin  
sulfate [Fuc-GlcA- 
GalNAc6S]n

Body wall Anticoagulant and antithrombotic  
activities (oral activity)

32

Note: For complete information see reference.7
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Table 2. Disaccharide composition and biological activity of bovine and porcine heparins.

Mammalian tissue Major disaccharides Anticoagulant activity (IU/mg) Ref.
Porcine intestine [IdoA2S-GlcNS,6S]n 180–230 13,14,33
Bovine lung [IdoA2S-GlcNS,6S]n ∼150 13,14,33
Bovine intestine [IdoA2S-GlcNS,6S]n (57%); 

[IdoA2S-GlcNS]n (33%); 
[IdoA2S-GlcNAc]n (10%)

∼100 13,14

in vitro anticoagulant activity can be obtained from 
bovine intestinal heparin. Therefore, in countries with 
no economic limitations, bovine tissues may represent 
a potential alternative source of a high quality heparin 
provided an additional easily performed purification 
step is introduced in the production.

The real challenge involving the current world 
crisis is not to produce a few grams of an artificial 
heparin free of natural or non-natural contaminants, 
but how to produce amounts able to respond to an 
increasing worldwide demand, which tends to increase 
even more in the near future, as new therapeutic uses 
of the glycosaminoglycan are being revealed, for 
example as an anticancer drug.15–18 We believe that 
alternative animal sources of heparin are an easier 
and faster solution than the artificial synthesis to 
respond to the increasing worldwide demand of the  
glycosaminoglycan.
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