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ABSTRACT

The analytic hierarchy process (AHP) methodology was introduced by
Thomas Saaty and has had numerous applications in a wide range of contexts.
In a common three-level hierarchy, AHP involves the aggregation of criterion
importance weights (or priorities) and the performance scores (or priorities)
of alternatives as the sum of the products of weights and scores for each
alternative. The multiplicative AHP (MAHP) involves the multiplicative
aggregation of performance scores raised to the power of the criterion weights
and has been seen by many individuals (notably, Freerk Lootsma and
John Barzilai) as an alternative more desirable structure. It is suggested that
alternative forms of aggregation of performance scores and criterion weights
might be more useful, in particular the ordered weighted averaging (OWA)
operator introduced by Ronald Yager. The choice of weights in an OWA
operator may be guided by a linguistic quantifier involving the importance
weights associated with each criterion. The geometric ordered weighted
averaging (GOWA) operator is also considered as a possibility for aggre-
gation in the MAHP. An example is given relating to the location of a Green
Bridge Link (for public transport and non-motorized modes of transport)
in Brisbane, Queensland, Australia. The four approaches (alternatives) to the
identified site of the Green Bridge (Dutton Park) are a Full Busway, Boggo
Road, Cornwall Street, and Kent Street.

INTRODUCTION

The analytic hierarchy process (AHP) methodology [1-5] was introduced by
Thomas Saaty in the 1970s and has had numerous applications in a wide range of
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contexts. A recent review of some AHP applications is given by Vaidya and
Kumar [6]. Earlier reviews of applications were given by Zahedi [7] and Shim
[8]. The AHP has also been the subject of special issues of journals such as
Mathematical Modelling (Vol. 3-5, 1987), European Journal of Operational

Research (Vol. 48, No. 1, 1990), and Socio-Economic Planning Sciences (Vol. 20,
No. 6, 1986; Vol. 25, No. 2, 1991).

The AHP aggregates criterion weights and project performance scores in
a simple additive weighting format. It is suggested that alternative forms of
aggregation might be more useful, in particular, the ordered weighted averaging
(OWA) operator introduced by Yager [9] and discussed (both in a numeric and a
linguistic context) in this journal [10, 11]. The choice of weights in an OWA
operator may also be guided by a linguistic quantifier involving the importance
weights associated with each criterion.

ANALYTIC HIERARCHY PROCESS (AHP)

The AHP explicitly recognizes the hierarchical structure of decision problems.
A hierarchical structure comprising homogeneous clusters of elements is a means
of coping with complexity [12]. However, in addition to hierarchical structuring,
the AHP is based on two other compelling concepts, namely, the use of pairwise,
relative comparisons, and the use of redundancy in judgments (that is, more
pairwise comparisons are obtained than necessary to identify a “priority” for each
element in the hierarchy). Relative judgments (comparisons of an element relative
to information about another element held in “short-term memory”) are assumed
to be more easily generated and more meaningful than absolute judgments (that
is, ratings, which, in a sense, involve comparison of an element relative to
information about another element stored in “long-term memory,” and perhaps in
new situations relative to no information) [4]. Redundancy reduces errors and
provides a measure of consistency of judgments.

The limited “cognitive capacity” of individuals in terms of both “short-term
memory” and “discriminability” (channel capacity) identified by Miller [13] is
cited in support of the AHP and the need to hierarchically structure a decision
problem into manageable “chunks” Miller [13] conjectured that there is an
upper limit to an individual’s capacity to process information on simultaneously
interacting elements with reliable accuracy and with validity (7 plus or minus 2
elements). In the light of this “magic number,” Saaty and Ozdemir [14] suggest
that the number of elements in each group should be no more than 7. This
recommendation is based on the consistency of information derived from relations
among the elements.

