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Introduction
Leishmaniasis represents an important global health problem 
in tropical and subtropical areas, affecting at least 12 million 
people worldwide. Each year, 2 million new cases arise and 350 
million humans are at risk of contracting this disease in more 
than 88 countries.1 The World Health Organization still con-
siders leishmaniasis as one of the emerging uncontrolled dis-
eases affecting mainly poor regions. Transmission of the disease 
is achieved through the injection of single-celled parasites by 
infected female sandflies of the genus Phlebotomus in the Old 
World and Lutzomyia in the New World. The most common 
form of leishmaniasis experienced worldwide, as well as in the 
United States, is the cutaneous form of leishmaniasis (CL), 
which is caused by approximately 20 species of Leishmania. 
Cutaneous form of leishmaniasis is considered a zoonotic dis-
ease as it is typically passed on from vertebrate animals to 
humans, who are accidental hosts. Various forms of CL exist. 
The localized cutaneous form is characterized by a self-healing 
lesion at the site of the bite and is caused primarily by 
Leishmania major, Leishmania tropica, and Leishmania aethiop-
ica in the Old World, and Leishmania amazonensis and 
Leishmania mexicana in the New World. Leishmania brazilien-
sis, Leishmania panamensis, and Leishmania guyanensis account 
for the more severe form of CL called mucocutaneous leish-
maniasis, which is only prevalent in the New World and 
affects the mouth, nose, and occasionally the ear tissues.2,3 
Mucocutaneous leishmaniasis is hard to treat and is often asso-
ciated with secondary infections that can be lethal. Diffuse 
cutaneous leishmaniasis is caused primarily by L mexicana and 
L amazonensis and is characterized by lesions that spread from 
the site of infection and may cover the whole body. Leishmania 
donovani and Leishmania infantum are the causative agents of 
the most severe form of the disease, visceral leishmaniasis, 

which is lethal if not treated. Occasionally, patients cured of  
L donovani infection exhibit a syndrome called post kala-azar 
dermal leishmaniasis.

Leishmania infection predominantly triggers a T-cell–
mediated immune response. Shortly after infection, Leishmania 
parasites are phagocytosed by neutrophils, macrophages, and 
dendritic cells (DCs). Although neutrophils are among the 
first cells recruited to the site of infection, their role in disease 
progression and control is controversial and depends on the 
strain of the parasite and mice (reviewed in previous works4–7). 
Dendritic cell functions primarily in antigen processing and 
presentation for T-cell priming, leading to CD4+ or CD8+ 
polarization (reviewed in the study by Feijo et al8). Dendritic 
cell also secretes most of the cytokine interleukin 12 (IL-12), 
which is necessary for the induction of a protective helper  
T type 1 (TH1) response characterized by the production of 
IFN-γ and tumor necrosis factor α (TNF-α).9–12 On activa-
tion with IFN-γ and/or TNF-α, macrophages efficiently kill 
most parasites by inducing the generation of nitric oxide (NO) 
and reactive oxygen species.13,14 In contrast, a helper T type 2 
(TH2)-type response leads to disease progression and is associ-
ated with the production of interleukin 10 (IL-10), interleu-
kin 2 (IL-2), and interleukin 4 (IL-4).15,16 Lasting protection 
against Leishmania is mediated by several subsets of memory 
T cells (T effector, CD4+) and involves the production of 
cytokines IL-2, IL-4, and IFN-γ.17,18

The treatment of CL relies primarily on inadequate, 
expensive chemotherapeutic drugs that display several unde-
sirable side effects and can be sometimes difficult to admin-
ister.19 In addition, the rising appearance of drug-resistant 
parasites complicates the drug treatment of leishmaniasis, 
and controlling the sandflies’ and/or animal reservoirs 
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represents a real challenge. These compelling facts combined 
with the rising occurrence of CL make the development of a 
safe, effective vaccine a necessity for the prevention and 
treatment of CL.

The development of a CL vaccine has been met by several 
challenges. Specifically, varying genetic characteristics of indi-
vidual hosts and parasites and, more importantly, the varying 
immune responses caused by different Leishmania species make 
the development of CL vaccine incredibly complex. An effec-
tive vaccination geared toward combating the disease must not 
only be safe and easily accessible but also be capable of effi-
ciently sustaining the prolonged induction of CD4+ and CD8+ 
memory T cells (reviewed in the study by Glennie and Scott18). 
This induction is essential and allows the immune system to 
efficiently respond to a pathogen previously encountered, con-
tributing to a lifelong protection against CL. The various vac-
cination strategies are described in the following sections and 
summarized in Table 1.

