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ABSTRACT

We developed and applied a suite of risk-based methods for characterizing the

contaminant potentials from a former munitions plant in East Texas. The site

was originally “clean closed” when a subsequent groundwater monitoring

program disclosed areas of contamination by the chlorinated solvent, tri-

chloroethylene (TCE) and others. As part of an overall decision model

developed for the site, a series of probability-based mathematical and statis-

tical models were developed to address off-site contamination and plume

configuration. As with most historic hazardous waste sites, there was virtually

no information relative to contaminant loading rates to the water table aquifer.

These loads were reconstructed by comparing the results generated from a

Monte Carlo-based technique which linked the vadose and saturated zone

models to minimal groundwater data previously collected. The contaminant

flux in the aquifer was assumed to coincide with activities at the munitions

plants peaking as the plant was decommissioned and tailing off through

subsequent years. This curve followed the classic boundary condition where

the contaminant source is terminated after a period of flux into the aquifer.

Comparisons between simulated data and the site activity curve indicated that

the peak of the contamination had occurred before the monitoring program

was initiated, generally matching concentrations along the recession limb.

Probabilistic transport modeling through the water table aquifer produced a

series of statistical distributions of off-site contamination. These curves

further corroborated the observation that peak contamination at this site had

occurred before the monitoring data were collected. A Bayesian updating

technique was applied to compare the revised probabilities associated with

various management alternatives and a conditional simulation was completed

to define the plume configuration with some statistical confidence.
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INTRODUCTION

Previous work by the authors has been concerned with the development and

application of Decision Analysis Models (DAM) which generated alternatives for

the remediation of contaminated soil and groundwater at an abandoned munitions

manufacturing facility [1, 2]. This article develops and applies the mathematical

and geostatistical models employed to identify the contaminant loadings and the

transport to and through aquifer systems used in those decision models.

The conditions encountered included minimal available monitoring data to

describe either the magnitude or timing of the contaminant loading events through

the vadose zone and into and through the water table aquifer. Conditions of this

type are frequently encountered when abandoned hazardous waste sites are

modeled in conjunction with risk assessments or in advance of remediation design.

The approaches evaluated in the subject research can individually address select

elements of these uncertainties. The combination of different methods works to

better identify multiple sources of possible error.

When used within an overall risk assessment or remediation design sequence,

these methods can illuminate areas where additional data collection would

be useful while also suggesting alternative approaches for final design or

mitigation, including making the case for monitored natural attenuation where

appropriate [3].

GENERAL BACKGROUND

In spite of an extensive data collection program initiated by the U.S. Corps of

Engineers at this location, the Longhorn Army Ammunition Plant (LHAAP) in

east Texas, insufficient and often inappropriate information was available to

describe contaminant loading to and movement through the receiving aquifer.

Mathematical groundwater transport models with a Monte Carlo simulator were

employed to ascertain:

1. the probability of contaminant loads to the receiving aquifer; and

2. the probabilities of occurrence for TCE contamination at an arbitrarily

chosen Plain of Compliance (POC).

Conditional simulation was used to establish probability-based spatial estimates

of in-place contaminant concentrations to better define plume geometry for risk

assessment or remediation purposes. These spatial estimates, together with the

attendant probabilities of contaminant occurrence derived from the Monte Carlo

transport modeling, were used to help estimate uncertainties associated with the

projected chemical concentrations at the POC.

This basic modeling structure was expanded to include Bayesian analyses

to compare various alternatives such as the “no action” or monitored natural

attenuation alternative, which involved collecting additional monitoring data or

24 / WANG AND MCTERNAN



implementing one of three hypothetical remediation approaches. These analyses

were predicated on the probabilities of contaminant concentrations at non-detect,

below Maximum Contaminant Levels (MCLs) or above MCL levels. These

“’states of nature” concentrations were initially determined either by applying

conditional simulation techniques to existing data or by Monte Carlo-based

transport modeling for future conditions. Updating of probabilities by Bayes

Theorem integrated these modeling efforts into future remediation decisions

undertaken by the design team.

