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ABSTR ACT: Human immunodeficiency virus type 1 (HIV-1) latency is a major barrier to a cure of AIDS. Latently infected cells harbor an integrated 
HIV-1 genome but are not actively producing HIV-1. Histone deacetylase (HDAC) inhibitors, such as vorinostat (SAHA), have been shown to reactivate 
latent HIV-1. AR-42, a modified HDAC inhibitor, has demonstrated efficacy against malignant melanoma, meningioma, and acute myeloid leukemia and 
is currently used in clinical trials for non-Hodgkin’s lymphoma and multiple myeloma. In this study, we evaluated the ability of AR-42 to reactivate HIV-1 
in the two established CD4+ T-cell line models of HIV-1 latency. In HIV-1 chronically infected ACH-2 cells, AR-42-induced histone acetylation was more 
potent and robust than that of vorinostat. Although AR-42 and vorinostat were equipotent in their ability to reactivate HIV-1, AR-42-induced maximal 
HIV-1 reactivation was twofold greater than vorinostat in ACH-2 and J-Lat (clone 9.2) cells. These data provide rationale for assessing the efficacy of AR-
42-mediated HIV-1 reactivation within primary CD4+ T-cells.
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During primary infection, human immunodeficiency virus 
type 1 (HIV-1) infects permissive cells and converts its 
single-stranded RNA genome into a double-stranded DNA 
genome that integrates into the host-cell genome.1 A subset 
of the cells harboring integrated HIV-1, termed the latent res-
ervoir, does not actively produce HIV-1 progeny and is thus 
refractory-to-current antiviral therapy.2,3 The posttransla-
tional modifications of chromatin, such as histone deacety-
lation, cause chromatin condensation, which restricts RNA 
polymerase-mediated HIV-1 transcription and results in viral 
latency (reviewed in Siliciano and Greene).4 Previous reports 
have demonstrated the ability of histone deacetylase (HDAC) 
inhibitors, including vorinostat (also known as SAHA) and 
valproic acid, to reactivate latent HIV-1 through the reversal 
of chromatin condensation, although there have been incon-
sistent reports on the effectiveness of valproic acid.5,6 Clinical 
studies of vorinostat investigating the kick and kill strategy 
indicate consistent HIV-1 reactivation from cell lines and 

HIV-infected patients, but at high dosages.7,8 Additionally, 
recent studies with panobinostat and romidepsin in patients 
on suppressive antiretroviral therapy indicate the potential 
utility of more potent HDAC inhibitors.5

The histone deacetylation activity within chroma-
tin indicates HDAC inhibitors as potentially valuable 
therapeutic agents for HIV-1 reactivation.9–11 Currently, the 
most potent HDAC inhibitors belong to the hydroxamic 
acid family.12 This class of HDAC inhibitors includes the 
US Food and Drug Administration-approved vorinostat and 
a novel compound AR-42.5,10 AR-42 is a novel anticancer 
drug candidate that inhibits deacetylation on both histone 
and nonhistone proteins.13,14 AR-42, a modified hydroxamic 
acid, was rationally designed with an aromatic linker and 
two Zn2+-binding motifs that bind a zinc cation in the 
catalytic domain of class I and II HDACs with an IC50 value 
of 30 nM.15
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Published data indicated that AR-42 induces histone 
H3 acetylation in mouse and canine mast cells.16 To deter-
mine if AR-42 induces acetylation in cells harboring a HIV-1 
provirus, we treated chronically and latently infected ACH-2 
cells17 (obtained from Dr. Thomas Folks through the NIH 
AIDS Research and Reference Reagent Program) with a range 
of AR-42 (1 nM–5 µM). Following the treatment, cell lysates 
(15 µg) were electrophoresed on a 10% SDS-PAGE gel and 
transferred to nitrocellulose. Histone H3 acetylation on lysine 
9 was assayed by western blot with the AcH3K9 antibody 
(Santa Cruz Biotechnology, Inc., 1:1500 dilution) and goat–
anti-rabbit immunoglobulin/horseradish peroxidase secondary 
antibody (cell signaling, 1:5000 dilution). Equivalent protein 
loading was verified by western blot against actin (cell signal-
ing 4967, 1:1500). Histone acetylation was quantified as a ratio 
to actin loading control by ImageJ densitometry analysis.

At 10 nM, AR-42 treatment increased histone 3 acetylation, 
while vorinostat induced acetylation at ~100 nM (Fig. 1). Within 
the concentrations tested, AR-42-induced histone 3 acetyla-
tion was more robust than vorinostat-induced acetylation. As 
expected, phorbol 12-myristate 13-acetate (PMA)-mediated 
HIV reactivation did not increase histone 3-acetylation.