Thus, the AHP represents a decision/evaluation problem hierarchically and
involves pairwise comparisons of elements (projects, criteria, sub-criteria, etc.) at
each level with respect to elements at the adjacent higher level. In a three-level
hierarchy, each project is compared to each other project with respect to each
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criterion, and each criterion is compared relative to each other criterion with
respect some overriding goal. Comparison is in terms of the extent to which one
element (project, criterion) “dominates” another element within the same “cluster”
of elements. Such subjectively determined pairwise comparisons (judgments) are
commonly expressed on a 1-9 (response) scale of “dominance” (e.g., importance,
performance, preference). For example, if project A performs outstandingly
relative to project B with respect to criterion C1 then “9” might be used to represent
this dominance in terms of performance. If A and B perform equally with respect
to C1, then a score of “1” would be used, and other scores used as appropriate
to represent intermediate degrees of dominance. Pairwise comparisons are con-
sidered to be reciprocal such that, for example, if the dominance of A relative to B
for C1 is say “5,” then the dominance of B relative to A for C1 must be “1/5.”
Numbers 1, 3, 5, 7, 9 are associated with verbal expressions of dominance
(respectively, “equal,” “’weak,” “strong,” “very strong,” “absolute”) and the
numbers 2, 4, 6, 8 represent intermediate values between adjacent scale values.
Criteria are then compared to each other in terms of their importance in achieving
some overall goal (e.g., select a “best” project), again using a 1-9 scale. Numbers
1, 3, 5, 7, 9 are now associated with verbal expressions of relative importance
(respectively, “equal,” “wealth,” “strong,” “very strong,” “absolute”) and the
numbers 2, 4, 6, 8 represent intermediate values between adjacent scale values.
With reciprocal values, the complete Saaty response scale is thus (1/9,9).

For each reciprocal pairwise comparison matrix of Q elements, A = [aij]QxQ,
“scores” or “priorities” representing the “dominance” of elements may be derived
by solving for zT = (z1, z2, ..., zQ) in the matrix equation [1-5].

A z = �max z

z is the eigenvector associated with the largest (Perron-Frobenius) (right)
eigenvalue, �max, of A. The right eigenvector is selected because of the nature
of the dominance in the pairwise comparison matrix (dominance of row over
column). These scores are normalized to w = (w1, w2, ..., wQ) where wi = zi/�k=1,Q zk

(I = 1, ...,Q). Thus
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Here, e = (1, 1, ..., 1) is of dimension Q. The Perron-Frobenius theorem on
non-negative square matrices, A, states that A has a non-negative real eigenvalue
(�max), no real eigenvalue of A can have an absolute value larger than the largest
real eigenvalue and at least one right eigenvector and one left eigenvector asso-
ciated with �max are semipositive (that is, all elements are non-negative and at
least one element is positive) [15].
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Each pairwise comparison aij is an estimate of the ratio wi/wj. Thus, given
priorities, aij � wi/wj, and in the perfectly consistent case, aij =wi/wj. Normal-
ized scores (priorities) associated with each pairwise comparison matrix are
concatenated throughout the hierarchical structure to form scores for each lowest
level project. That is, for a three-level hierarchy,

u w pi j ij
j 1,J

�
�


where ui is the overall performance score of alternative I (I = 1, 2, ..., I), wj is the
weight (priority) of criterion j (j = 1, 2, ..., J) and pij is the performance score
(priority) of alternative I with respect to criterion j.

Various approximations have been proposed as an alternative to the calculation
of the principal eigenvector of a pairwise comparison matrix, e.g., [16]. Three
common approximations for finding the priorities of A = [aij]QxQ are the average of

the normalized columns, the sum of the normalized rows, and the normalized

geometric row means, respectively, as follows
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Each of these yields correct results when consistency prevails, that is when aij =
wi/wj. The average of the normalized columns is commonly presented as a good
approximation to the Perron-Frobenius right eigenvector (e.g., [17, 18]).

However, the geometric mean has been advocated as more than an approximate
solution to the principal right eigenvector. Crawford and Williams [19] show the
geometric mean is a unique solution to the minimization of a logarithmic least
squares function (see below). Barzilai, Cook, and Golany [20] and Barzilai [21]
derive the geometric mean from an axiomatic basis as the only acceptable solution
to estimating priorities from a pairwise comparison matrix.