In Bayes Theorem, the prior probability of an event sni in the true state of nature

is P [sni]. Revised probability is equal to the conditional probability [sni/Zj] where

Zj is the outcome of a test. The definition of the probability of an intersection and

the use of conditional probability definition yields:

P[sni � Zj] = P[Zj � sni] (1)

or

P[sni | Zj] P[Zj] = P[Zj | sni] P[sni] (2)

Rearranging the equation, the posterior probability is obtained.

P[sni/Zj] = P[Zj | sni] P[sni]/P[Zj] (3)

From equation (3), it can be seen that the revised probability is a function of the

prior probability. The sample likelihood P[Zj | sni] is the probability that the test

event Zj occurs given the true conditional state of nature sni. Using Bayes

Theorem, revised probabilities were determined given the additional information/

data that could be gained from newly constructed monitoring wells. Only those

potential errors associated with the laboratory analyses of samples from newly

constructed, hypothetical wells were considered in this analysis. Bayesian

updating relies on identifying the true state of nature given measurable laboratory

uncertainties. Other sources of error exist and could be included in the Bayesian

updating. The technique employed could be readily expanded to include these

additional sources of error should data become available.

SITE DESCRIPTION

Figures 1 and 2 respectively present the geological cross-section information

bearing the original munitions plant and the site location in east Texas. The

LHAAP is in the middle of the east Texas timber belt, characterized by sandy

rolling forested topography [4]. Geological formations beneath the site are the

Wilcox and Midway groups [5]. The Wilcox formation in Harrison County is

characterized as a depositional facies of tributary channel deposits from the

Tertiary age [6].

It is typical for these types of deposits to consist of about 40% channel (sand)

and 60% overbank deposits (silt and clay). Due to the depositional environment,
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the Wilcox Aquifer is made up of interbedded sand, silt, and clay (Figure 1) [4].

Some clay lenses are extensive enough to cause confining conditions locally [7].

The aquifer varies in depth from 90 to 150 feet, with the Midway group acting as

a lower boundary unit. Aquifer depth variance is due to the slight Northwest

dipping of the Wilcox and Midway groups caused by the Sabine uplift which

has pushed Upper Cretaceous beds to within 700 feet of the surface [8]. In areas

adjacent to the uplift the same beds are 5000 to 6000 feet from the surface.

Regional groundwater gradient is about .0015 to the northeast [7], but is

affected locally by mounding of the water table beneath the LHAAP. The mound-

ing causes a radial gradient outward from the site for a short distance [9]. This

mounding was attributed to the increased levels of infiltration due to activities

at the site which removed topsoil and vegetation.

While the capacity of the Wilcox aquifer is small to moderate, its potential

use as a domestic water source is high for rural home sites [7]. In addition, the

industrial complex is bounded to the Northeast by Caddo Lake that serves as a

drinking water source to the local communities of approximately 50,000 people

[10]. Therefore, the potential for drinking water contamination from the site exists.

With the regional groundwater gradient generally oriented northward, Harrison

Bayou, downgradient from the site was categorized as the critical receptor path

for transported contaminants and a plain of compliance within the Bayou was

established to identify potential receptors to the contaminant of concern. Any

contamination migrating beyond the POC with a strength greater than or equal

to the set MCL was considered failure. Transport and geostatistical models

were used to define the probabilities of contamination existing at this POC.

Trichloroethylene (TCE) was used as the chemical marker for these modeling
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Figure 1. Typical stratigraphic cross section of the Wilcox and Midway

groups with detail of interbedded silts, clays and sand (not to scale).



efforts because it was identified as a critical contaminant [9]. Other chemicals,

however, could also have been used in this effort.

METHODOLOGY

Contaminant Flux to Groundwater Analysis

As is often the case, no information describing contaminant loading from the

residuals remaining following clean closure was available. In contrast to cases of

pollution of surface waters, particularly point source pollution, leakage from the

contaminated vadose zone into a receiving aquifer is neither documented nor
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measured. Correct determination of this value, however, is critically important, as

it is the basis for all subsequent estimates of groundwater contamination. Typically

the analyst employs relatively simple guesses as to the amount of contaminant

loading into and through the vadose zone. The guesses are considered “accept-

able” if the subsequent simulated contaminant levels in the receiving aquifer are

similar to those measured in data collection programs. Many sources of possible

error can affect these estimates.