Live Vaccination
Attempts to contrive an effective vaccine date back to the early 
20th century when live parasites were first inoculated in healthy 
individuals through a process known as leishmanization. This 
procedure led to a lifelong immunity and provided the rational 
proof that vaccination against leishmaniasis may be possible. 
Due to safety concerns and problem in standardization,  
leishmanization was later discontinued in most countries.60 
However, the traditional practice of leishmanization is making 
a strong comeback in certain endemic regions because it 
mimics a natural infection.61 Due to its potential efficacy, 
efforts to develop a safer leishmanization process by concomi-
tant stimulation of the immune system to control the growth of 
the parasite are currently underway.62–65

Whole-Killed Vaccines
Whole-killed parasites of strains L major, L guyanensis,  
L braziliensis, and L amazonensis (alone or in combination) 
were tested in human trials but were ineffective in mediating 
protection. These parasites provided poor antigens and thus 
did not trigger a robust immune response, even in the pres-
ence of adjuvants (summarized in the study by Noazin 
et al20). The main advantages of using whole-killed parasite 
vaccines are their safety and easiness in mass production. 
Unfortunately, intramuscular vaccination of Balb/C mice 
with merthiolate-killed L amazonensis antigens LaAg 
(Leishvacin) enhanced susceptibility to cutaneous leishma-
niasis due to overproduction of transforming growth  
factor β (TGF-β).66 Phase 3 trial showed that 3-time 
intramuscular injection of the Leishvacin formula failed  
to mediate protection in human subjects.21 However, more 
recent studies demonstrated that intranasal vaccination using 
the same antigens provided protection against L amazonensis 
and L braziliensis in a mouse and hamster model of infection, 
respectively, proving that the route of administration plays a 
critical role in the efficacy of a vaccine.67,68

Live Attenuated Parasites
Due to the inefficacy of the whole-killed vaccines, there has 
been a consequent shift toward “live attenuated” vaccines, 
which seem to provide a more advantageous substitute. By 
mimicking the actions of the naturally occurring Leishmania 
infection, the live attenuated parasites can present a wide vari-
ety of antigens to the antigen-presenting cells, leading to a 
more effective immune response and a better overall defensive 
result. Nonvirulent microorganisms were generated by knock-
ing out specific virulence genes or alternatively by subjecting 
the parasites to irradiation69 or long-term in vitro cultivation.

Table 1.  Summary of CL vaccines.

Vaccination type Antigens

Live vaccination Live L major

Whole-killed vaccines Whole-killed L major, L guyanensis, L braziliensis, or L amazonensis (alone or in combination20)
Merthiolate-killed L amazonensis (Leishvacin)21

Live attenuated vaccines Null mutants: dhfr-ts−/−,22–24 hsp70-II−/−,25 ldcen−/−,26 ldp27−/−,26,27 CP−/−28

“Suicidal” parasites: lmtkcd+/+,29 δ-aminolevulinate dehydratase and porphobilinogen deaminase transgenics30

Purified antigens GP63,31–33 LACK,34,35 H2B histone,36 sterol 24-C-methyltransferase37

Recombinant subunits Histone 1,38 CP A and B,39,40 KSAC,41 ribosomal proteins L3 and L5,42 Leish-111F,43–45 LeIF43,44

DNA vaccines GP63,46–48 LACK,35 A2,49,50 iron superoxide dismutase,51 histone proteins H2A, H2B, H3 and H4,52,53 MKP-
11,54 HisAK7054

Sandfly saliva components Saliva of Phlebotomus papatasi,55,56 PpSP15,57 saliva of L longipalpis,58 L intermedia salivary gland extract59

DC-based vaccines SLA, protein subunits, recombinant proteins, DNA vaccine

Abbreviations: CL, cutaneous form of leishmaniasis; CP, cysteine proteinase; DC, dendritic cell, LACK, Leishmania homolog of receptors for activated C kinase; LeIF,  
L braziliensis elongation and initiation factor; SLA, soluble Leishmania antigen.
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Null mutants as vaccine candidates