However, evidence in support of the principal eigenvector method has been
given by Kumar and Ganesh [22] using a simulation analysis based on the
concept of approximating a continuous pairwise comparison matrix by its closest
discretized pairwise comparison matrix. Saaty and Hu [23] show that for incon-
sistent judgments, their transitivity effects the final result, and that the eigenvector
captures the transitivity uniquely and is the only way to obtain a correct ranking.
Saaty [24] further supports the principal eigenvector as the only acceptable
method of deriving priorities from pairwise comparison matrices.
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Nevertheless, various other methods for deriving priorities from pairwise
comparison matrices have been explored (e.g., [25-29]). Jensen [30] strongly
advocates a least-squares approach to priority estimation. Recently, Gass and
Rapcsák [31] have recently advocated the singular value decomposition of the
pairwise reciprocal matrix, using the left and right singular vectors belonging
to the largest singular value of matrix A.

Priorities based on AQxQ can be approximated by a uniquely determined
normalized positive weight vector
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Here ui and vi are left and right singular vector values, respectively, and wi is the
priority weight vector. This result was obtained by solving a distance minimization
and a measure theoretic (Kullbach-Leibler I-divergence) minimization problem
with a unique solution for each. Srdjevic [32] reviews many alternative prioriti-
zation methods and has advocated combining different priority methods in AHP.

A further aspect of the AHP is the calculation of the consistency of pairwise
comparison judgments. Saaty [2] recommends a check for the consistency using
the index � = (�max – Q)/(Q – 1). The consistency index, �, is compared to a
random index and Saaty suggests that this ratio should be <0.1 for acceptable
consistency of pairwise comparisons. That is, inconsistency is considered
unacceptable if it is above that found in 90% of random matrices of the same size.
However, Peláez and Lamata [33] propose a different method based upon the
average of the consistency index of all matrix transitivities. This involves a
comparison of elements (e.g., criteria) Ei, Ej, Ek, by examining the determinant of
the sub-matrix formed from these three elements of aij and the product aikakj for
all Q!/(Q – 3)3! (Q � 3) possibilities. The determinant is zero for perfect
transitivity (aij = aikakj), but greater than zero otherwise.

Lootsma and Schuijt [34] outline a multiplicative variant of AHP which adjusts
for contended flaws in AHP using a rating on a logarithmic response scale (which
replaces (1/9-9) Saaty response scale), eigenvector calculation replaced by the
geometric mean, and aggregation of scores by weighted sum replaced by the
product of the relative scores of each alternative weighted by the power of weights
obtained from analysis of hierarchical elements (criteria) above the alternatives.
Thus the multiplicative AHP (MAHP) involves

u pi ij
w

j 1,J

j�
�
�
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Here ui is the overall performance score of alternative I (I = 1, 2, ..., I), wj is the
weight of criterion j (j = 1, 2, ..., J) and pij is the performance score of alternative I
with respect to criterion j. The MAHP is based on minimizing a logarithmic least
squares function

l lnr lnv lnvij i j
j ii 1,Q

� � �
��

 )

where wj = lnvj. The solution to this problem is,

w rj ij
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Thus, priorities from pairwise comparison matrices are based on the geometric
mean of rows.

Further, a geometric scale (e�(–8),e�(–7), e�(–6), ..., e�(0), ..., e�(6), e�(7), e�(8)), is used
to determine pairwise comparisons rather than the (1/9,9) Saaty response scale,
and a scale values are moderated by a scale factor, �, which is different for
performance and criterion priorities [35, 36]. Lootsma recommends that in rij =
e��j, � = ln( 2) = 0.347 in calculating criterion weights and � = ln(2) = 0.693
in calculating performance scores. �ij are integers in the range (–8,8) selected by
the decision maker in the same way as Saaty response scale values (1/9, 9) are
selected. Effectively, the scale values yield a shorter scale, approximately, rij� (2

–4,
2–7/2, 2–3, 2–5/2, ..., 2�, ..., 25/2, 23, 27/2 24), for comparing the relative importance of
criteria and a longer scale, approximately, rij� (2–8, 2–7, 2–6, 2–5, ..., 20, ..., 25, 26, 27,
28), for comparing the performance of alternatives. Thus,
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There is no consistency measure in REMBRANDT, though it is possible to
identify inconsistencies between pairwise judgments �ij and the resulting ratio
of priorities, wi/wj.