An outcome of histone acetylation in latently and 
chronically infected CD4+ T-cells is the reactivation of 
HIV-1. Expanding on AR-42’s ability to acetylate histone 3 
(Fig. 1), we determined AR-42-induced HIV-1 reactivation 
within two well-established CD4+ T-cell models of HIV-1 
latency.17,18 ACH-2 cells were maintained in Roswell Park 
Memorial Institute medium with 10% fetal bovine serum and 
penicillin–streptomycin at 37°C under 5% CO2. ACH-2 cells 
were treated with the indicated concentrations of vorinostat 
or AR-42 for 48 hours, in triplicate, at a final dimethyl sulf-
oxide (DMSO) concentration of 0.1%. A total of 100 ng/mL  
PMA (Sigma-Aldrich), also in 0.1% DMSO, was used as a 
positive control. After incubation, 10  µL of culture super-
natant was removed, frozen at -80°C, thawed at room tem-
perature, and then assayed for reverse transcriptase (RT) 
activity assays as described in Ball et al.19 HIV-1 reactivation 
was quantified using density (counts/mm2) counts computed 
by the Typhoon Scanner (GE Healthcare Life Sciences) and 
the Quantity One software (Bio-Rad Life Science Research). 
In the ACH-2 cell model, AR-42 reactivated HIV-1 in a 
dose-dependent manner, while vorinostat achieved a plateau 
at 500 nM (Fig. 2A). Although both AR-42 and vorinostat 

Figure 1. Vorinostat and AR-42 increase histone acetylation. Cellular lysates (15 µg) from ACH-2 cells were loaded per lane and probed with antibodies 
against acetylated histone H3 and actin. PMA treatments (0.1% DMSO and 100 ng/mL) were negative controls. AR-42 and vorinostat concentrations 
range from 1 nM to 5000 nM. Densitometry quantification of the actin-loading control and histone 3 acetylation (ImageJ) is displayed as the ratio of 
histone acetylation intensity to actin-loading control intensity.
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have similar potency (460  ±  0.05  nM and 408  ±  0.04  nM, 
respectively), at higher concentrations, AR-42 is twofold more 
efficacious than vorinostat in ACH-2 cells.

The second T-cell model, Jurkat CD4+ T-cell-derived 
J-Lat cells (full length clone 9.2),18 was obtained from Dr. Eric 
Verdin through the NIH AIDS Research and Reference 
Reagent Program. J-Lat cells (clone 9.2) were cultured for 
24  hours in the presence of 0.1% DMSO with or without 
AR-42 or vorinostat. Treatment with tumor necrosis factor 
alpha (TNF-α) (10  ng/mL) served as a positive control.18 
Following the treatment, the cells were washed, fixed in 4% 
paraformaldehyde, and quantified by flow cytometry using 
Guava EasyCyte Mini (EMD Millipore). HIV-1 reactiva-
tion [green fluorescent protein (GFP) expression] was deter-
mined using the FlowJo software (Tree Star) with the gate 
equivalent to 0.1% DMSO-treated control cells. Additionally, 
the PRISM software was used to determine the half maxi-
mal effective concentration (EC50) for AR-42 and vorinostat. 
Flow cytometry analysis determined that in the J-Lat (clone 
9.2) cell model, AR-42 is 2.4-fold more potent at HIV-1 
reaction than vorinostat (EC50 values of 3200 ± 100 nM and 
7800 ± 100 nM, respectively; Fig. 2B). Together, the ACH-2 
and J-Lat (clone 9.2) data demonstrate that AR-42 can be 
more potent and efficacious than vorinostat in these HIV-1 
reactivation cell line models.

To determine the effect of treatments on cell viability, 
AR-42-treated cells were assayed using a 3-(4,5-dimethylthi-
azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)/3-(4,5- 
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sul-
fophenyl)-2H-tetrazolium (MTS) assay. The effects of AR-42 
and vorinostat were tested for 48 hours and 24 hours, respec-
tively, in ACH-2 and J-Lat (clone 9.2) cells. In ACH-2 cells, 
both vorinostat and AR-42 caused approximately similar reduc-
tion in MTT/MTS activity at 5 µM; although at lower treat-
ment concentrations, vorinostat did not lower MTT/MTS 

activity .0.1% DMSO after 48 hours (Fig. 3A). In the J-Lat 
cells (clone 9.2), after 24 hours of treatment, the half cytotoxicity 
concentration (CC50) of AR-42 was 300 ± 100 nM, while that 
of vorinostat was 1300 ± 100 nM (Fig. 3B).

In addition to MTT/MTS cell viability analysis, early 
apoptosis and necrosis studies were performed on AR-
42-treated ACH-2 cells using annexin V and propidium 
iodide staining. Flow cytometry parameters for annexin V and 
propidium iodide were set based on heat-killed cells (incu-
bated at 50°C for one hour) and performed using Beckman 
Coulter Cytomics FC500. Similar to the MTT/MTS results, 
AR-42 reduced the cell viability of ACH-2 cells at the CC50 
of 217 ±  1 nM (Fig. 3C). These data suggest that AR-42 is 
more toxic than vorinostat in these two HIV-infected cell lines.