Better, more scientifically-based approaches are needed to estimate the con-

taminant loading into the aquifer from the vadose zone. The alternative that was

developed in this effort used measured data and fundamental transport theory

to develop a contaminant loading curve.

Figure 3 presents two theoretical vadose zone contaminant loading curves

which could occur for initial and boundary conditions similar to the removal of

a contaminant source following an extended period of leakage into and through

the vadose zone. Monitoring programs together with a careful examination of

production records have indicated that this is the probable mechanism of con-

tamination at the LHAAP [9].

The increase in concentration (or mass loading), as seen between points a and b

of curve A, represents the plume’s arrival at a stationary monitoring point.

Flattening of the curve, as shown between points b and c, shows plume strength at

its maximum indicating continuous loading from the source. Between points c and

d the decreasing concentration results from removal or dissolution of the source.

Curves A and B represent either alternative compounds with different transport
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hypothetical advective transport conditions.



properties such as adsorption and/or ion exchange (retardation) or alternative

hydrogeological conditions.

Previously measured contaminant soil concentrations and soil properties were

used to develop a mass loading curve similar to Figure 3 [9]. As the source was

removed in 1985 and was no longer loading TCE into the unsaturated zone, the

mass loading to groundwater should lie somewhere between points c and d of

Figure 3 and was approximated by advective-dispersive modeling in a two phased

effort. The first phase traced mass loading from the time the units were opened

(1950) and continued into the mid-1980s with closure in 1985 [4]. As soil

contaminant concentrations were not available prior to 1988, the earliest repre-

sentative soil level was utilized and the following assumptions were made with

respect to both modeling phases:

• Phase one thickness of contaminant incorporation was one meter. This was

based on the information from the data summary report on depths of the

Unlined Evaporation Pond (UEP) and disposal trenches [9].

• For modeling purposes, the depth of the unsaturated zone was considered

uniform over the entire site. This figure was derived using simple statistics of

the depth to water table data from 44 groundwater wells.

• It is assumed that by 1988 the entire unsaturated zone thickness was con-

taminated under the source. Therefore, phase two thickness of contaminant

incorporation was 5.74 m, equal to the unsaturated zone depth.

• Since the majority of the waste was disposed into trenches and the UEP, it

was valid to assume there was no cover over these units [9].

• Fifteen different waste units were located with a area 159 m by 305 m. Since

the waste units occupied more than 50% of this area, the area was modeled

as a single unit.

A simple statistical analysis of the soil concentration data from 1988 provided

a mean and upper boundary of the 95% confidence interval (UB 95 CI) to be used

as the contaminant concentration in the soil.

Phase two used the contaminant soil concentration data from 1988 to deter-

mined where mass load for that and subsequent years were located on the

theoretical curve. From this point, contaminant loading was extrapolated to deter-

mine a maximum mass loading into the aquifer.

Tool Used

The Jury unsaturated zone model incorporated in the American Petroleum

Institute’s Decision Support System for Exposure and Risk Assessment (APIDSS)

software was used to estimate the contaminant flux into the aquifer [11, 12]. This

model is based on the analytical solution to the differential mass balance equation

with appropriate boundary and initial conditions:
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Differential mass balance equation:

( / ) ( / ( / )� � � � � � �C t C D C z ) V C zT T E T
2

E T� � �2 (4)

where

CT = total soil concentration (mg of contamination/cm3 of wet soil)

t = time (day)

� = first order decay rate constant (1/day)

DE = effective diffusion coefficient (cm2/d)

z = depth measured positive downwards from the soil surface (cm)

VE = effective contaminant velocity (cm/d)

The initial condition is:

CT(0 < z < L, t = 0) = Co (4a)

CT(z � L, t = 0) = 0 (4b)

Equations (4a) and (4b) imply that initially the contaminant is uniformly incor-

porated to a depth L. In equation (4), the total soil concentration is assumed

to be distributed between the solid, aqueous, and vapor phases. Concentrations

estimated at the water table are used to compute the contaminant flux to the

water table using:

Mwt = VC1A + D(�C / �Z)A (5)

where

Mwt = annual mass loading to water table (mg/yr)

V = infiltration rate (m/yr)

A = area of the source (m2)