The MAHP and REMBRANDT (Ratio Estimation in Magnitudes or decibels to
Rate Alternatives which are Non-Dominated), involving a geometric response
scale, are explored further by Lootsma [35, 36]. Debate on the merits or otherwise
of the MAHP has been given in articles [37-39] and responded to by Lootsma and
Barzilai [40]. Olson, Fliedner, and Currie [41] and Olson [42] compare
REMBRANDT to AHP. Stam and Duarte Silva [43] outline some properties of
MAHP that appear to have eluded attention and draw some analogy with the
Cobb-Douglas production function used in macro-economic modelling to relate
production factors (capital, labor) to output.

54 / SMITH



Various fuzzy extensions of AHP have been developed in recent years (e.g.,
[44-48]). van Laarhoven and Pedrycz [49] propose a fuzzy version of extensions
to the AHP developed by de Graan [50]. Boender, de Graan, and Lootsma [51]
propose a modification of the method. Chang [52] proposes extent analysis

method for fuzzy AHP, elaborated by Enea and Piazza [53].
Fuzzy methods weaken the demands for precision is pairwise comparisons and

are considered to be cognitively less demanding and more adequately reflect the
decision maker’s attitude with respect to risk and confidence in their subjective
assessments [46].

APPLICATION OF AHP TO THE

GREEN BRIDGE LINK PROJECT

The Green Bridge Link has been developed by Brisbane City Council
(Brisbane, Queensland, Australia) to address some of the transport demands
arising from this population growth in southeast Queensland. Though travel to
Brisbane CBD remains important today as in the past, there is also significant and
increasing demand for cross-city travel, which would be facilitated by orbital
public transport linkages. Presently, the radial nature of Brisbane’s transport
network, limited river crossings, and the dispersion of non-CBD destinations has
made it difficult for public transport to penetrate the cross-city travel market. The
radial nature of the transport network generally requires travel into the CBD
and then out on a different corridor to access a destination. The University of
Queensland, in particular, is a major non-CBD destination that is difficult to access
from the southeast sector of Brisbane on the radial transport network.

One key issue identified through various regional, city, and local planning
exercises for Brisbane is that of providing a transport network, comprising private
and public transport, cycling, and walking, that will remain sustainable given
increased travel demand and a dispersed settlement pattern. The large, fast-
growing population is creating increasing demand for travel on a transport
network that has reached maturity and in many places is at capacity.

The Green Bridge Link aims to efficiently move high volumes of people along a
purpose built public transport corridor. The corridor will run westwards from the
Buranda Bus/Rail Interchange, crossing the Brisbane River at Dutton Park, and
then entering the University of Queensland (UQ) St. Lucia campus [54].

Three possible locations for the Green Bridge Link were identified on the east
bank of Brisbane River: Dutton Park, Yeronga, and West End. Twelve preliminary
eastern approaches linking the bridge and the South East Busway were identified.
After evaluating eastern approaches based on a number of criteria such as
travel time, construction costs, operational costs, land use, rail links, pedestrian
and cycle links, and engineering considerations, Dutton Park was selected as a
preferred bridge location [54]. The four alternative approaches associated with
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Dutton Park location are: (A1) Full Busway approach; (A2) Boggo Road approach;
(A3) Cornwall Street approach; (A4) Kent Street approach.

This article will use these four alternatives evaluated against eight criteria as
follows: C1: Links with trip generators; C2: Patronage growth potential; C3: Value
to the transport network; C4: Local amenity and local impacts; C5: Support for
complementary development; C6: Ease and success of implementation; C7:Project
cost; and C8: Future opportunity.

In the impact study, these criteria were disaggregated and performance scores
derived for each alternative with respect to each sub-criterion. Scores were then
aggregated for each criterion, and these aggregate scores were used to guide
the pairwise comparisons assigned to each of the four alternatives/approaches
with respect to the eight criteria. These pairwise comparisons are shown in the
Appendix. In addition, the pairwise comparisons of criteria with respect to the
overall goal of selecting a good approach to the Green Bridge Link location are
shown in the Appendix.