The first null mutant strains used as vaccine candidates were 
developed in the 1990s when genetic manipulation of the para-
site became possible.70 Vaccination with a null mutant was 
originally achieved with dihydrofolate reductase thymidylate 
synthase (dhfr-ts−/−) knockout parasites, which induced sub-
stantial protection against both L major and L amazonensis 
infections in mice but failed to prevent infection in mon-
keys.22–24 Null mutant of linJhsp70-II−/− (heat shock protein 
70-II) of L infantum protected Balb/C mice against L major 
infection, induced NO production, and triggered a TH1 
immune response. In addition, this strain failed to form a lesion 
in immunodeficient mice, suggesting that it is a safe vaccine 
candidate.25 More recently, ldcen−/− and ldp27−/−, lacking 
CENTRIN or P27 gene, respectively, were tested against  
L mexicana infection and found to be effective in protecting 
Balb/C mice.26 However, LdCen−/− conferred only partial pro-
tection against L braziliensis.27 Cysteine proteinase–deficient 
mutants of L mexicana (CP-deficient L mexicana) were effec-
tive in protecting hamsters against homologous challenge by 
eliciting significantly lower levels of TH2-associated cytokines 
IL-10 and TGF-β than the corresponding wild type.28 None 
of these null mutant strains has been tested in other animal 
models yet. Despite encouraging results, null mutants as vac-
cine candidates may revert to a virulent form and thus create a 
true concern regarding their safety.71

“Suicidal” parasites as vaccination tools

“Suicidal” parasites are transgenic lines of Leishmania that are 
designed so they can be killed either by physical methods or by 
application of a specific drug. Therefore, their growth within  
a host can be precisely controlled, making these strains safer 
than their live virulent counterparts. Delta-aminolevulinate 
dehydratase and porphobilinogen deaminase are absent in 
Leishmania, and thus, expression of these enzymes render the 
transgenic parasites sensitive to UV irradiation.29 Vaccination 
with such a transgenic line led to a 99% reduction in parasitic 
load.30 Another study demonstrated that transgenic parasites 
lmtkcd+/+, expressing thymidine kinase and cytosine deaminase, 
become sensitive to the drugs ganciclovir and 5-fluorocytosine. 
Balb/C mice lesions were cured in 2 weeks in the presence of 
these drugs, and the transgenic line mediated complete protec-
tion when wild-type L major was injected 8 days after vaccina-
tion.72 However, development of drug resistance is a plausible 
risk associated with the latter vaccination protocol.

Purified Antigens and Recombinant Subunits
In recent studies, more than 30 different Leishmania recombi-
nant subunits and purified antigens have been identified and 
tested in animal models (reviewed in the study by Okwor and 
Uzonna6), but most of these models were assessed against L 
donovani, the causative agent of visceral leishmaniasis, the 

most severe form of the disease. Recombinant subunits or 
antigens are very safe and relatively easy to produce in large 
quantities but need to be co-injected with an adjuvant to stim-
ulate the immune system. In addition, several injections 
(boosts) may be required to induce a satisfactory immune 
response. Recombinant proteins are typically expressed using a 
heterologous microbial system, whereas others, known as syn-
thetic vaccines, are produced in vitro as short polypeptides that 
are predicted to be immunogenic. Synthetic vaccines are con-
sidered much safer than vaccines originating from a parasite. 
Purified antigens originate from the parasite, and their isola-
tion protocol may be difficult to upscale or may contain con-
taminants. Regarding purified antigens, much work has been 
done with parasite cell surface metalloprotease GP63, which 
conferred only partial protection in monkeys but mediated 
robust protection in mice against challenge with both L mexi-
cana and L major.31–33 Leishmania homolog of receptors for 
activated C kinase (LACK) has also attracted much interest as 
a vaccine candidate because it is expressed in both insect and 
vertebrate host form of the parasite.34 Mice vaccinated with 
LACK became resistant to L major infection.35 Other exam-
ples of antigens are L major H2B histone protein and its diver-
gent N-terminal region, which were tested for their ability  
to protect against CL and visceral leishmaniasis in the pres-
ence of the adjuvant CpG.36 Immunization with sterol 
24-C-methyltransferase sterol methyl transferase of L infan-
tum, formulated with monophosphoryl lipid A as adjuvant, 
cross-protected mice against CL caused by L major.37