C1 = liquid phase concentration at the water table (mg/m3)

D = hydrodynamic dispersion coefficient (m2/yr)

�C/�Z = concentration gradient at the water table (mg/m3/m)

From the modeling analysis, the estimated peak mass loading occurred in year

24 or calendar year 1974. Year 0 corresponded to calendar year 1950, when

contaminant disposal started. Maximum loading was maintained for a period of

11 years, from 1974 to 1985. In 1985 the site was closed with removal of all

solids and liquids [4]. This period was used to construct the b-c equivalent segment

of Figure 3 with the simulated mass loading data. The resultant curve was

then used to determine the pulse load (yearly loading into the aquifer) by graphical

integration. Two soil concentrations were employed: the mean and the UB 95 CI.
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Transport to Plain of Compliance (POC)

Following the development of this source-loading curve, a second contaminant

transport activity was initiated to determine the probability of the plume reaching

the POC at a specified concentration. A publicly available two-dimensional

analytical model with a Monte Carlo simulation was utilized to develop numerous

possible scenarios [11, 13]. Numerous concentration break-through curves, gener-

ated to show the time and concentration relationship of TCE at the POC, were

statistically analyzed and cumulative probability density plots developed.

The probabilities developed were utilized within the decision analysis model

to assign probabilities for the previously introduced states of nature. Uncertainty

of contaminant transport is quantified as a probability that can be integrated

into the decision analysis.

Tool Used

Analytical Transport: One, Two and Three Dimensional (AT123D), in the

APIDSS software package was used for this analysis [11]. The code, developed by

G. T. Yeh in 1981 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

uses Green’s function to solve the advection-dispersion transport equation for

a variety of source and boundary conditions [13].

Pertinent equations governing the transport and distribution of soluble

contaminant are:

�

�

n C

t

e = 	(ne D 	 C) – 	 (C q) + M – (K ne C) – (
 ne C) –
� �

�

( )b sC

t
+ (
 �b Cs) (6)

where

q = Darcy velocity vector (L/T)

D = hydraulic dispersion coefficient tensor (L2/T)

C = dissolved concentration of the solute (M/L3)

Cs = absorbed concentration in the solid (M/M)

pb = bulk density of the media (M/L3)

M = rate of release of source (M/(L3*T))

ne = effective porosity (L°)


 = radioactive decay constant (1/T)

K = degradation rate (1/T)

This fundamental advective-dispersion solute transport equation in three-

dimensions can be simplified if the following assumptions are made:

• Groundwater characteristics are considered uniform. Because the transport

of TCE is primarily through highly conductive channel sand deposits within

the Wilcox aquifer, modeling the transport within a finite aquifer (channel

sand deposits) which can be assumed homogeneous.
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• Sorption can be described with an instantaneous linear isothermal

equilibrium.

• No waste flow exists across impervious boundaries.

• Flow through open boundaries occurs at infinity.

• There is a finite duration for contaminant release.

Solution of equation (4) is reduced to:

C (x,y,z,t) =

0

T

� [M/(neRd)] Fijk (x,y,z,t;) d
(7)

where

Fijk = integral of Green’s function over the source space

M = instantaneous release of total mass

T = duration of waste release

CONTAMINANT PLUME UNCERTAINTY

Geostatistic Applications

This analysis used geostatistical techniques to develop an isoconcentration

map of the TCE plume. Even though there were 40 sampling points within

the site, there was still uncertainty with respect to the plume’s dimensions

and concentration contours. The output from this analysis was important to

the decision analysis because the plume characteristics were used to identify

alternative remedial actions and their attendant costs for the subsequent

decision model.

Method Developed and Applied

The flow chart in Figure 4 shows the geostatistical methods used. Following

data collection from the sample sites, variance analysis was conducted to deter-

mine the spatial statistics among the sampling points. Experimental and modeled

semivariograms were developed to describe the pattern of spatial correlation

displayed by the data [14-16].

The sample data declustering step was used for this data set because many of the

sample points were close to one another. Clustering of wells within the plume is

common for groundwater contamination problems because the objective is to

locate and define the plume. The collected data may be skewed, and may not truly

represent the entire area of concern. To obtain a representative distribution, one

can assign declustering weights, whereby values in areas with more data receive

less weight than those in sparsely sampled areas [17].