Based on the hierarchical structure in Figure 1 and the pairwise comparison
matrices given in the Appendix, the conventional AHP yields the following results

These results indicate preference for A1 (followed by A2) based on the pairwise
comparison matrices shown in the Appendix. Consistency indices (�) are also
shown in the Appendix. These are all acceptable, except for C6, though as pairwise
comparisons were selected to be as close as possible to the direct ratings in the
Green Bridge Link impact study [54], they have not been adjusted. The MAHP
(based on priorities calculated as the normalized geometric row means) yields
the following results
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Alternative/approach Overall score

A1 – Full Busway

A2 – Boggo Road

A3 – Cornwall Street

A4 – Kent Street

0.243*

0.235

0.164

0.109

*Bold indicates better performance.

Alternative/approach Overall score

A1 – Full Busway

A2 – Boggo Road

A3 – Cornwall Street

A4 – Kent Street

0.331*

0.264

0.251

0.153

*Bold indicates better performance.



These results, using pairwise comparisons drawn from the Saaty [1/9,9] response
scale, indicate preference for A1 (followed more closely by A2).

ORDERED WEIGHTED AVERAGING AGGREGATION

OPERATORS

The ordered weighted averaging (OWA) operator for aggregating fuzzy subsets
was introduced by Yager [9]. It has been elaborated in this article [10, 11]. An
OWA operator (of dimension J) is represented as

OWA(�,a) =�j = 1,J�jbj

where bj is the jth largest element of the values a = [a1, a2, ..., aJ].
OWA operator weights, � = [�1, �2, ..., �J] are associated with the position of

bj and are such �j � [0, 1] and �j = 1,J�j = 1. Note that �j is associated with a
particular ordered position j of the arguments (project performance along criteria)
and is not a reflection of the importance (salience, significance) of criteria in the
context of project evaluation.

The OWA operator includes the commonly used maximum and minimum
operators [9, 10] and the arithmetic mean operator for appropriate choice of
operator weights represented as � = [�1, �2, ..., �J]. In particular, the OWA
operator is bounded such that OWA ((0, 0, ..., 1), a) � OWA(�, a) � OWA([1, 0,
..., 0], a). Thus from the definition of the OWA operator, OWA ([0, 0, ..., 1], a) =
minj=1,J aj and OWA ([1, 0, ..., 0], a) = maxj=1,J aj so that extreme OWA operators
are the “and” and “or” operators [9, 10]. The arithmetic average corresponds to the
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OWA operator OWA ((1/J, 1/J, ..., 1/J), a). The “and” (minimum) provides no
compensation in that a high grade of membership with respect to one factor cannot
offset (or compensate for) a low grade of membership with respect to another
factor. The “or” (maximum) provides full compensation. “And” reflects a
conservative/pessimistic attitudinal character on the part of the decision maker,
“or” reflects a risk-taking/optimistic character.

OWA weights can be parameterized by a function Q: [0,1] � [0,1] having the
properties: (1) Q(0) = 0; (2) Q(1) = 1; and (3) Q(x) � Q(y) if x > y. Yager [55]
refers to Q as a “basic unit-interval monotonic” (BUM) function. BUM functions
are monotonic and fixed at the end points. Using a BUM function, we can obtain
the quantifier-guided OWA weights as �j = Q(j/J) – Q((j – 1)/J). It can be shown
that these weights satisfy the conditions aj� [0,1] and �j = 1,J �j = 1 [10].

The linguistic quantifier, Q, may take a number of forms [9, 10]. The classical
quantifier, “all” is Q(j/J) = 0 for j < J and Q(J/J) = Q(1) =1 in which case � =
(0, 0, ..., 1). The classical quantifier, “at least one,” is Q(j/J) = 1 for j �1 in which
case � = [1, 0, ..., 0]. The quantifier “average” is defined as Q(r) = r yielding
� = [1/J, 1/J, ..., 1/J]. The quantifier, “most” is defined as a BUM function,
Q(r) = r2, r � [0,1].

When criterion weights, wj, are used,
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Here uj is the importance weight associated with bj, i.e., the importance of
the criterion for which a given project has the jth largest performance score
(see [10]). The above yields a weighted ordered weighted averaging (WOWA)
operator [56-58]. The results of OWA aggregation using the linguistic quantifier
“most” yield the following results

Here it is implicitly assumed that priorities derived in the AHP are normalized to
sum to unity as in the conventional AHP.
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Alternative/approach Overall score

A1 – Full Busway

A2 – Boggo Road

A3 – Cornwall Street

A4 – Kent Street

0.215*

0.192

0.137

0.086

*Bold indicates better performance.