Examples of recombinant antigens include histone H1, 
which was tested in vervet monkeys in the presence of the 
Montanide ISA 720 adjuvant and showed reduced lesion for-
mation after L major infection that self-healed with time,38 sug-
gesting a good potential for human vaccination. Fusion protein 
made of CP A and B from L major and cysteine protease from 
L pifanoi mediated only partial protection in mice.39,40 KSAC is 
a recombinant protein made of KMP-11, SMT, A2 and CPB 
that when injected with the toll-like receptor (TLR)-4 agonist 
glucopyranosyl lipid A protected against cutaneous disease fol-
lowing sandfly transmission of L major in susceptible Balb/C 
mice.41 With the idea to develop a pan-Leishmania vaccine, L 
major recombinant ribosomal proteins L3 and L5 combined 
with CpG-oligo-deoxynucleotides conferred protection against 
L major and L braziliensis challenge in Balb/C mice by inducing 
a TH1 response.42 Leish-111F, an antigen made of 3 fused pro-
teins (L major thiol-specific antioxidant thiol-specific antioxi-
dant [TSA], L major stress-inducible protein-1 [STI1], and L 
braziliensis elongation and initiation factor) rendered mice 
resistant to L major infection.43,44 This antigen, combined with 
the adjuvant monophosphoryl lipid A plus squalene (MPL-SE), 
was the first defined vaccine candidate that was tested in 
human phase 1 and 2 clinical trials and was found to be safe 
and immunogenic.45 It is still unclear whether Leish-111F 
confers protection in humans; however, optimization of 
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Leish-111F system is currently underway.1 The C-terminal and 
N-terminal domains of L donovani nucleoside hydrolase vac-
cines also decreased the footpad lesion formation caused by L 
amazonensis.73 Although numerous purified and recombinant 
antigens have been tested successfully in animals, no human tri-
als have yet been attempted. It is encouraging to observe that 
cross-species reactivity exists with several species-specific anti-
gens, opening the possibility of a “pan” anti-Leishmania vaccine. 
Although there is no lack of antigen candidates, the challenge 
lies in identifying the proper adjuvant(s) that will induce a 
robust protective immunity.

DNA Vaccines
DNA vaccines, also referred to as third-generation vaccines, are 
the newest approach in vaccine development. The main advan-
tage of DNA vaccines is that they induce a stronger immune 
response against the encoded antigen74 by providing a constant 
source of antigen in its native configuration. Furthermore, they 
are safe, relatively easy to administer, and preferentially induce 
a TH1 immune response.75 Similar to purified or recombinant 
antigens, DNA vaccines may require the co-injection of adju-
vants and several boosts to induce a satisfactory protective 
immune response.

The gene coding for surface metalloprotease GP63 was the 
first DNA vaccine developed against leishmaniasis. Expression 
of GP63 in mice mediated solid protection against L major 
infection when DNA was injected or when GP63 was 
expressed in attenuated Salmonella typhimurium.46–48 
Leishmania homolog of receptors for activated C kinase anti-
gen is the most extensively studied DNA vaccine against 
Leishmania. In clinical trials, inclusion of IL-12 increased the 
protection of LACK compared with LACK alone.35 DNA-
encoding A2 protein mediated protection against L amazon-
ensis infection in mice in contrast to heat shock protein  
20 (HSP20) and surface protein 2.49,50 More recently, the 
TSA-based DNA vaccine was successful in controlling L major 
challenge via a TH1 immune response.76 Iron superoxide dis-
mutase of L donovani protected Balb/C mice against L ama-
zonensis infection by inducing IFN-γ production which led to 
reduced parasitism.51 Further studies that involved vaccination 
with plasmid pcDNA3H3H4 expressing L major histone pro-
teins H3 and H4 resulted in partial resistance to L major chal-
lenge associated with the development of mixed TH1/TH2-type 
response and a reduction in the number of parasite-specific 
regulatory T cells at the site of infection.77 Vaccination with 
DNA-encoding L infantum histone genes H2A, H2B, H3, and 
H4 also controlled both L major and L braziliensis infections in 
Balb/C mice.52,53 Addition of KMP-11 (kinetoplastid mem-
brane protein-11), A2, and HSP70 genes to H2A, H2B, H3, 
and H4 in the form of HisAK70 DNA vaccine was successful 
in clearing parasites from the liver in a mouse model of visceral 
leishmaniasis and resulted in 100% inhibition of parasite vis-
ceralization in the CL model.54 Therefore, the enhanced DNA 
vaccine provided cross-protection against both CL and visceral 