Conditional simulation was used to estimate the concentration of the con-

taminant at unsampled locations. This Monte Carlo technique generates multiple

random realizations of two- or three-dimensional fields of a regionalized variable
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[18]. A simulation is considered conditioned when it honors the observed values

of the regionalized variable [19]. A conditional simulation can thus be defined as

a surface which has the same variability as the studied phenomenon and which

passes through the observed points maintaining their values [20]. When many

simulations are completed, the statistical distribution of the contaminant con-

centrations can be assessed [18]. This analysis results in an isoconcentration

map for the TCE plume and a measure of statistical variance around each point

that can be used within the decision model.

Methods Applied

Goovaerts [15] and ASCE [21] discuss calculation of the experimental vario-

gram and fitting a model to the variogram. Two moments of Z(x) (with Z(x) repre-

senting the random function of contaminant densities) are required for a linear

geostatistical analysis. The first-order moment is the mean of Z(x) and the

second-order moment includes:

variance: Var[Z(x)] = E{[Z(x) – m]2} = C(0) (8)

covariance: C(h) = E{[Z(x + h)] [Z(x)]} – m2 (9)

variogram: 2�(h) = E{[Z(x + h) – Z(x)]2} = C(0) – C(h) (10)

where

m = E[Z(x)] = mean or expected value

h = xi – xi+1 (vector)

�(h) = variogram in the form used most often

The semivariogram is the principal tool used in geostatistics because it can be

applied with less restrictive assumptions than either the variance or covariance

[14]. The true semivariogram, called the experimental semivariogram, is unknown

and is estimated by:
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where

N(h) = the number of sample pairs separated by the vector h.

The semivariograms generated together with the sampled data were used in

the conditional simulation (CS) to generate two-dimensional realizations of the

regionalized variable (log-normal TCE concentration). The idea is to develop an

isoconcentration map of the plume within some designated confidence interval.

Tool Used

The sequential Gaussian simulation program (SGSIM) was utilized for the

conditional simulation step [22]. This algorithm produces directly conditioned

estimates without an intermediate unconditioned step. Sequential simulation con-

ditioning is extended to include all data available within a neighborhood of the

simulated variable, including the original data and all previously simulated values.

With SGSIM, each variable was simulated sequentially according to its normal

conditional cumulative distribution function (ccdf), fully characterized through

a simple kriging system [22]. The conditioning data consist of all original data

and all previously simulated values found within a neighborhood of the location

being simulated.

With this approach the conditional simulation of a continuous variable z(u)

modeled by a Gaussian-related stationary random function Z(u) proceeds:

• Using the cumulative distribution function (cdf) Fz (z), performs the normal

score transform of z-data into y-data with a standard normal cumulative

distribution function.

• Defines a random path that visits each node of the grid (not necessarily

regular) once. At each node u, retains a specified number of neighboring

conditioning data including both original y-data and previously simulated

grid node y-values.

• Uses simple kriging with the normal score variogram model to determine the

parameters (mean and variance) of the ccdf of the random function Y(u) at

location u.

• Draws a simulated value y(l) (u) from the ccdf.

• Adds the simulated value y(l) (u) to the data set.

• Proceeds to the next node, and loop until all nodes are simulated.

• Back-transforms the simulated normal values {y(l) (u), u � A} into simulated

values for the original variable {z(l) (u) = �
–1 (y(l) (u)), u � A}.

• For multiple realizations {z(l) (u), u � A}, l = 1,..., L, the previous algorithm

is repeated L times with either one of the following options: Uses the same

random path to visit nodes or a different random path for each realization.
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Monte Carlo Analysis

Each of the numerous simulations represents a possible realization of the true

TCE concentrations within the groundwater aquifer. A statistical analysis was

conducted on the numerous simulations to determine the isoconcentration map

of the TCE plume within certain confidence intervals. Three product outcomes

were generated: a mean isoconcentration map, an upper boundary of the

95% confidence interval map and an upper boundary of the 90% confidence

interval map.

The contaminated site was represented on a grid network of 75 feet square,

3750 feet East-West boundary and 4500 feet North-South boundary. Each grid

intersection was represented by a node for which a value z(l)(u) was simulated.