GEOMETRIC ORDERED WEIGHTED AVERAGING

OPERATOR

A geometric ordered weighted average (GOWA) [58-60] may be defined as

GOWA (�, a) = j 1,J j
b j

��
�

where bj is the jth largest element of the values a = [a1, a2, ..., aJ]. GOWA operator
weights, � = [�1, �2, ..., �J] are associated with the position of bj and are such
aj � [0,1] and �j = 1,J�j = 1. Again the GOWA operator is bounded such that
GOWA ([0, 0, ..., 1], a) � GOWA (�, a) � OWA ([1, 0,.... 0], a). Thus from the
definition of the GOWA operator, GOWA ((0, 0, ..., 1], a) = minj = 1,J aj and
GOWA ([1, 0, ..., 0], a). = maxj = 1,Jaj [59].

Again, OWA weights may be obtained as aj = Q(j/J) – Q((j – 1)/J) satisfying the
conditions �j� [0,1] and �j = 1,J �j = 1. Using criterion weights wj, the importance
weight associated with bj, positional weights, �j, may be derived analogous to
those for the OWA. Using the GOWA aggregation, with the quantifier, “most,”
defined as Q(r) = r2, yields

Again it is implicitly assumed that priorities derived in the MAHP are nor-
malized to sum to unity as in the MAHP. The results of the various aggregations
are shown in Tables 1 and 2.
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Alternative/approach Overall score

A1 – Full Busway

A2 – Boggo Road

A3 – Cornwall Street

A4 – Kent Street

0.105

0.181*

0.096

0.070

*Bold indicates better performance.

Table 1. AHP Scores and Quantifier-Guided OWA (QG_OWA) Scores

AHP
QG_OWA

“most”

QG_OWA
“all”
MIN

QG_OWA
“not_none”

MAX

QG_OWA
“average”
AVERAGE

A1

A2

A3

A4

0.331*

0.264

0.251

0.153

0.215

0.192

0.137

0.086

0.054

0.133

0.052

0.045

0.595

0.608

0.650

0.402

0.331

0.264

0.251

0.153

*Bold indicates better performance.



Here, A1 (Full Busway approach) appears to be the better project for AHP
and MAHP except for the extreme quantifiers “all” and “not_none” which effec-
tively identify the “worst” and “best” performance across all criteria for each
project. Most multiple objective decision problems would seek to account for
the performance of “most” of the criteria. This quantifier identifies A1 as “best” as
does the conventional AHP and the less familiar MAHP (based on the Saaty
response scale).

GENERALIZATION TO FOUR OR MORE LEVELS

Though this application involves only the simplest three level hierarchy, a
four (or more) level hierarchy could use different quantifiers at different levels
in the hierarchy. However, this is only applicable to the additive AHP as the
multiplicative AHP never extends beyond a three level hierarchy. Consider, for
example, the four-level hierarchy shown in Figure 2, consisting of one overall
objective and two criteria C1 and C2.

Criterion C1 is disaggregated into two sub-criteria (C11 and C12) and criterion
C2 is disaggregated into three sub-criteria (C21, C22, and C23) and two alternatives
(A1 and A2) form the base of the hierarchy. Then different OWA operators may
be used at different levels. The priorities would than be as illustrated in Figure 3
where, for example, “a” and “b” result from the pairwise comparison matrix of
A1 and A2 with respect to sub-criterion, C11 and “�” and “�” are priorities resulting
from the pairwise comparison matrix of sub-criteria C11 and C12 with respect
to criterion C1.

This structure follows the concatenation of priorities throughout a more general
hierarchy given by Saaty [4]. However, using quantifier-guided aggregation yields
the possibility for A1, of QG_OWA1(a, c; �, �), QG_OWA2(u, w, y; �, �, �), and
QG_OWA3(QG_OWA1(a, c; �, �), QG_OWA2(u, w, y; �, �, �); �, �). Here, for
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Table 2. MAHP Scores and Quantifier-Guided GOWA (QG_GOWA) Scores

MAHP
QG_GOWA

“most”

QG_GOWA
“all”
MIN

QG_GOWA
“not_none”

MAX

QG_GOWA
“average”
AVERAGE

A1

A2

A3

A4

0.243*

0.235

0.164

0.109

0.150

0.181

0.096

0.070

0.054

0.133

0.052

0.045

0.595

0.608

0.650

0.402

0.243

0.235

0.164

0.109

*Bold indicates better performance.
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Figure 3. Priorities in a four-level hierarchical structure.