leishmaniasis (L major and L infantum).54 The overall efficacy 
of this vaccine was attributed to the ability of the immunized 
mice to control key factors such as IFN-γ, IL-10, and IL-4 
activity. The promising nature of the HisAK70 once again 
reinforces the common belief that development of an effective 
antileishmanial vaccine is entirely possible, and that HisAK70 
may play an integral role in such development. Although the 
results were more than promising in the mouse model, such 
success has yet to be translated in primates and humans.

Sandfly Saliva Components
During the infection process, a sandfly injects parasites as well 
as saliva components, which have been shown to help the 
establishment of infection.78 Similar to immunization with 
parasite antigens, immunization with sandfly saliva compo-
nents is very safe. In addition, previous studies have examined 
sandfly saliva as a transmission blocking vaccine candidate. 
Pre-exposure to the saliva of the P papatasi sandfly mediated 
protection against L major challenge by inducing strong IFN-γ 
production.55,56 Furthermore, P papatasi PpSP15, a component 
of the sandfly saliva, when expressed and secreted by the non-
pathogenic strain L tarentolae in combination with CpG as a 
prime boost conferred resistance to L major infection in mice.57 
Similarly, immunization with recombinant Ljm11 or salivary 
gland extracts from L longipalpis saliva mediated protection 
against L major infected sandfly bites and L braziliensis, respec-
tively, via induction of IFN-γ.58 In contrast, L intermedia sali-
vary gland sonicate failed to control L braziliensis infection and 
even increased disease progression due to low IFN-γ to IL-4 
ratio.59 These conflicting results suggest that (1) salivary gland 
components have the ability to change the immune response of 
mice by either increasing susceptibility or resistance and (2) use 
of sandfly saliva components may not be a suitable strategy for 
all strains of Leishmania. Because leishmanization seems to be 
an effective procedure that does not involve the sandfly, sandfly 
components may not be essential to the development of an 
effective Leishmania vaccine but may still be useful against 
certain strains of Leishmania.

Immunotherapy
Leishmania is an intracellular parasite; thus, control of its 
infection is T-cell mediated. Both CD4+ and CD8+ T cells 
are important for primary immunity against L major, even 
though their contributions vary depending on the strain of 
Leishmania (reviewed in the study by Glennie and Scott18). 
CD4+ TH1 cells produce IFN-γ and TNF-α that activate 
macrophages, resulting in parasite elimination in resistant 
mice.13 In contrast, the early production of IL-4 promotes dif-
ferentiation and proliferation of TH2 cells, resulting in disease 
progression in susceptible mice.79 The amount of IL-12 pro-
duced by DC at the initial phase of infection determines the 
outcome of the infection. Low levels of IL-12 lead to a TH2 
immune response, whereas high amounts of IL-12 result in a 
TH1 immune response.80 However, IL-4 and IL-13 synergize 
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to mediate susceptibility to L major infection.81,82 Other 
important cytokines that regulate the disease progression are 
IL-10 and IL-17, which favor parasite survival and disease 
progression.83,84

Recovery from Leishmania infection leads to infection-
induced resistance, which is the underlying principle of leish-
manization and by extension, of lifelong immunity. A 
thorough understanding of the molecular processes involved 
in infection-induced immunity is critical for vaccine develop-
ment. In mice, infection-induced immunity is characterized 
by IFN-γ producing CD4+ TH1 cells. Stimulation and main-
tenance of TH1 cells are mediated by IL-12, which is secreted 
by antigen-presenting cells such as DCs. Because CD8+ cells 
can also produce IFN-γ, they are believed to contribute to L 
major immunity by suppressing the early CD4+ TH2 cell 
development. IL 12 promotes a TH1 response in a mouse of 
model of CL for long-term immunity.85,86 Consistent with 
this concept, inclusion of IL-12 as part of a DNA vaccine 
cocktail improved protection against L major challenge.87–89 
However, administration of IL-12 in humans is toxic; thus, 
this strategy is not suitable for human vaccination.90,91