This study was designed to assess the ability of a novel 
HDAC inhibitor (AR-42) to reactivate HIV-1. We observed 
the following: AR-42 more potently induces histone 3 acetyla-
tion than vorinostat, AR-42 is more efficacious and equipotent 
than vorinostat in its ability to induce HIV-1 gene expression, 
and AR-42 is more toxic than vorinostat in two CD4+ T-cell 
line models of HIV-1 latency.

In the cellular models of schwannoma and meningioma, 
AR-42 inhibited cellular growth (IC50 values between 250 nM 
and 1 µM, depending on the cell line).20 In several models of non-
Hodgkin’s lymphoma, AR-42 significantly enhanced the anti-
tumor activity of HB22.7, an anti-CD22 monoclonal biologic.21 
AR-42 is currently in two clinical trials: one for the treatment 
of non-Hodgkin’s lymphoma (NCT01798901) and the other 
for multiple myeloma (NCT01129193, www.clinicaltrials.
gov). In the multiple myeloma phase I trial, a 40-mg dose of 
AR-42 achieved a maximum concentration (Cmax) of 1 µM, a 
concentration that is sufficient to reactivate HIV in the ACH-2 
model.22,23 In the MT-2 and C8166 cellular models of cancers 
associated with the deltaretrovirus human T-lymphotropic virus 
type 1 (HTLV-1), AR-42 induces both histone acetylation and 

Figure 2. AR-42 more effectively induces HIV-1 reactivation and expression from latently infected CD4+ T-cells than vorinostat. (A) RT activity of 
treatment over% PMA activation after 48 hours (average ± SD, n = 3). Calculated EC50 values for both AR-42 and vorinostat are depicted. (B) HIV-1 
latently infected J-Lat cells (clone 9.2) were treated with AR-42 or vorinostat at the indicated concentrations for 24 hours, and GFP-positive cells were 
scored by flow cytometry. The maximum% of GFP-positive cells was determined with the positive control TNF-α (10 ng/mL), which was set to 100%, and 
the percentage of activation induced by each drug relative to TNF-α is presented.
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apoptosis; this study did not assess the ability of AR-42 to reac-
tivate HTLV-1 gene expression.11 Furthermore, in a mouse 
model of HTVL-1-associated adult T-cell leukemia/lymphoma, 
AR-42 significantly increased animal survival compared to 
vehicle-treated control animals.11 Thus, AR-42 has promising 
activity against the cancers of various etiologies.

AR-42 treatment decreased MTT activity and cell 
viability at the treatment concentrations of 250 nM–1000 nM, 
although the cellular damage would not be attributed solely to 
drug treatment, because AR-42-induced HIV-1 release can 
also result in cell death. Previous studies have indicated that 
activated latently infected cells are presumed to die due to viral 
pathogenic effects, apoptosis, or pyroptosis.4,24 A strength 
of this study is that rather than assessing the supernatant-
associated HIV RNA concentration following the reactiva-
tion, we assessed either intracellular GFP production (J-Lat 
cells clone 9.2) or RT activity deposited into the supernatant 
(ACH-2); both of these assays would not be confounded by 
HIV RNA or DNA, which could be liberated by cell death.

HIV-1 latently infected cell line models, as used in this 
study, have proven to be useful in investigating the induced 
reactivation of HIV from latently infected cells.25 Recognizing 
that individual HIV-1 latently infected cell models have 
limitations, we tested the ability of AR-42 to reactivate the 

HIV-1 gene expression in both the J-Lat cells (clone 9.2) 
and the ACH-2 models. Although there are slight differ-
ences between the results from the two cell lines, compared to 
vorinostat, AR-42 had at least one favorable pharmacological 
attribute in each model [ie, better efficacy in ACH-2 and bet-
ter potency in J-Lat cells (clone 9.2)].

In summary, AR-42 potently induces histone acetyla-
tion in the ACH-2 cells and HIV-1 gene expression in the 
two models of latently infected CD4+ T-cells. These results 
(ie, favorable efficacy and toxicity profiles), combined with the 
ongoing AR-42 clinical studies, suggest that AR-42 should be 
tested in the primary cell models of HIV-1 latency.26
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Figure 3. AR-42 reduces the viability of latently infected CD4+ T-cells. (A) ACH-2 latently infected cells (48 hours). (B) J-Lat (clone 9.2) latently infected 
cells (24 hours). MTT or MTS cell viability assays were tested using vorinostat (SAHA) as a positive control. DMSO (0.1%) was used as a vehicle control. 
(C) Early apoptosis and necrosis (annexin V and propidium iodide staining) were tested in ACH-2 latently infected cells (black dotted) treated with 0.1% 
DMSO ± AR-42 for 48 hours.
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