Figure 2. Four-level hierarchical structure.



example, QG_OWA1(a, c; �, �) means a OWA(1) using priorities, “a” and
“c” with weights (priorities) “�” and “�.” QG_OWA2(u, w, y; �, �, �) means
a quantifier-guided OWA(2) (possibly different from quantifier-guided OWA
(1)) using priorities, “u,” “w,” and “y” with weights (priorities) “�”, “�,” and
“�.” Finally, QG_OWA3 (again, maybe a different quantifier) combines
QG_OWA1(a, c; �, �) and QG_OWA2(u, w, y; �, �, �) with weights for criteria C1

and C2, respectively, “�” and “�.” A similar concatenation, may be undertaken
for A2. However, this example will not be pursued further here.

CONCLUSION

More flexible aggregation of weights and performance score have been investi-
gated in the AHP and MAHP. The OWA operator is guided by a linguistic
quantifier involving the importance weights associated with each criterion. OWA
operator weights are based on the “attitudinal character” of the decision-maker
expressed in terms of the degree of “orness” and “andness” of the aggregation. It
is claimed that quantifier guided OWA operators provide a more flexible range
of aggregation possibilities available to the decision maker.
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A1 A2 A3 A4 Priority

A1 1 2 ½ 5 0.2836

A2 ½ 1 ¼ 2 0.1335

A3 2 4 1 7 0.05172

A4 1/5 2 1/7 1 0.0657

Criterion 2 — Patronage growth potential (� = 0.004519), CI = 0.004067)

A1 A2 A3 A4 Priority

A1 1 1/3 3 3 0.2300

A2 3 1 7 7 0.6068

A3 1/3 1/7 1 1 0.0816

A4 1/3 1/7 1 1 0.0816

Criterion 1 — Link with trip generators (� = 0.002928), CI = 0.002635)
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A1 A2 A3 A4 Priority

A1 1 1 7 3 0.4014

A2 1 1 7 3 0.4014

A3 1/7 1/7 1 1/3 0.0541

A4 1/3 1/3 3 1 0.1431

Criterion 5 — Support for complementary development

(� = 0.002928), CI = 0.002635)

A1 A2 A3 A4 Priority

A1 1 3 9 9 0.5857

A2 1/3 1 7 7 0.3063

A3 1/9 1/7 1 1 0.0540

A4 1/9 1/7 1 1 0.0540

Criterion 3 — Value to transport network

(� = 0.033721), CI = 0.030349)

A1 A2 A3 A4 Priority

A1 1 1/3 1/7 1/7 0.0541

A2 3 1 1/3 1/3 0.1431

A3 7 3 1 1 0.4014

A4 7 3 1 1 0.4014

Criterion 4 — Local amenity and local impacts

(� = 0.002928), CI = 0.002635)
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A1 A2 A3 A4 Priority

A1 1 ½ 1/6 3 0.5857

A2 2 1 1/5 6 0.3063

A3 6 5 1 9 0.0540

A4 3 6 1/9 1 0.0540

Criterion 6 — Ease and success of implementation

(� = 0.051861), CI = 0.046675)

A1 A2 A3 A4 Priority

A1 1 3 3 7 0.5444

A2 1/3 1 1 3 0.1934

A3 1/3 1 1 3 0.1934

A4 1/7 1/3 1/3 1 0.0688

Criterion 8 — Future opportunity

(� = 0.002928), CI = 0.002635)

A1 A2 A3 A4 Priority

A1 1 2 4 2 0.4444

A2 ½ 1 2 1 0.2222

A3 ¼ ½ 1 ½ 0.1111

A4 ½ 1 2 1 0.2222

Criterion 7 — Project cost

(� = 0, CI = 0)
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