A statistical analysis was calculated for each of the node locations to estimate

the cumulative probability distribution. If z(u) represents the true concentration

value at any node:

z(u) = g (X) (12)

where

g = function representing the conditional simulation

X = vector of all simulation inputs [23].

Since the components of X contain the cumulative distribution function (cdf)

Fz (z), the goal of Monte Carlo analysis is to calculate the cdf Fz(u) (zs(u)) given the

probabilistic characterization of X [23]. Fz(u) (zs(u)) is defined as:

Fz(u) (zs(u)) = Probability (z(u) � zs(u)) (13)

where

zs(u) = is the CS output

Given a set of deterministic values for each of the input parameters, X1, X2, ..., Xn,

SGSIM computes the output simulation value as:

z(u) = g (X1, X2, ..., Xn) (14)

Application of the Monte Carlo simulation procedure requires that at least one

of the input variables, Xn, be uncertain and that the uncertainty be represented by a

cumulative probability distribution. The simulation is then conducted numerous

times to generate a series of zs(u) values for each of the nodes within the

two-dimensional grid simulated [24]. The simulated outputs are then statistically

analyzed to yield the cumulative probability distribution of the simulated output.

The steps involved in the application of the Monte Carlo technique include:

• Select the appropriate cumulative probability distribution function for

describing uncertainty in the input variable(s).

• Select a random number from the distribution and use this as input to the model.
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• Run the model using the random number taken from the input distribution

to calculate the output.

• Repeat steps 2 and 3 for a number (n) times.

• Determine the cumulative probability distribution function of the output step 3

• Analyze the output distribution and utilize the statistics (i.e., mean and UB

95 CI).

A subsequent grid with the statistical values of the simulated values was developed

on a spreadsheet and plotted.

RESULTS

Mass Loading to Vadose Zone

Figure 5 illustrates the first and second phase modeling curves developed by

the Jury transport model. First-phase modeling developed the shape of curve A in

Figure 5 with respect to the actual time line of events at the LHAAP. The second-

phase developed the darkened portion of curve A, between points c and d, and

was used to determine mass loading over time. The maximum mass loading, point

c, was then extrapolated from phase two modeling values and phase one curve

shape. This analysis shows that much of the residual TCE had leached into the

aquifer prior to the initiation of soil monitoring programs in 1988.

Figure 6 presents the final calculations of the total TCE loading to the aquifer

beginning in 1967, increasing through 1973 and then decreasing from 1985 to

1997 as inplace TCE reached residual saturation. The area under this curve

represents the total mass of TCE that was loaded into the aquifer at the mean and

higher flux rates. Multiplying the mass loading (kg/yr) by the number of years

yielded the mass of TCE in kilograms. Calculation was done for both curves.

Total loading values calculated for the UB 95 CI and mean curves were 18,942 kg

and 7998 kg, respectively. The total load values were divided by 30 years to derive

uniform pulse loadings of 631 kg/yr and 267 kg/yr for the UB 95 CI and mean

curves respectively, to be used in the saturated zone transport model.
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Transport to Plane of Compliance (POC)

The stochastic groundwater transport modeling effort was tested in two ways

to address the validity of the models developed. The first way addressed the

adequacy of the Monte Carlo sampling protocol while the second effort com-

pared the modeled data with equivalent data collected during the historical

monitoring program.

Maximum Precision Determination

The method used to determine the maximum precision of the Monte Carlo

analysis plotted the mean concentration at the receptor point (POC) against the

number of simulations. As the number of simulations increased, the mean con-

centrations oscillated around a maximum precision value. When the analysis

produced a relatively constant result, maximum precision was achieved.

Figure 7 shows that maximum precision of the Monte Carlo analysis occurred

between 275 and 300 simulations. Mean concentrations from 1 through 100

simulations showed much variation before tapering to a relatively constant point

which occurred at about 250 simulations with a mean concentration of .0015 mg/l

(1.5 ug/l). The 300 simulations used in this analysis were beyond the minimum

required simulations for maximum precision. Simulation numbers beyond 300

theoretically have no effect on the stochastic analysis.