Several studies have demonstrated that complete clearance 
of the parasite by a TH1 immune response, which is desirable 
for the safety of a patient, is, however, not sufficient in mediat-
ing long-term immunity.6,92 It is also well accepted that sus-
tained controlled stimulation of IFN-γ–producing long-lived 
memory CD4+ T cells is necessary to confer long-term immu-
nity.18 This can be accomplished by having a small population 
of persistent parasites or by “boosting” several times to main-
tain protection.93–95 Alternatively, adjuvants need to be added 
to the vaccine cocktail to elicit the proper immune response.

Targeting TLRs for vaccine development

Toll-like receptors are a collection of 13 eleven-transmembrane 
proteins that recognize structurally conserved molecules 
derived from pathogens and play a role in innate immune sys-
tem. Many adjuvants are TLR antagonists and thus amplify the 
response of the immune system. Adjuvants improve the effi-
cacy of Leishmania vaccine candidates by triggering high levels 
of IL-12 and IFN-γ expression, both of which play vital roles 
in long-term immunological memory.85,86,96 The TLR7 agonist 
Aldara and TLR9 agonist CpG DNA exhibited therapeutic 
antileishmanial properties (reviewed in the study by Raman 
et al97). In contrast, TLR2 agonist Pam3CSK4 led to conflict-
ing results depending on the mouse model used.63,98 These 
encouraging results support the idea that targeting the proper 
TLRs for vaccine development is a feasible strategy.

DCs containing vaccines

Dendritic cells are one of the first phagocytic and antigen-pre-
senting cells that phagocytose Leishmania parasites shortly 
after the inoculation. Due to their unique ability to initiate and 
moderate immune responses, typically in the generation of a 

protective TH1 cell immune response (reviewed in the study by 
Bagirova et al99), DC may serve as a central target for the even-
tual development of proficient vaccines against Leishmania. 
This idea was exploited by several laboratories, and results from 
these studies have been summarized in the recent review by 
Bagirova et al.99 In a typical DC vaccination protocol, DCs are 
isolated and stimulated with the antigens of interest (soluble 
Leishmania antigen, subunit, recombinant proteins, or DNA 
vaccine) before being injected into an animal followed by para-
site challenge. Dendritic cell vaccination, with most antigens 
tested, provided protection against L major in a mouse model 
of infection.99 However, DC vaccine is not applicable against L 
amazonensis and L mexicana as these species poorly activate 
DCs.99 Instead, L amazonensis parasites activate natural killer 
(NK) cells, which promote IL-12 secretion similar to DCs.100 
Thus, modulation of NK cells may offer an alternative vaccine 
strategy against this stain of Leishmania. Dendritic cell vaccines 
are extremely safe. Their success depends on the choice of anti-
gen (native versus denatured antigens and recombinant pro-
teins) as certain antigens exacerbate the disease rather than 
mediate protection.101 In addition, the inclusion of a suitable 
adjuvant is critical in optimizing the efficiency of such proto-
col, as well as the use of proper subtypes of DC.102,103

Conclusions
Cutaneous form of leishmaniasis remains a serious global 
health problem. Currently, no effective vaccines exist against 
this disease despite much effort from numerous research 
groups over several decades. Various approaches have been 
tested, from live whole parasites to attenuated cell lines and 
from the use of individual antigens/recombinant proteins to 
DNA vaccines. Several suitable antigens have been identified 
so far and delivered promising results in animal models. One 
of the main challenges is to transfer results from animal 
model studies to humans. More recently, immunotherapy has 
presented itself as a promising strategy for Leishmania vacci-
nation. However, a better knowledge of the CL immunology 
is needed to uncover suitable points of intervention. This will 
provide a platform for the identification of suitable adjuvants, 
reagents, and methodologies needed to induce the maturation 
and proliferation of the proper memory T cells that are  
“pretrained” to recognize and clear Leishmania parasites on an 
ulterior infection. Overcoming these challenges will lead to 
the development of an effective vaccine for prevention and 
treatment of not only CL but also the most severe visceral 
leishmaniasis.
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