Model Calibration

As a check to ensure that the contaminant transport simulations were producing

reasonable results, a calibration analysis was made. During this analysis, all model

parameters were held constant with transport to an adjacent monitoring well

replacing the simulations to the POC. The monitoring well chosen had consistent

hydrologic connection with the original contaminated source and an extensive

monitoring history spanning 11 years (1982-1993) [9]. Geologic cross-sections

showed a channel sand deposit connecting the well with the UEP [9]. This

provided the best possible homogeneous situation in which to conduct the simu-

lations. No TCE contamination was detected during initial monitoring efforts of

1982. In subsequent years, however, the detected amounts fluctuated between

29 and 10,000 ug/l.

The results of these calibration efforts are presented in Table 1 which compares

the measured data from the monitoring well for years 1982-1993 to the modeled

concentrations. The comparisons in Table 1 show that the modeled TCE con-

centrations approximated the measured ranges. Years 1986-1992 had a higher

measured concentration then the model predicted but were within the same order

of magnitude. Results of this analysis illustrate some reliability in the modeling

parameters used in modeling contaminant transport.
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Contaminant Transport Probabilities

These Monte Carlo simulations were statistically analyzed to form a probability

distribution plot for TCE concentrations at the POC for various time periods.

Figure 8 illustrates an example of a probability plot for five time periods. In

Figure 8 each of the five curves illustrated the probability distribution of con-

tamination at the POC within a specific time period. Curve A represents the

probability distribution of the simulated TCE concentrations at the POC within the

entire 50-year simulation period. Subsequent curves illustrate similar probability

distribution of concentrations for different incremental time periods within the

50-year simulation. Curve B shows the probability distribution of simulated

concentrations at the POC for simulation years 1-10 as does curve C for simulation

years 11-20. Curves B and C show a significant difference in probability distri-

bution. That is, the probability for .001 mg/l (1 ug/l) of a TCE to migrate to the

POC is about 19% in the first 10 years, as opposed to 2% in the following 10 years,

as represented by curve C. After 20 years, the probability is almost zero, as shown

by curves D and E. Probability curves B and C are important factors in analyzing

the decision to postpone any remedial actions.

Table 2 presents the results from the Bayesian simulations where prior prob-

ability distributions were updated with outputs from the stochastic transport

models. It should be noted that these probabilities were developed in conjunction

with the previously referenced decision model (not included in this article).

These results are included, however, as they further quantify and support those

developed by the stochastic transport analyses and serve as a basis for the

geostatistical evaluations which follow. These revised probabilities were

developed for:
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Table 1. Comparison of Monitoring to Modeling Data

Year measured/simulated

Measuring data

(mg/l)

Modeling data

(range in mg/l)

NOV 82/year 32

APR 83/year 33

SEP 84/year 34

SEP 86/year 36

SEP 87/year 37

SEP 88/year 38

NOV 92/year 42

NOV 93/year 43

not detected

.029

<.05

.11

.16

.19

.204

.094

0-.09

0-.09

0-.09

0-.09

0-.09

0-.10

0-.02

0-.01
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• Take Action

• Additional Site Testing

• Postpone Action

alternatives. Prior to the transport analysis, the probability for any one state of

nature to occur was 33.3%, since the sum of the probabilities must equal 100%.

After conducting the contaminant transport modeling, the probabilities were

revised to 52%, 35%, and 13% for sn1, sn2, and sn3, respectively, for actions taken

within the first 10 years of simulation. However, if Additional Site Testing or

Postpone Action decisions were made, the snx probabilities were changed, as

summarized in Table 2, such that if remediation action was postponed 10 years

there was only a 14% chance that the TCE concentration would exceed 5 ug/l.

Additional testing lowers the probability of not detecting the contaminant to zero

while producing a 33% chance that it will exceed 5 ug/l.

Contaminant Plume Delineation

Data Spatial Variance Analysis

A nested Gaussian model characterized by a sill of 7.8, a nugget of 0.0, and a

range of 425 feet was developed from two experimental variograms fitted to the

Corps of Engineers monitoring data to achieve near origin as well as distance

estimation of the collected data. These modeled variograms were then employed

in the conditional simulation to generate contour maps of alternative probabilities

of the TCE contamination. The environmental decision-maker could then choose

an acceptable level of certainty for inclusion into the analysis model described in

the accompanying paper.
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Table 2. Revised Probabilities Utilized within the Decision Tree Analysis

Decision tree analysis Probability (%)

Decision alternative Test result sn1 sn2 sn3

Take action

Additional testing

Postpone action

10 yrs

No additional testing

No detection of contaminant

Detection < 5 ug/l

Detection � 5 ug/l

No detection of contaminant

Detection of < 5 ug/l

Detection of � 5 ug/l

52

100

46

0

100

95

0

35

0

42

67

0

4.5

86

13

0

12

33

0

.5

14



Monte Carlo Maximum Precision

The same technique used in the transport analysis was applied to the stochastic

spatial analysis to determine the minimum number of conditional simulations

needed. As there were 3000 simulated nodes for each realization, statistically

analyzing all the nodes and plotting the results was not feasible. After removing

actual testing locations from the database, three randomly selected nodes were

used in the analysis, which showed that maximum precision was reached between

40 and 60 simulations at each of the three simulated nodes.

Statistically-derived isoconcentration maps illustrating the upper boundaries of

the 90 and 95% confidence intervals as well as the mean concentrations were

prepared. The plot of the simulated means (Figure 9) was very similar to the kriged

estimate (not presented) illustrating that the average of conditional simulations at a

given location converged to the kriging estimate and the variance converges to the

kriging variance as required by the theory [18]. This similarity lends itself to the

verification of maximum precision and that 45 simulations were adequate to

represent the data.

An advantage of conditional simulation is the ability to produce estimates of

the spatial variable with greater resolution. Figures 9 and 10 are the mean (50%)

and statistical upper bound 95% confidence intervals (e.g., UB 95 CI) plumes

respectively. Comparing the mean with the UB95CI plume illustrates the con-

centration variations or uncertainties associated with identifying the relative

plume concentrations and their areal distributions. Comparison of the two figures

revealed that while the areal spread of the respective simulated plumes was about

the same for each of these estimates, differences occurred in the concentration

distributions where higher contaminant concentrations were observed in the UB95

simulation than in the 50% plot. Greater resolution was achieved in the UB 95 CI

plume. That may prove significant in determining remediation alternatives and

attendant costs based on the size and strength of the contaminant plume or in

making soil-based risk assessments. These figures help define the region where

remedial efforts need to be addressed. When used in conjunction with the con-

taminant probabilities at the POC presented in Figure 8 and the updated Bayesian

probabilities presented in Table 2, these figures characterize the monitored

natural attenuation region within a statistically established criterion. The

routinely used “mean” plume can be compared to either the UB 90 or UB 95 for

regulatory compliance.

SUMMARY

The research presented applied multicomponent, risk-based approaches to

reconstruct an unmeasured contaminant loading event from a documented vadose

zone storage into and through a water table aquifer. Probability-based techniques

were used to define statistical distributions of contaminants introduced to the
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Figure 9. Isoconcentration map of the mean TCE plume from the

conditional simulation realizations. The legend gives the TCE

concentrations as log-normal transformed.
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Figure 10. Isoconcentration map of the UB 95 CI from the

conditional simulation realizations. The legend gives the TCE

concentrations as log-normal transformed.



aquifer and to define chemical concentrations at a down-gradient, off-site location.

When these results showed that projected, unacceptable contamination events

at this location were relatively infrequent, additional evaluations were under-

taken to update these transport probabilities with Bayesian statistics linked to a

decision model to further refine risk levels and potential remediation approaches.

While the decision model is not covered in this article, as it has been reported

previously, these results are included herein since they serve as a starting point

in evaluating plume sizes and configurations for possible monitored natural

attenuation decisions and additional data collection programs [2]. The areal

extent and concentration distribution of the contaminant plume was defined by

conditional simulation.

The combination of stochastic transport modeling, Bayesian updating, and

geostatistical simulation offers great power in helping determine in a scien-

tifically credible manner which sites should be remediated, over what time

intervals, and to what levels. The combined methodology tracked contamination

from the vadose zone into the receiving aquifer to points of potential exposure to

human and critical ecological receptors. Given the results generated in these

analyses, this site appears to be a suitable candidate for remediation based upon

natural attenuation.
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